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Figure 1: Two examples of real and replicated objects. Thanks to our data-driven process, we are able to measure, simulate, and obtain
material combinations of non-linear base materials that match a desired deformation behavior. We can then print those objects with multi-
material 3D printers using two materials (blue and black) with varying internal microstructure.

Abstract

This paper introduces a data-driven process for designing and fab-
ricating materials with desired deformation behavior. Our process
starts with measuring deformation properties of base materials. For
each base material we acquire a set of example deformations, and
we represent the material as a non-linear stress-strain relationship
in a finite-element model. We have validated our material measure-
ment process by comparing simulations of arbitrary stacks of base
materials with measured deformations of fabricated material stacks.
After material measurement, our process continues with designing
stacked layers of base materials. We introduce an optimization pro-
cess that finds the best combination of stacked layers that meets a
user’s criteria specified by example deformations. Our algorithm
employs a number of strategies to prune poor solutions from the
combinatorial search space. We demonstrate the complete process
by designing and fabricating objects with complex heterogeneous
materials using modern multi-material 3D printers.

Keywords: fabrication, deformable objects, goal-based material
design

1 Introduction

Elastic deformations are present in many objects in our everyday
life, such as garments and shoes, furniture, plants, or even our own
tissue. When we want to design elastic deformable objects, either
in computer animation or in the real world, we are faced with the

problem of determining material descriptions and parameters such
that the objects behave in a desired way.

Deformation effects can be modeled at very diverse scales, ranging
from molecular interactions to globally-supported response func-
tions, and through continuum elasticity laws or lumped-parameter
models [Zohdi and Wriggers 2004]. As recently demonstrated by
work in numerical coarsening and homogenization, the behavior
of materials with microscale inhomogeneities can be approximated
by mesoscale homogeneous materials [Kharevych et al. 2009]. We
are interested in a process that can be regarded as the inverse of
homogenization, i.e., we want to achieve a desired large-scale be-
havior through appropriate combination of materials at a smaller
scale. Our approach fits in the category of goal-based design of
deformable models, and it addresses the challenges of anisotropic,
inhomogeneous, and non-linear behavior. Furthermore, it goes a
step beyond computer animation and enables the physical fabrica-
tion of deformable materials with a desired behavior.

Our work is motivated by the recent development of multi-material
3D printers such as the OBJET Connex series [OBJET ]. These
printers are capable of manufacturing a variety of soft and hard ma-
terials with complex internal structures, making it suddenly pos-
sible to fabricate complex 3D objects with aggregate materials
quickly, inexpensively, and accurately. This development offers
new opportunities and challenges for physics-based animation re-
search. Computer graphics has already contributed systems for
designing and fabricating clothes [Okabe et al. 1992], plush ob-
jects [Mori and Igarashi 2007], paper craft objects [Mitani and
Suzuki 2004], or surface microgeometry [Weyrich et al. 2009]. But
there is a lack of tools and algorithms for designing, editing, and
fabricating user-specified deformable objects.

In this paper we make three main contributions: (i) An algo-
rithm and representation for coarsening deformable models with
microscale inhomogeneous behavior. Our solution uses a data-
driven approach and is capable of capturing non-linear behavior
while maintaining runtime efficiency. Conceptually, this can be
seen as an extension of the linear numerical coarsening approach
by [Kharevych et al. 2009] to non-linear material behavior. (ii) A
goal-based material design approach that approximates a desired
mesoscale deformation behavior by microscale materials through
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Figure 2: Designing deformable materials.

combinatorial optimization. This is an inverse modeling approach,
inverting the concept of homogenization. (iii) A complete reproduc-
tion process for deformable materials, including acquisition, fitting,
efficient simulation, goal-based design, and fabrication. The result
of our design process serves as input to a 3D multi-material printer
for the actual physical fabrication of deformable objects.

Our approach to measure, design, and fabricate materials with de-
sired deformation behavior has a number of distinct steps, summa-
rized in Fig. 2. We have collected a database of base materials,
fabricated using a Connex 500 multi-material 3D printer, but also
a variety of standard foams, gels, and rubbers purchased from the
McMaster-Carr catalogue. These materials span a wide gamut of
different deformations: from very soft to very hard and rigid (Sec-
tion 7). We automatically measure deformations of these base ma-
terials subject to different forces using a robotic system (Section 6).

