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Abstract
We present an algorithm for robust and efficient contact handling of deformable objects. By being aware of the in-
ternal dynamics of the colliding objects, our algorithm provides smooth rolling and sliding, stable stacking, robust
impact handling, and seamless coupling of heterogeneous objects, all in a unified manner. We achieve dynamics-
awareness through a constrained dynamics formulation with implicit complementarity constraints, and we present
two major contributions that enable an efficient solution of the constrained dynamics problem: a time stepping
algorithm that robustly ensures non-penetration and progressively refines the formulation of constrained dynam-
ics, and a new solver for large mixed linear complementarity problems, based on iterative constraint anticipation.
We show the application of our algorithm in challenging scenarios such as multi-layered cloth moving at high
velocities, or colliding deformable solids simulated with large time steps.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Animation—

1. Introduction

Contact is a ubiquitous phenomenon around us, and its
importance to computer graphics is testified by a large
amount of previous work on the design of efficient al-
gorithms [Bar94, VMT97, BW98, BFA02, GBF03, KEP05,
HVTG08]. When handled robustly, contact can lead to vivid
effects that dramatically enhance the richness of animations.

We propose a method for contact handling that robustly
supports non-penetration, dynamic and static friction, and
stacking, even under large time steps. Our method is gen-
eral and applicable to a large family of objects, ranging
from cloth-like thin shells, to rigid bodies or volumetric de-
formable bodies. We found our method on an implicit col-
lision response formulation based on complementarity con-
straints and Lagrange multipliers. This implicit formulation,
described in Section 3, enjoys great robustness and has been
successfully applied to rigid bodies [Bar96, Erl07], but suf-
fers a complexity explosion when extended to deformable
objects with many degrees of freedom and many contacts,
such as the ones shown in our examples.

We achieve efficient implicit contact handling for de-
formable objects through two major contributions. In Sec-
tion 4, we introduce a time-stepping algorithm for geometri-

cally and physically robust handling of non-penetration con-
straints, based on progressive constraint manifold refinement
(CMR). And in Section 5, we propose a solver for mixed lin-
ear complementarity problems that features a novel concept
of iterative constraint anticipation (ICA).

In Section 6 we discuss the effect of our contributions on
examples such as multi-layered cloth moving at high veloc-
ities (see Fig. 1), solid deformable objects simulated with
large time steps yet robust contact (see Fig. 7), or the com-
bined handling of diverse deformation models (see Fig. 4).
For typical deformation models, our solver has linear cost
per iteration and converges in few iterations. It is particularly
well suited for large constrained problems, and we demon-
strate that it efficiently handles thousands of degrees of free-
dom and contacts. In our examples, we have combined CMR
and ICA, but the two contributions are orthogonal, and they
can also be combined with other time-stepping or collision
response algorithms. We continue now with a discussion of
related work before describing our contributions in detail.

2. Related Work

The simulation of contact among deformable objects covers
deformation modeling, collision detection, and contact han-
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Figure 1: A flamenco dancer performs a few steps and a 360 turn (in less than 1sec). Her 6-layered dress (16800 vertices)
undergoes challenging contact, but is robustly resolved by our dynamics-aware contact handling.

dling. We refer readers to recent surveys on collision detec-
tion for deformable objects [TKH∗05], general deformation
modeling [NMK∗05], or modeling of cloth [HB00, CK05],
for more details on those topics. Our work deals with contact
handling or collision response, which has been addressed
through many different approaches. They can be classified
based on the nature of the response (i.e., forces, impulses,
or geometric projection), their local or global effect, or the
sequential or simultaneous processing of contacts.

One approach for collision response is the use of elas-
tic repulsive forces (or penalty method) [MW88]. The ma-
jor problem of the penalty method is that non-penetration
robustness and physical robustness require different param-
eter choices. To robustly avoid non-penetration, repulsive
forces must be very stiff or even nonlinear. To robustly avoid
non-physical jitter effects, forces must be continuous. How-
ever, to the best of our knowledge, there is no method that
guarantees continuous repulsive forces in the general case,
hence high stiffness can lead to disturbing jitter artifacts. The
penalty method is, nevertheless, often the method of choice
when very high performance is a major goal [BJ07].

Contact handling is particularly challenging in cloth sim-
ulation, as the non-orientability of the surface calls for
strict enforcement of non-penetration. Volino and Magnenat-
Thalmann have long proposed techniques for efficient sim-
ulation of cloth and garments. Their work on collision re-
sponse includes a geometric projection method for resolving
positions, velocities, and/or accelerations [VMT97], which
they later refined to deal with competing constraints and with
an efficient solver [VMT00]. Baraff and Witkin [BW98] en-
abled the use of large time steps in cloth simulation through
implicit methods, and handled cloth-cloth collisions through
repulsive forces. Provot introduced methods for dealing with
competing constraints through rigid impact zones [Pro95],
or through iterative application of impulses [Pro97]. Bridson
et al. [BFA02] introduced a bullet-proof technique for en-
suring non-penetration in cloth (or other deformation mod-
els) by combining repulsive response, geometric response,

and rigid impact zones if needed. Very recently, Harmon
et al. [HVTG08] have eliminated excessive sticking effects
produced by rigid impact zones. Also very recently, Sifakis
et al. [SMT08] have introduced a contact handling technique
based on intra-contact volume preservation.

Our work is related to methods that model collision re-
sponse as a constrained optimization. The approach has
gained popularity for rigid body simulation over the last
decade [Bar94, RKC02, KEP05, Erl07], as it provides accu-
rate handling of friction and stacking. It has also seen ap-
plication to deformable objects since the work of Baraff and
Witkin [BW92]. The simulation of contact deformations has
received large attention in the field of computational me-
chanics, and we refer to the book of Wriggers [Wri02] for a
comprehensive treatment. Similar to many others before, our
formulation of contact deformations can be classified in the
family of linear complementarity problems (LCP) [CPS92].
The formulation of the LCP using an implicit time-stepping
method robustly guarantees the enforcement of the con-
straints at the end of the time step [ST96].

There are two major differences between iterative con-
straint handling methods [BFA02, GBF03, MHHR06], and
implicit LCP formulations. One difference is the sequential
vs. simultaneous formulation of all constraints. A simulta-
neous formulation guarantees that the solution to one con-
straint will not violate others. Another difference is the lo-
cal vs. global effect of the response. For deformable objects,
iterative constraint handling methods typically apply a re-
sponse locally on the colliding nodes [BFA02, MHHR06,
SBT07], while implicit methods act globally. Local response
works well with small time steps, but, as highlighted in
Fig. 2, it may produce spurious energy growth due to exces-
sive local deformation. Bridson et al. [BFA02] alleviated this
effect by adding cloth relaxation steps to collision response.
Recently, Shinar et al. [SSF08] have combined iterative con-
staint handling methods for deformable and rigid bodies.

The formulation of a contact LCP requires the compu-
tation of all pair-wise contact force effects, a process re-
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Figure 2: Local vs. Global Response. A flexible structure
with linear springs (a,b) and (b,c), and a torsional spring
at b, collides against a wall. Elastic energy varies with the
position of c (‘blue’ is low energy, and ‘red’ is high). Left
(A): local geometric projection moves c in the direction of
n keeping b and a fixed, and clearly adds excessive energy.
Right (B): a global response method also moves b to an op-
timal location, producing a remarkably lower elastic energy.

ferred to as constraint anticipation [Bar96] or computa-
tion of the Delassus operator [DDKA06]. With rigid bod-
ies, constraint anticipation is a popular approach because
it requires the solution of small linear systems. But with
deformable bodies with many degrees of freedom and im-
plicit constraints it becomes excessively expensive. Some
have used linear [PPG04] or global co-rotational deforma-
tion models [DDKA06] to leverage precomputations. Saupin
et al. [SDCG08] approximate and accelerate the formulation
of the Delassus operator using compliance warping. Raghu-
pathi and Faure [RF06] maintain an active constraint set and
exploit linear system solvers, but this approach may lead to
excessive sticking, in particular with large time steps. Very
recently, Kaufman et al. [KSJP08] have introduced an ap-
proach for rigid bodies and reduced deformation models that
formulates and solves non-penetration and frictional LCPs in
a staggered manner. In Section 5 we propose a novel efficient
solver for large constrained deformation problems.

3. Constrained Dynamics Formulation

We now describe the frictional constrained dynamics formu-
lation on which our contact handling algorithm operates.

3.1. Dynamics and Numerical Integration

For the presentation of our algorithm, we comprise all de-
grees of freedom of the simulation in one state vector q. We
also comprise all velocities in one vector v. In this paper we
do not propose any new method for modeling deformations,
but we assume that dynamic deformations can be discretized
with ODEs of the form:

Mv̇ = F,

q̇ = Gv, (1)

where M denotes the mass matrix, F is the (generally non-
linear) force vector, and G relates the velocity vector to
the derivative of the state vector. Eq. (1) is very general,
and it applies to, e.g., rigid bodies, mass-spring models,
discrete shells, or FE elastic models. In our examples, we
have used a mass-spring model similar to the one used by
Provot [Pro95] or Bridson et al. [BFA02] for cloth, and the
linear co-rotational FE model of Müller and Gross [MG04]
for volumetric deformable objects.