Next, we apply our coarsening algorithm to model the base ma-
terials using a data-driven non-linear stress-strain relationship in a
Finite Element Method (FEM) (Section 3 and 4). This compact rep-
resentation allows us to predict deformations of thicker or thinner
versions of the base material samples. More importantly, we show
that we can accurately predict deformations of arbitrary combina-
tions of stacked base materials.

As the last step, we design composite materials that best match a
desired deformation behavior using our combinatorial optimization
algorithm (Section 5). In order to simplify the material design pro-
cess, we introduce a goal-based optimization approach. The user
specifies a material by providing example deformations and their
corresponding forces, and our algorithm automatically computes
the best-matching composite material. Because the configuration
space is combinatorial and exponentially large, we use an efficient
search strategy that prunes away states that yield poor matches to
the desired material specifications.

We validate the simulation and material model by fabricating a
number of different composite materials, measuring their deforma-
tions subject to a variety of different forces and comparing these
measurements to the results of the simulation. The results are de-
scribed in Section 7.

2 Related Work

In the context of computer graphics, our work is closest to the simu-
lation of soft tissue using finite element models, and to data-driven
modeling of deformable materials. For a recent survey of defor-
mation models in computer graphics, please refer to [Nealen et al.
2006].

The most popular approach nowadays for accurately modeling de-
formable materials in computer graphics is probably to use con-
tinuum elasticity laws together with finite element modeling. This
approach is capable of modeling a large range of materials, includ-
ing those with nonlinear and heterogeneous deformation behavior,
such as the base materials used in our work. Typically, one must
select a constitutive material model [Ogden 1997] that is capable of
covering the range of behaviors of the material, and then, given a
certain object and constitutive model, the material parameters are
tuned in order to fit empirical data. This approach was introduced
to bio-mechanical modeling in computer graphics by Terzopoulos
et al. [1987], and it has been later applied to body parts such as
the face [Koch et al. 1996; Magnenat-Thalmann et al. 2002; Ter-
zopoulus and Waters 1993; Sifakis et al. 2005], the hand [Sueda
et al. 2008], the neck [Lee and Terzopoulos 2006], the torso [Zor-
dan et al. 2004; Teran et al. 2005; DiLorenzo et al. 2008] or the
complete upper body [Lee et al. 2009]; to the simulation of fracture
effects [O’Brien and Hodgins 1999]; or even interactive simulation
after a model reduction step [Barbič and James 2005]. In order to
achieve high realism, continuum elasticity approaches rely on com-
plex processes involving accurate modeling of the geometry and
fine tuning of parameters.

Several researchers have designed methods to automatically iden-
tify the parameters of constitutive models from measurements of
real objects. These measurement-based modeling approaches cover
the estimation of parameters such as Young modulus [Schnur
and Zabaras 1992], both Young modulus and Poisson ratio to-
gether [Becker and Teschner 2007], non-linearly interpolated
Young modulus and Poisson ratio [Bickel et al. 2009], plasticity
parameters [Kajberg and Lindkvist 2004], or non-linear viscoelas-
ticity parameters [Kauer et al. 2002]. In this line of work, our
data-driven technique for modeling base materials builds on the ap-
proach of Bickel et al., but with some notable differences. First, by
restricting the types of materials to homogeneous ones, our model
requires far fewer degrees of freedom. Homogeneity of the base
materials is not a limitation in our case, since we achieve inhomo-
geneity in the final output materials by combining various homoge-
neous materials. Second, we increase the robustness of the fitting
process by fitting one single non-linear model to all input examples
simultaneously.

Other measurement-based modeling approaches fit directly
globally-supported functions as material description instead of es-
timating local parameters. Pai et al. [2001] introduced a system
for capturing in a unified framework an object’s shape, its elastic-
ity, and roughness features. They used a Green’s functions matrix
representation [James and Pai 1999] in order to describe the defor-
mation model. Later, others have extended the work of Pai et al.
to increase robustness and handle viscoelastic effects [Lang et al.
2002; Schoner et al. 2004].

Recent work in computer graphics aims at modeling high-
resolution heterogeneities even when the resolution of the dis-
cretization is considerably coarser [Kharevych et al. 2009; Nesme
et al. 2009]. This process, known as homogenization, tries to find
parameter values of a constitutive model sampled at low resolution
such that the behavior of the object best matches the heterogeneous
material. The first step of our design and fabrication process can be
considered as a variant of homogenization, where the fine-scale in-
homogeneous material is an actual physical one. In the second step,
however, we take the opposite approach to homogenization, gener-
ating a heterogeneous object that fits coarse force-deformation data
from small-scale materials with known behavior.

A general introduction to optimizing spatial material distributions
can be found in [Bendsoe and Sigmund 2003]. Digital materials,
composed of a set of discrete voxels, can exhibit widely varying



material properties [Hiller and Lipson 2009]. As the design space
increases exponentionally with the number of possible combina-
tions, evolutionary algorithms are a popular non-linear optimization
strategy [Kicinger et al. 2005]. In contrast, we apply a branch-and-
bound search strategy in combination with clustering.

3 Non-Linear Material Model

All our base materials exhibit a non-linear hyper-elastic stress-
strain behaviour, as demonstrated by the measured force-
displacement curves in Fig. 5. Most of the base materials consist of
complex structures on a microscale level which influences the de-
formation behavior significantly (see Fig. 6). We use a data-driven
approach and capture such non-linear behavior by a non-linear in-
terpolation of locally linear material properties obtained from ex-
ample deformations of the base material at a mesoscale. Conceptu-
ally, this can be seen as a data-driven coarsening approach, repre-
senting the deformation behavior induced by microstructures on a
mesoscale level.

To achieve this, we employ the concept of sampling the stress-strain
function of the material at a small set of strain values, and represent
each stress-strain point by a linear co-rotational model [Bickel et al.
2009]. In the deformed state, at a given point in the object and with
an arbitrary strain value, we represent the material locally by a non-
linear interpolation of the sampled linear models.

Our linear FEM relies on Cauchy’s linear strain tensor. Given a
displacement field u, it is defined as ε(u) = 1

2
(∇u + (∇u)T ).

We obtain invariance of the strain under rotations by extracting the
rotational part of the deformation gradient through polar decom-
position, and then warping the stiffness matrix [Müller and Gross
2004].

Due to the symmetry of the strain and stress tensors, we can rep-
resent both as 6-vectors. Given the strain tensor, we construct its
equivalent 6-vector as ε = (εxx εyy εzz εxy εxz εyz)T , and sim-
ilarly for the stress. Then, a linear material can be represented
by a 6 × 6 matrix E that relates the stress and strain vectors,
σ(u) = Eε(u).

The key for achieving the non-linear behavior of the base mate-
rials is to define the stress-strain relationship, E, as a function of
the local strain ε(u). The matrix E can be typically parameterized
by a smaller set of parameters p. We define such parameters as a
non-linear function of strain, therefore, the matrix E can be repre-
sented as a non-linear function E(p(u)). Although this approach
holds for general anisotropic behaviour, we describe subsequently
the parameters p for two types of materials that are most relevant in
practice: isotropic and transversely isotropic ones. The transversely
isotropic material will be further discussed in Section 6.

Isotropic Materials For homogeneous linear isotropic materials,
the matrix E can be represented by the two Lamé parameters λ
and µ. In other words, the parameter vector is p = (λ, µ). Using
Lamé’s parameters, the stress and strain tensors are related as

σ(u) = 2µε(u) + λtr(ε(u))I, (1)

from which the matrix E can be derived [Bathe 1995].

In homogeneous linear isotropic materials, the strain can be well
captured by the three invariants of the symmetric strain tensor
I1(ε), I2(ε), I3(ε). These invariants do not change under rota-
tion of the coordinate system. Using the invariants to represent
the strain, our non-linear material model can be considered as a 2-
valued function in a 3-dimensional domain, p(I1, I2, I3) : IR3 →
IR2.