We consider time discretization methods that, given a
state (q0,v0) at the beginning of a time step, yield a linear
velocity update rule:

Av = b. (2)

This assumption is applicable to each Newton iteration of
implicit solvers such as backward Euler or Newmark, and to
each step of Runge-Kutta solvers. For the examples in this
paper, and as done by [BW98], we have used a backward
Euler scheme with linear approximation of forces (equiva-
lent to doing one Newton iteration of the nonlinear solve),
and assuming a constant mass matrix per time step. Then,
the linear velocity update is defined by:

A = M−∆t
∂F
∂v
−∆t2G ∂F

∂q
,

b = ∆tF(q0,v0)+
(

M−∆t
∂F
∂v

)
v0. (3)

3.2. Non-Penetration Constraints

The set of object configurations q free of contact can be
limited by a constraint manifold Γ in the high-dimensional
configuration space. Collision detection locally samples this
constraint manifold. More specifically, grouping all contact
points in one vector p, the free space defined by the con-
straint manifold Γ can be approximated by a set of algebraic
inequalities g(p) ≥ 0. Given a pair of colliding points pa
and pb, and contact normal n, an individual non-penetration
constraint can be written as nT (pa− pb) ≥ 0. We identify
vertex-face and edge-edge contact pairs in two ways: (i)
those pairs closer than a distance tolerance δ at the begin-
ning of a time step, and (ii) those that cross each other be-
tween two possible simulation states. We have implemented
the continuous collision detection test of Provot [Pro97], af-
ter pruning distant pairs using axis-aligned bounding boxes
and spatial hashing [THM∗03]. In practice, we enforce con-
tacts to be separated by a safety distance δ.

In order to enforce non-penetration at the end of the time
step, we formulate the constraints implicitly. Specifically, we
propose a semi-implicit formulation of contact constraints
linearized as:

g(p) = g0 +
∂g
∂p

(p−p0)≥ 0, (4)

with the rows of the Jacobian ∂g
∂p formed by the contact nor-

mals n at the time of impact, and g0 = g(p0).
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Accounting for the numerical integration method (implicit
Euler in our case), we can transform the implicit position
constraints into velocity constraints. To do this, we first ex-
press the position update of contact points in terms of their
velocities, p = p0 +∆tṗ. The velocities of contact points can
in turn be expressed in terms of the state velocity vector, as
ṗ = ∂ṗ

∂v v. In our examples, the rows of the Jacobian ∂ṗ
∂v con-

stitute triangle barycentric weights (for cloth) or tetrahedron
barycentric weights (for volumetric FEM). To summarize,
the semi-implicit position constraints from Eq. (4) are trans-
formed into velocity constraints of the form:

Jv≥− 1
∆t

g0, (5)

with J = ∂g
∂p

∂ṗ
∂v the generalized constraint normal.

3.3. Mixed Linear Complementarity Problem

We model collision response with the method of Lagrange
multipliers, and express contact forces as JT

λ. Additionally,
we employ Signorini’s contact model [DDKA06], which im-
poses non-sticking constraints λ ≥ 0 on the contact forces,
and the complementarity condition 0≤ λ⊥ g(p)≥ 0. Com-
plementarity here means that contact points cannot push
(λ > 0) and be distant (g(p) > 0) at the same time.

The resulting system of equations is a mixed linear com-
plementarity problem (MLCP, called ‘mixed’ as it combines
linear equalities and inequalities). Given unconstrained ve-
locities v∗, the MLCP that defines the constrained velocities
v can be expressed as:

A∆v = JT
λ, ∆v = v−v∗,

0≤ λ ⊥ J∆v≥− 1
∆t

g0−Jv∗. (6)

The MLCP is equivalent to a quadratic program [CPS92]
where the objective function to be minimized is 1

2 ∆vT A∆v,
subject to the contact constraints from Eq. (5). The inclusion
of A in the distance metric of the objective function ensures
that our algorithm is aware of the discretization method and
the internal dynamics of the deforming objects.

3.4. Friction

We model friction with a pyramid approximation of
Coulomb’s friction cone, which allows us to naturally in-
corporate it into the constrained optimization formulation
described above. We have opted for a 4-sided pyramid, but
more complex approximations are possible if higher accu-
racy is needed. Given a contact with constraint nT (pa −
pb) ≥ 0, we first compute the tangent unconstrained rela-
tive velocity v∗t = (I− nnT )(v∗a − v∗b ). We then align the
4-sided friction pyramid with this velocity, which amounts
to computing unit tangent vectors t1 = v∗t /‖v∗t ‖ and t2 =
n× t1. And we add friction forces to the dynamics equation
in Eq. (6) using Lagrange multipliers, which yields forces

γ1t1 and γ2t2 for each contact. In vector form, these fric-
tion forces can be expressed as HT

γ. The 4-sided pyramid
aligned with the unconstrained velocity has served as a good
approximation in our examples.

We handle friction in the constrained dynamics problem
by augmenting the MLCP from Eq. (6) in the following
way. Given a friction coefficient µ, we express the follow-
ing complementary constraints for each contact: a linearized
Coulomb cone constraint ‖γ1‖ ≤ µλ, and a velocity con-
straint vt1 ≥ 0 that prevents friction from reversing motion
(and similarly for γ2). Altogether, the problem from Eq. (6)
turns into the following nonlinear complementarity problem:

A∆v = JT
λ+HT

γ,

0≤ λ ⊥ J∆v≥− 1
∆t

g0−Jv∗,

‖γ‖ ≤ µλ ⊥ H∆v≥−Hv∗. (7)

In Section 5.4 we will describe our solution to frictional con-
strained dynamics, which is based on a decoupling of the
non-penetration and frictional problems.

4. Constraint Manifold Refinement

The solution to our constrained dynamics problem alone
does not guarantee a penetration-free state at the end of a
time step. There are two possible reasons: the linearization
of the contact constraints, and the fact that the collision re-
sponse induced by some constraints g may in turn violate
other constraints that were not accounted for. In this section,
we describe the first of our major technical contributions, a
time-stepping algorithm based on constraint manifold refine-
ment that will guarantee a collision-free state. We also give
an overview of how other different novel aspects of our work
fit into the overall algorithm.

We assume that a time step starts with a collision-free
state, (q0,v0). Then, the dynamics described by the lin-
earized discrete system A from Eq. (2) would yield an un-
constrained state (q∗,v∗). However, we aim for a state (q,v)
that satifies the constraint manifold Γ, and minimizes the
‘distance’ to the unconstrained state subject to the metric A.

The constraint manifold Γ that determines valid dynamics
solutions is nonlinear and highly dimensional. As an alterna-
tive, we propose the creation of a local conservative bound
of Γ, through a process of progressive constraint manifold
refinement (CMR). CMR intertwines steps of collision re-
sponse computation and continuous collision detection for
reaching a collision-free state at the end of the time step. An
example application of the CMR algorithm is schematically
depicted in Fig. 3. Along with the initial and unconstrained
states, CMR maintains a set of linear constraints g (described
in Section 3.2) that locally approximate Γ.

At each iteration of CMR, we perform a frictional con-
strained dynamics update as described in Section 3.4. This
results in a tentative simulation state (q,v) that satisfies the
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Figure 3: CMR Time Stepping. A point at q0 would move in
an unconstrained setting to q∗. CMR finds a location q3, as
close as possible to q∗, subject to constraints g, which form a
local piecewise linear approximation of the constraint man-
ifold Γ. In each iteration of CMR, the point moves to a ten-
tative goal position using the current approximation g, and
collision detection is executed for refining g if necessary.

constraints g. Unfortunately, this state is not guaranteed to
be collision-free, due to the local approximation of Γ. The
second step in CMR is to perform continuous collision de-
tection that checks for contacts in the linear motion between
q0 and q. If no contacts appear, the tentative state is valid
and we can start a new time step. If contacts appear, we re-
fine the approximation of the constraint manifold Γ by aug-
menting the set of constraints g, and perform a new iteration
of CMR. For each new contact, we add an implicit linearized
constraint, whose formulation is detailed in Section 3.2. Our
constrained dynamics formulation naturally handles multi-
ple constraints per degree of freedom of the system.

Given initial state (q0,v0), and using one Newton itera-
tion of implicit Euler for the numerical integration, the full
algorithm per time step proceeds as follows:

1. Linearize and discretize the dynamics, i.e., compute
(A,G,b), at (q0,v0), as described in Section 3.1.

2. Solve for unconstrained velocities in Av∗ = b.
3. Execute tolerance-based collision detection at q0 as de-

scribed in Section 3.2, and initialize the constraint set g
with newly-found constraints g∗.

4. Loop CMR while g∗ 6= ∅, at most 5 times:

4.1. Compute collision response ∆v based on (q0,v∗,g),
as described in Section 5.

4.2. Compute tentative v = v∗+∆v and q = q0 +∆tGv.
4.3. Execute continuous collision detection between q0

and q as described in Section 3.2.
4.4. Augment the constraint set g with newly found con-

straints g∗.

The convergence of CMR depends on the quality of the
linear approximation of the constraint manifold Γ, which de-
pends in turn on the velocity of the motion, the curvature of
Γ, and the size of the time step. However, we found that, for
reasonable time steps, CMR finds a safe constrained state
after 2 or 3 iterations in 90% of the cases (as reported in

Section 6). We also found that, after 5 iterations, halving the
time step and making a new attempt with CMR turns out to
be more efficient. Hence, in our examples, we allowed the
time step to be halved at most twice, and all collisions were
resolved. If necessary, one could add a bullet-proof step as
rigid impact zones [Pro95, BFA02] or the improved method
of Harmon et al. [HVTG08].