Non-Linear Interpolation of Material Properties Given a base
material, we describe its non-linear stress-strain relationship
through a small set of P parameter vectors, {pi}, corresponding
to different strain values, {εi}. Then, using the (parameter, strain)
pairs as centers of Radial Basis Functions (RBF), we define the
complete material behavior through RBF interpolation [Bickel et al.
2009]:

p(ε) =

P∑
i=1

wi · ϕ(‖ε− εi‖) . (2)

Since our base materials are homogeneous, a single set of parameter
vectors is sufficient to describe the behavior of an arbitrary object
consisting of a single base material. This reduces the number of
parameters of a base material to |p| ·P , where |p| is the cardinality
of the parameter vector (2 for isotropic materials, and 5 for trans-
versely isotropic ones). In our examples, the number of RBF cen-
ters is typically between P = 6 for the isotropic foams and P = 12
for printed materials with complex internal microstructure. Com-
puting the RBF interpolation based on the local strain in a spatially
varying manner allows us to simulate different non-linear behavior
in different regions of an object.

In order to simulate the behavior of composite objects made of base
materials, we follow the quasi-static FEM approach of Bickel et
al. [2009]. Given a simulation state, we compute the strain of all
elements and perform a per-element computation of the parameter
vector according to Eq. (2). We then recompute the per-element
stiffness matrices, and perform a new step of the FEM simulation.

4 Fitting Base Materials

We fit the properties of base materials such that simulated deforma-
tions match best a set of input examples. In the fitting process, we
need to compute the RBF centers {εi} (i.e., strain values used as
data points), and their corresponding weights wi (See Eq. (2)).

Let us first assume that the P RBF centers are known. Given a set
of example deformations with measured displacements {x̄i} and
corresponding forces F̄i, we compute the RBF weights w by min-
imizing the error in the displacements, as:

ŵ = arg min
w

{
n∑

i=1

||xi(p, F̄i))− x̄i||2
}
. (3)

In order to define the RBF centers, we first fit a homogeneous lin-
ear material to obtain a constant set of material parameters. Using
these parameters, we run FEM simulations for all measurements,
and record strain values. We select the RBF centers by sampling
the strain space with P points that cover the range of measured val-
ues. Using these RBF centers we can fit the material parameters,
but we run several iterations to obtain a better coverage of the strain
space.

There are two main differences between our material fitting strat-
egy and the one proposed by Bickel et al. [2009]. First, since the
base materials are homogeneous, the RBF weights are not spatially-
varying, and the size of the problem reduces to |p| ·P . Second, the
objective function is defined by grouping the measured displace-
ments of all example deformations at once. These two differences
lead to improved robustness and fitting accuracy.

We use Levenberg-Marquardt optimization and compute the Jaco-
bians as defined by [Bickel et al. 2009]. An unconstrained optimiza-
tion problem may lead to material parameters that are not physi-
cally correct. In the case of isotropic materials, it is easy to bound
Lamé’s parameters by computing the Young modulus and Poisson



ratio and projecting these to physically valid values. In the case of
transversely isotropic materials, we make sure that the stiffness ma-
trix is positive definite using the technique of [Rebonato and Jäckel
1999]. Otherwise, the FEM simulation could become instable.

The measured forces F̄ are normal to the surface. However, the
contact area below the force probe also undergoes small tangential
forces during the measurement process, and we found that these
missing forces produce small fitting errors. We increase the fit-
ting quality by computing the missing tangential forces that would
produce a perfect match at the probed surface points, and then rein-
troduce the tangential forces as known forces in the optimization
problem.

Section 7 evaluates the quality of the fit and reports error values
by comparing the simulation of fitted base materials to measured
example deformations.

5 Goal-Based Material Design

Our main contribution is a goal-based material design approach
that approximates a desired mesoscale deformation behavior by mi-
croscale materials through combinatorial optimization. We now de-
scribe the optimization algorithm to obtain composite structures
made of a set of base materials. Our algorithm receives as in-
put a description of the object surface, examples of desired force-
displacement pairs, and a set of base materials with known defor-
mation properties expressed in our non-linear material model.

5.1 Formulation of the Problem

We formulate the design process as an optimization problem where
we need to choose the distribution of M possible base materials
inside the fabricated object such that it matches the input force-
displacement examples.