For better performance, we initialize the constraint set g
by doing a collision detection test that returns all primitive
pairs closer than the tolerance. This is particularly useful
when the scene contains stacked objects, such as the multi-
layered dress or the stacked letters from Fig. 7, as it dramat-
ically reduces the number of contacts returned otherwise by
the first continuous collision detection step.

Intertwining steps of collision detection and response is
a common strategy in contact handling [BFA02, HVTG08],
but CMR exhibits notable differences that provide higher
robustness at large time steps. Recall from Section 3.2
that our derivation starts with a position-level constrained
formulation, and we turn this nonlinear constrained prob-
lem into a velocity-level LCP formulation by incorporat-
ing the time integration method. This is different from other
velocity-level LCP formulations that directly formulate non-
approaching velocity constraints. With our formulation, the
state at the end of each iteration of CMR satisfies the lo-
cal linear approximation of the constraint manifold Γ. With
other velocity-level formulations, one still needs to evolve
positions, which, under large time steps, may lead to arti-
facts such as visible gaps between objects. In practice, we
have also experienced a decrease in the number of collision
detection iterations when using position constraints.

5. Nested Relaxation Solver for MLCPs

We present in this section our solver for constrained dynam-
ics problems. It is founded on a novel technique of iterative
constraint anticipation (ICA), and employs two nested re-
laxation loops. First, we discuss how MLCPs are typically
solved with the technique of constraint anticipation. We then
describe the concept of ICA and formulate the two relaxation
loops for the frictionless case. Next, we include the friction
solve, which is based on decoupling the formulation of nor-
mal and tangential response. We conclude with an outline of
the complete algorithm and its discussion.

5.1. Constraint Anticipation

The MLCP from Eq. (6) can be converted into a regular LCP
by Schur-complement computation:

0≤ λ ⊥ Bλ≥ c, (8)

with B = JA−1JT the Schur complement of A,

and c =− 1
∆t

g0−Jv∗.
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Figure 4: Unified Contact Solver. Our constrained dynamics approach naturally supports diverse deformation models in a
unified solver. In the figure, rigid bodies are yellow, linear co-rotational FEM models are orange, and mass-spring cloth is red.
The left and middle images show the robust handling of cloth compressed between rigid and deformable solids.

Baraff [Bar96] named this conversion to an LCP con-
straint anticipation, since the computation of A−1J is equiv-
alent to solving for the independent collision response pro-
duced by a unit force applied on each constraint. Constraint
anticipation is efficient for rigid bodies [Bar96, Erl07], as A
is block-diagonal and can be easily inverted. However, it is
very inefficient for general deformable bodies with implicit
constraints, as it requires the solution of one large linear sys-
tem per constraint. Moreover, with rigid bodies B is sparse,
while with deformable bodies and implicit constraints it is
dense and large, thereby making the solution of the LCP very
expensive as well.

5.2. Iterative Constraint Anticipation

In the constraint anticipation method discussed above, the
computation of Lagrange multipliers λ and collision re-
sponse ∆v are decoupled into two separate steps. We pro-
pose instead an algorithm where both λ and ∆v are solved in
tandem. Our algorithm exploits as well the concept of con-
straint anticipation, but instead of fully anticipating at once
the effect of the constraints as in Eq. (8), it progressively an-
ticipates their effect in an iterative manner. In essence, given
the collision response ∆v(i− 1) from a certain iteration, it
transforms the MLCP into an LCP through constraint antic-
ipation, computes Lagrange multipliers λ(i) for a new itera-
tion, and then refines the collision response ∆v(i).

Let us assume that the Lagrange multipliers λ(i) are
known at the current iteration, and we aim to compute the
collision response. One approach for doing this is to solve
for ∆v in A∆v = JT

λ through iterative relaxation (in our
case, block-Jacobi relaxation):

DA∆v(i) = (LA +UA)∆v(i−1)+JT
λ(i), (9)

where DA is block diagonal, LA strictly lower triangular,
UA strictly upper triangular, and A = DA−LA−UA. In our
cloth and volumetric FEM examples we decompose A into
3×3 blocks.

The formulation above allows us to anticipate the effect of
contact constraints in an iterative manner. Specifically, ICA
allows us to substitute ∆v(i) into the constraint equation in
MLCP (6), and obtain the following LCP, which can then be
used for computing λ(i):

0≤ λ(i) ⊥ Bλ(i)≥ c(i), (10)

with B = JD−1
A JT ,

and c(i) =− 1
∆t

g0−Jv∗−JD−1
A (LA +UA)∆v(i−1).

ICA presents two major advantages over the full con-
straint anticipation discussed in Section 5.1: (i) The matrix
of the LCP, B, requires the simple inversion of the block di-
agonal matrix DA, as opposed to solving a large linear sys-
tem per constraint; and (ii) B is very sparse, not dense any
more, since off-diagonal terms are non-zero only if two con-
straints affect the same simulation node. Moreover, note that
ICA reformulates at each iteration only the right-hand side
c(i), and the matrix B needs to be computed only once per
constrained dynamics update.

ICA yields two nested problems: as outer problem, the
iterative relaxation of ∆v and, as inner problem, the sparse
LCP for computing λ. We next describe the two relaxation
solvers used in these nested problems.

5.3. Nested Relaxation Loops

We solve the inner problem in ICA, i.e., the LCP in Eq. (10),
using projected Gauss-Seidel (G-S) relaxation [CPS92].
Then, the jth iteration is formulated as:

0≤ λ(i, j)⊥ (DB−LB)λ(i, j)≥ c(i)+UBλ(i, j−1), (11)

where DB is diagonal, LB strictly lower triangular, UB
strictly upper triangular, and B = DB−LB−UB. We found
that the inner problem typically converges in few iterations
(less than 10 in 90% of the cases) with a warm start from the
previous iteration of the outer problem.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



M. A. Otaduy, R. Tamstorf, D. Steinemann & M. Gross / Implicit Contact Handling for Deformable Objects

Figure 5: Falling Cloth. A piece of cloth is dropped and it produces many stacking folds on the ground. Our contact handling
ensures the lack of inter-penetrations and a response that does not add energy to the cloth.

Once the Lagrange multipliers λ are computed, the outer
problem in ICA must be resolved (i.e., the refinement of ∆v).
We obtained good convergence in practice by doing simply
one block-G-S iteration as described by:

(DA−LA)∆v(i) = UA∆v(i−1)+JT
λ(i). (12)

Note that we propose block-G-S for refining collision re-
sponse due to better convergence, while we propose block-
Jacobi in Eq. (9) for iteratively anticipating the constraints.
The effect of this mismatch is that the Lagrange multipliers
λ(i) at the ith iteration do not necessarily guarantee that con-
straints are resolved for ∆v(i). However, this is not a prob-
lem, as constraints are resolved once the nested relaxation
converges. One could think of using block-G-S for itera-
tively anticipating the constraints, but that would result in
a dense matrix B and worse performance.

5.4. Friction

Our approach for solving the frictional constrained dynam-
ics problem is to interlace the solution of normal and tan-
gential constraints, similar to [DDKA06]. For the rest of this
section, we drop the subindex i from λ and γ for better read-
ability. In the inner loop of ICA we first assume the frictional
response γ to be known, which results in an LCP that defines
the normal response λ:

0≤ λ ⊥ Bλλ≥ cλ(i)−Bλγγ, (13)

with Bλ = JD−1
A JT , Bλγ = JD−1

A HT ,

and cλ(i) =− 1
∆t

g0−Jv∗−JD−1
A (LA +UA)∆v(i−1).

We then assume the normal response to be known, which,
given the linearized Coulomb friction model from Sec-
tion 3.4, results in an LCP that defines the frictional re-
sponse:

‖γ‖ ≤ µλ ⊥ Bγγ≥ cγ(i)−BT
λγλ, (14)

with Bγ = HD−1
A HT ,

and cγ(i) =−Hv∗−HD−1
A (LA +UA)∆v(i−1).

5.5. Complete ICA Algorithm

As discussed in Section 5.3, we resolve the inner loop in ICA
through projected-G-S relaxation. In the frictional case, we
apply this relaxation to both normal and friction LCPs for-
mulated above. In our implementation, we interlace normal
and friction relaxation at the level of each contact. In other
words, we refine the normal response of one contact, then
the friction response of the same contact, and we move to
the next contact. The complete ICA algorithm can be sum-
marized as follows:

1. Initialize ∆v(0),λ(0),γ(0) with values from the previ-
ous constrained dynamics solve. If a constraint was just
added, set λ(0) = γ(0) = 0.

2. Formulate the sparse matrices Bλ,Bγ,Bλγ.
3. (Outer loop) Do ICA until convergence:

3.1. Formulate cλ(i),cγ(i).
3.2. (Inner loop) Iterate LCPs with proj. G-S:

3.2.1. For each contact j, iterate 3 times:

3.2.1.1. Compute λ j in Bλλ+Bλγγ− cλ(i) = 0.
3.2.1.2. Project λ j ≥ 0.
3.2.1.3. Compute γ1, j in BT

λγ
λ+Bγγ− cγ(i) = 0.