We discretize the problem by dividing the desired object shape in
a set of N regular cells, each made of a uniform base material.
The desired inhomogeneity and possible anisotropy of the final
object are achieved by the appropriate distribution of base mate-
rials. For each cell, one may choose a single material from M
possible base materials. We call a certain choice of base mate-
rials and their distribution a design. We denote each design as
a vector m = (m1,m2, . . .mN ), where mi is an integer value
that indicates the type of base material in the ith cell out of the
{m̄j , 1 ≤ j ≤M} possible base materials.

In order to test each design, we assign its particular material choices
to the cells of the object, simulate the object with the quasi-static
FEM approach from Section 3 using the user-specified force pro-
files, and measure the error in surface displacements. The surface
displacements of all input examples are grouped in one large vec-
tor x. Given the goal displacements x̄, the displacement error of a
design is simply ‖x − x̄‖. Finding the optimal design with mini-
mal displacement error is an exponential problem, with MN to-be-
tested designs.

5.2 Branch-and-Bound with Clustering

The major problem when solving such a design optimization prob-
lem is the non-convexity of the design space and therefore the risk
of ending up with a locally optimal solution if only the local neigh-
borhood is observed [Lund and Stegmann 2005].

To solve this discrete optimization problem we therefore use a deci-
sion tree, such that at each level of the tree we span the options for
one cell in the design. The root of the tree has M children, where
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Figure 3: Branch-and-bound with clustering. The root of the tree
shows the two materials A and B for the first out of three cells.
Each level of the tree spans the possible options for the subsequent
cells. Sub-optimal branches of the tree can be culled, and similar
deformations can be clustered.

each child represents one of the material choices for the first cell,
while the other N − 1 remain undecided. Fig. 3 shows the decision
tree for an object with three cells and two possible material choices.

Entire branches of the decision tree can be culled away using a
branch-and-bound algorithm [Land and Doig 1960]. During tree
traversal, we store the minimum error dmin for the designs tested
so far. When a new node of the tree is visited, i.e., a new cell is re-
fined, we use this minimum error to cull (if possible) the complete
subtree rooted at the node.

Given the breadth of the tree, branch culling still leads to an in-
tractable number of possible designs to be tested. However, of-
ten several designs produce similar deformation results. We cluster
these nodes together to limit the breadth of the decision tree at every
level, thus limiting the number of to-be-tested designs.

Bound Estimation Let us define as {m}a =
(m1,m2, . . .ml, x . . . x) the designs rooted at a node a and
located at level l. The first l cells are already determined along
this branch, while the rest are still undecided (denoted by x).
We estimate a bound on the deformations produced by {m}a
by considering the cases where the undecided cells are uniform.
In other words, to estimate bounds we fill the undecided cells
with each one of the base materials m̄j , compute the resulting
deformation for all input examples xj , and then bound the result
of the M cases as [xj ]. We use axis-aligned bounding boxes in
high dimensions as bounds, i.e., maximum and minimum values
for each dimension of the resulting displacement vectors. We cull
the branch rooted at node a if dist(x̄, [xi]) < dmin. When new
designs are tested we update dmin appropriately.

The bound estimation approach is not conservative, due to mate-
rial non-linearity and the existence of several non-monotonic func-
tions along the simulation process. Recently, efficient methods
for bounding displacements in linear FEM settings [Neumaier and
Pownuk 2007] were presented, but practical bounds for non-linear
settings are still an open research problem. However, the uniform
blocks can be regarded as extreme behaviors (from very soft to very
hard), therefore we expect that combinations of these materials will
produce in-between deformations, in which case our bound estima-
tion will not cull optimal designs.



Clustering Strategy We traverse the decision tree in a breadth-
first manner, and hence a parent level with n nodes produces an-
other level with n ·M nodes. Evaluating bounds on this new level
requires the computation of n ·M2 designs. In order to limit the
breadth of the tree, and thereby the total number of designs to be
tested, we cluster nodes at every level before the splitting operation.

We cluster the n nodes at a level into K clusters using K-means
clustering, using as distance dist(a, b) between two nodes the sum
of squared example displacement differences evaluated for the pair-
wise uniform descendants. Formally, the distance metric is:

dist(a, b) =

M∑
j

‖x(m1a, . . .mla, m̄j , . . . , m̄j)− (4)

x(m1b, . . .mlb, m̄j , . . . , m̄j)‖2.