3.2.1.4. Project ‖γ1, j‖ ≤ µλ j.
3.2.1.5. Compute γ2, j in BT

λγ
λ+Bγγ− cγ(i) = 0.

3.2.1.6. Project ‖γ2, j‖ ≤ µλ j.

3.3. Refine ∆v(i) with one iteration of block-G-S:
(DA−LA)∆v(i) = UA∆v(i−1)+JT

λ(i)+HT
γ(i).

In practice, we terminate the inner loop of ICA when the
residuals of the complementarity conditions in both non-
penetration and frictional LCPs change less than 5% be-
tween two iterations, and the distance along the constraint
normal is larger than half the collision detection tolerance
at all contacts. We terminate the outer loop when the previ-
ous conditions hold and, in addition, the residual of collision
response A∆v(i)− JT

λ(i)−HT
γ(i) changes less than 5%

between two iterations. Note that the residuals of the LCPs
need to be re-evaluated after applying collision response.
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5.6. Discussion

Let us assume a deformable object with n degrees of free-
dom, m contact constraints, and semiregular meshing. The
cost of the traditional solver for MLCPs based on constraint
anticipation (as discussed in Section 5.1), can be decom-
posed as follows: the cost of computing the LCP matrix
JA−1JT is at best O(n ·m + m2), while each iteration of the
LCP solver takes O(m2), due to the dense matrix. On the
other hand, the cost per iteration of our next relaxation solver
in ICA is only O(n+m). As shown by the performance data
reported in Section 6, our ICA algorithm clearly outperforms
full constraint anticipation in practice, and the performance
gain grows with the size of the problem.

The existence of a solution for the frictionless constrained
dynamics problem is guaranteed if the time step starts with a
collision-free configuration, since a collision response ∆v =
−v∗ trivially satisfies all constraints. Note however that a
scene with scripted moving objects could suffer from non-
physical situations like cloth pinched between an arm and
the body, but such situations require global untangling ap-
proaches as addressed by Baraff et al. [BWK03]. Beyond ex-
istence of a solution, we have observed that the convergence
of the solver depends on the convergence of the block-G-S
relaxation of the dynamics. Convergence is guaranteed if A
is diagonally dominant [GV96], but less restrictive situations
work well in practice. In our implementation, we monitor the
residual to check whether G-S converges. If it does not, we
halve the time step and restart a loop of CMR.

6. Results

All our experiments were executed on a 3.2GHz processor
PC with 2.0GB of memory. The dress in the flamenco ex-
ample from Fig. 1 and the falling cloth from Fig. 5 were
simulated as mass-spring systems. The dress contains 6 lay-
ers and 16800 vertices, and the falling cloth contains 2500
vertices. The scene in Fig. 7 consists of 164 letters, with
23000 tetrahedra in total, simulated with co-rotational FEM.
The scene in Fig. 4 combines cloth pieces, FEM deformable
bodies, and rigid bodies.

The falling cloth in Fig. 5 shows the robust geometric han-
dling of non-penetration and stacking folds of cloth. The ac-
companying video clearly demonstrates the smooth behavior
under both small and large friction coeficients. For rendering
purposes, we added one step of constrained Loop subdivi-
sion as a post-process. The simulation took approximately
8 minutes with a time step of 4 ms for a total of 4 seconds
of simulation, with 69% of the time devoted to constrained
dynamics solve and 31% to collision detection.

The flamenco dance simulation from Fig. 1 imposes ex-
tremely challenging conditions for contact handling, as the
overlaid dress pieces are pulled and/or compressed at high
speed by the motion of the body. There are some particularly
complex situations, e.g., when the dancer kicks the dress, or

Figure 6: Performance Evaluation. Time needed to com-
pute a full time step (30 ms) in the letters demo (see Fig. 7),
plotted vs. the number of contacts. Timings are computed
by averaging results over windows of 600 ms in the simu-
lation. Left: comparison between the full constraint antic-
ipation approach (CA) vs. our ICA. Right: comparison for
different FEM mesh resolutions (all with ICA).

performs a 360 turn in less than one second. In all these sit-
uations, our algorithm produces physically robust collision
response, which results in inelastic impacts and smooth slid-
ing. Note that, in this example, the shirt of the dancer was
not simulated. It was added as a post-process for cosmetic
reasons, and intersections with the rest of the model were
not checked. The simulation of the flamenco dance took ap-
proximately 15 hours to compute with a time step of 2 ms for
a sequence of about 10 seconds. The bottleneck in this ex-
ample turned out to be continuous collision detection, with
an average of 1.5 seconds per query. The computation of
one constrained dynamics solve took 1.2 second on average,
although at sparse times (about 0.1%) the relaxation solver
required up to 10 times longer. The number of contacts grew
up to 6000 in this example.