The cluster representative is the node that is closest to the centroid
of the cluster. Every time we split a level we need to test only
KM2 designs. Since the height of the tree is equal to the number
of cells N , our clustering strategy limits the total number of design
evaluations to roughly O(KM2N). Note that the actual number of
tested designs is actually smaller due to bound-based culling. In our
implementation, we usually use K = 20 clusters. This clustering
approach comes at the cost of missing the global optimal solution.

6 Measurement and Base Materials

Measurement System To acquire surface deformations of ob-
jects with a wide range of material properties we built an automatic
measurement system that is able to acquire many different materials
with varying geometry and surface properties. We use our system
to probe base material samples, combinations of base materials for
model validation, complex objects that we would like to reproduce,
and their printed counterparts for validation purposes.

Our measurement setup (Fig. 4) consists of a four DOF robot arm
(from MicroProto Systems), a six-axis force-torque sensor (Nano
25 from ATI), and a vision subsystem to track surface displace-
ments. The resolution of the robot arm is 0.003 mm and its repeata-
bility is 0.01 mm. The maximum range of the force sensor is 125
N with a resolution of 1/24 N. The vision subsystem consists of
seven high-resolution Basler Pilot cameras running at a resolution
of 1600 x 1200 pixels. We set up the calibrated ([Svoboda et al.
2005]) cameras on a half-circle above the robot arm to minimize
occlusions and added diffuse lighting.

We paint marker dots on the surfaces of our objects in a regular
grid with 3 mm spacing. The marker positions are extracted using a
scale and affine invariant blob detector ([Mikolajczyk and Schmid
2004]) and tracked in all the frames. For each acquisition we use 30
to 200 deformation steps depending on the stiffness of the material.
The maximal forces are in the range of 35 to 50 N. The tracked
markers and corresponding forces are finally registered to a surface
mesh.

Isotropic Base Materials To print 3D deformable objects and
a set of base materials we use the OBJET Connex 500 multi-
material printer. In each run, the printer can use up to two differ-
ent materials, e.g., Vero White (rigid) and Tango Black Plus (soft).
The printer can also mix these two materials in predefined propor-
tions producing isotropic materials of intermediate stiffness. We
mainly use Tango Black Plus (TBP) and a mixed material called
digital material with shore 50 (DM50). In addition to these two
isotropic base materials we measured eight isotropic materials from
the McMaster-Carr online catalog, including rubbers and foams.

Figure 4: The automated system for measurement of material de-
formations consists of cameras (blue), a robot arm (green), and a
force sensor attached to a stick (red). A sample material block is
shown in pink and the inset shows a screen shot of our processing
software.

Fig. 5 shows a plot of surface displacement as a function of applied
force for a subset of measured materials.

Transversely Isotropic Base Materials In order to model
and fabricate materials with even larger deformation gamut
(in particular, materials
that are much softer) we
introduce internal empty
spaces into the printed
objects. Unfortunately, the
current printer only allows
printing empty spaces
that span the entire object
along the z-axis. We use
tubes of four different
sizes and distributions
(see example on the right). These objects are isotropic in the
horizontal plane, perpendicular to the tube direction. The material
can be regarded as transversely isotropic.

For such materials, the matrix E can be represented as:

E =


E11 E12 E13 0 0 0
E12 E11 E13 0 0 0
E13 E13 E33 0 0 0

0 0 0 E44 0 0
0 0 0 0 E44 0

0 0 0 0 0 (E11−E12)
2

,

 .
(5)

with five degrees-of-freedom, {E11, E12, E13, E33, E44}. Our
non-linear material model can then be considered as a five-valued
function in a six-dimensional strain domain, p(ε) : IR6 → IR5.
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Figure 5: Force-displacement curves for a subset of the measured
materials showing their nonlinear behavior.

All base materials were printed as 4 cm (width) × 5 cm (length) ×
2.5 cm (height) blocks. The deformations (side view) of some of
these materials under 15 Newtons force are shown in Fig. 6. We
will make the full set of base materials including all measurements
and specifications public and plan to measure more materials in the
future.

7 Validation and Results

Validation of the Fitting Our material model represents elastic
behavior of the base materials at the mesoscopic level very well.
In Fig. 7 we compare images from our measurement system, the
reconstructed deformed surface, and the corresponding simulation
based on the FEM. We also show an error plot between the mea-
sured surface and the simulation. Note that the error is only evalu-
ated at the surface marker positions and then interpolated for visu-
alization purposes. Furthermore, the error evaluation is dependent
on the accuracy of the measurement system which is in the range
of < 1 mm. Very small pitching effects at the microscale of the
material cannot be tracked by our system and are therefore missing
in the error visualization. Refer to the video for more results. For
isotropic base materials we use six and for the transversal isotropic
base materials 12 RBF centers, resulting in 12 and 60 parameters
for each base material, respectively. The fit to the material model
takes two hours on average but has to be performed only once. We
also report the average, standard deviation, and maximum errors for
the materials under varying applied loads in Table 1.

Validation of the Stacking Next, we show that we can accurately
predict the behavior of composite materials made from arbitrary
combinations of base materials. We ran a number of simulations
for different composites and also fabricated those using the Connex
500 printer. Next, we measured the behavior of these composite
materials using our system and compared them to their correspond-
ing simulations. We report this validation for a few example de-
formations and materials in Fig. 8 and in the companion video. In
the composite example shown in Fig. 8, we obtain average errors of
1.98 mm and 2.16 mm under loads of 10 N and 20 N.

Validation of the Goal-based Design Next, we validate our
goal-based design process. As the first step we tested it on ma-
terials that we know we can reproduce. We picked a given com-
bination of layers and their thicknesses. Then we simulated this
composite material and used its deformations as the input to the

Figure 6: Pictures of base materials under 15 Newton force.

0 mm

5 mm

Figure 7: Side-by-side comparison of real and simulated materials.
Deformation of an isotropic (left column) and transversely isotropic
material (right column), comparing acquisition (top row) with the
simulation (middle row) and the displacement error (bottom row).



Displacement error (mm)
Material Force (N) avg. std.dev max

1N 0.84 0.45 2.55
Foam 3N 1.72 1.00 6.74
(very soft) 5N 2.04 0.88 5.70

5N 1.40 0.57 3.44
Foam 15N 1.06 0.36 2.46
(medium) 25N 1.33 0.90 5.19

10N 0.73 0.43 2.70
Foam 20N 0.94 0.40 2.71
(stiff) 30N 1.20 0.38 2.22

5N 2.14 0.68 4.47
Printed TBP1 10N 2.40 0.77 4.67
(soft) 20N 3.60 1.22 6.55

5N 0.69 0.26 1.44
Printed DM502 15N 0.85 0.41 2.09
(medium) 25N 1.31 0.51 3.00

10N 0.68 0.22 1.15
Printed TBP5 20N 0.99 0.27 1.70
(stiff) 30N 1.30 0.311 2.61

Table 1: Error evaluation of the model. We fitted parameters
for various isotropic (soft/medium/hard foams) and transversely
isotropic (printed materials with cylinder hole structures) materials
and evaluated the surface displacement error under small, medium,
and high force loads by comparing to measured deformations of
material blocks (size isotropic 5x5x2.5cm, printed 5x4x2.5cm).

0 mm

5 mm

Figure 8: Validation of composite materials. We assigned the ma-
terial properties obtained from two independent fits of base materi-
als (DM501 and DM502) to a composite material consisting of two
layers. We then printed the composite and compared the deforma-
tions of the real object (upper row) to the simulation (middle) under
a load of 8 and 21 Newton. Lower row: Error visualization.
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Figure 9: Validation of goal-based design algorithm. We randomly
generate a set of material designs. We then simulate these designs
and use their simulated deformations as the input to the goal-based
design search algorithm. We then compare the obtained designs
of the search algorithm with the known ground truth. The upper
bar plot shows the RMS error. We also fabricated one of those
randomly generated designs and its corresponding search output
and compared their force-displacement curves.

search algorithm. We report the result of this validation in Fig. 9.
We tested this strategy on 20 different randomly chosen material
designs (5 layers, each with 9 different material choices and 5 force-
displacement pairs). Although our search is not guaranteed to find
the global optimum, it always found a very close solution (average
RMS error of 0.067 mm). The optimization time is usually below
one hour. To carry this validation even further, we have fabricated
these composites and remeasured their properties. We show these
results in Fig. 9.