The stacking letters in Fig. 7 were modeled as trian-
gle meshes embedded in tetrahedral meshes. The scene
starts with layers of letters being dropped on each other,
the pile comes to rest, and then the walls push in and
compress the pile. The simulation exhibits very vivid mo-
tion effects, thanks to the accurate geometric handling of
sharp features, and the physically robust handling of friction
forces. The complete simulation needed just over 90 min-
utes for the computation of about 40 seconds of anima-
tion, with a time step of 30 ms. Fig. 6 evaluates the per-
formance of our solver as a function of the number of
contacts and the resolution of the tetrahedral meshes, as
well as in comparison with full constraint anticipation. In
the right plot we can see that our ICA algorithm has in
practice quasi-linear complexity w.r.t. the number of con-
tacts. Performance is practically independent of mesh res-
olution when the letters have less than 140 tetrahedra on
average, which, as expected, implies that the inner loop of
ICA (i.e., the refinement of Lagrange multipliers) domi-
nates the cost at low mesh resolutions. In the left plot we
can see, instead, that the full constraint anticipation suffers,
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Figure 7: Stacking Deformable Letters. This animation shows accurate geometric handling of sharp features, as well as
physically robust impacts, sliding, and stick-slip effects, at large time steps (30 ms).

as expected, quadratic complexity (at best). This difference
clearly shows the benefits of our contact handling method
for large contact problems. Moreover, the data for the left
plot was obtained in a frictionless simulation, as the full
constraint anticipation method suffered severe convergence
problems with many less contacts in the frictional case.
We have also evaluated the
performance of CMR. The
plot to the right shows a his-
togram of the number of it-
erations needed by CMR for
finding a valid state that sat-
isfies the constraint mani-
fold. CMR found a valid so-
lution in 3 iterations or less in more than 90% of the cases.
The statistics were very similar for the rest of the examples.

Fig. 4 shows a scene where we have combined vari-
ous types of objects. Specifically, rigid bodies, FEM co-
rotational deformable bodies, and mass-spring cloth pieces.
The objects are dropped on top of each other, and our
contact handling algorithm robustly handles the stack in
a unified manner. The algorithm is perhaps suboptimal if
only rigid bodies are used (in comparison to approaches
like [GBF03, KEP05, Erl07]), but its main feature is that no
special care is needed for dealing with contact between cloth
and solid bodies or FEM deformable models and rigid bod-
ies. The example exhibits complex situations where the cloth
pieces are trapped between bodies that are falling, but both
non-penetration and friction are dealt with robustly.

7. Summary and Future Work

We have presented an efficient algorithm for geometrically
and physically robust contact handling among deformable
objects. Our algorithm features dynamics-awareness by for-
mulating an implicit constrained dynamics problem. Two
major contributions, a time stepping algorithm based on con-
straint manifold refinement, and an MLCP solver based on

iterative constraint anticipation, allow us to efficiently and
robustly solve constrained deformation dynamics.

In most of the cases, our constrained dynamics solver per-
formed almost as fast as the unconstrained solve, and show-
ing close to linear cost. But there are sparse situations when
convergence may be slow. Fortunately, there is room for im-
provement in our solver’s relaxation loops, by incorporating
multigrid algorithms. However, the extension of multigrid
solvers to constrained problems that change dynamically is
not trivial. As shown in the examples, our algorithm seam-
lessly handles the combination of deformable and rigid bod-
ies, but its performance is not optimal in that case, because
the LCP matrices partially lose their sparsity. The recent ap-
proach of Shinar et al. [SSF08] could perhaps help in this
situation. Integration of shock propagation [GBF03, Erl07]
would also be interesting for handling more efficiently the
stacking of rigid bodies.

Our algorithm does not handle pinched or tangled situa-
tions, although one could think of ways to incorporate ex-
isting untangling algorithms as part of the time integration.
However, our algorithm dealt robustly with large simulation
time steps. This is in part thanks to the position-level con-
straint formulation in the CMR algorithm, and we believe
that other collision response approaches could benefit from
it. In our examples we always relied on the constrained for-
mulation, but there are situations where repulsion forces may
be more efficient for contact pruning, and it would be inter-
esting to test them in combination with our approach. Very
recently, Kaufman et al. [KSJP08] have presented a contact
handling algorithm that, similar to ours, interlaces the solve
of normal and frictional response. However, they execute a
full iteration on normal response before moving on to fric-
tional response, which provides them with certain conver-
gence guarantees. We plan to explore the application of such
ideas to our ICA algorithm.

Last, we plan to complement our efficient and robust col-
lision response algorithm with more elaborate deformation
models, both for cloth and for deformable solids.
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