We also tried to approximate one of the foams with a combination
of materials printed using the Connex 500. The obtained spatial
combination and the error evaluation are shown in Fig. 10.

Replicating objects For the most complex results, we try to
showcase the whole process by replicating objects with complex
deformation behavior. In particular, we reproduced a beach flip-
flop, a felt slipper, and a heterogeneous leather stool. We used a
Cyberware scanner to scan the 3D geometry of each of the objects.
Then, we acquired the deformation behavior of each object using
our measurement system and fitted material parameters. For the
leather stool, we segmented the volume into two areas, and approx-
imated each of them as a homogeneous material. Next, we used
the goal-based design process to find the best approximation of the
material deformation properties using our base materials. For all re-
sults, we used between 5 and 10 force-displacement pairs. Finally,
we printed replicas of these objects using the multi-material printer.
As can be seen in Fig. 11 and 12 and the accompanying video the
replicas show very similar behavior to the original objects. To fur-
ther validate this approach we show force-displacement curves in
Fig. 11 and 12 for the corresponding points on the replicas and the
original objects.

8 Discussion

We have presented a complete approach for measuring, designing,
and fabricating materials with desired deformation behavior. Our
model is able to represent and simulate the non-linear elastic defor-
mation behavior of objects with complex internal microstructure. In
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Figure 10: Fabricated example of goal based design. As an input
to our goal-based material design algorithm, we specified 5 exam-
ple deformations of a foam (upper left). The desired deformation
behavior is approximated by finer scale materials obtained through
combinatorial optimization and then fabricated using a 3D printer
(upper right). The lower curve shows the force-displacement rela-
tionship of used base materials, foam, and fabricated approxima-
tion.

order to ensure a good match between deformations of real materi-
als and their simulated behavior, we use a data-driven measurement
process to estimate non-linear stress-strain models for each mate-
rial. Furthermore, we show that a goal-based material design ap-
proach can approximate a desired global deformation behavior by
finer scale materials through combinatorial optimization. By clos-
ing the loop between measurements, simulation, goal-based ma-
terial design, and printing, we validate the complete pipeline and
show that close matches between simulated and real fabricated ob-
jects can be achieved. Our goal-based design is a significant step
towards 3D hardcopying.

Limitations and Future Work. We believe that our system has
many potential avenues for improvements and future work. We
predict that this process will be a template for many future systems
that expand the range of simulated and fabricated material proper-
ties (such as dynamic deformation properties or plasticity). More
specifically, we plan to extend our model to dynamic and plastic de-
formation behavior and improve our measurement system such that
it can acquire a wider range of deformation properties (e.g., ma-
terial stretching and dynamic deformation measurements) or can
guarantee and incorporate prior physical knowledge, such as vol-
ume preservation. Additionally, we plan to investigate strategies
for optimally choosing the number of degrees of freedom (RBF
centers) of our material model, striking a balance between accu-
racy and overfitting. Furthermore, we would like to examine mate-
rial homogenization strategies to improve the speed of the forward
(simulation) step for non-linear materials. This improvement along
with more advanced search strategies could, in turn, speed up the
inverse step such that we could design and fabricate extremely com-
plex heterogeneous materials.

Spatial combinations. Currently, we only print layers of different
materials. However, we believe our algorithm could be extended
in a straight forward manner to arbitrary spatial combinations (e.g.,
voxels) of base materials. The decision tree could be directly ap-
plied to 2D or 3D problems, by having a one-to-one mapping of
layers in 1D to voxels in 3D. Also, our pruning strategy (clustering
and bounds) can be directly translated to the 3D case. Our search
algorithm linearly scales with the number of layers or volume ele-
ments.

For current printers, the mechanical range of isotropic base mate-
rials without any holes or tube structure is limited. The OBJET
Connex 500 printer can mix two different materials, and the mate-
rial properties are restriced to the range between the two base ma-
terials. To significantly expand this range, we deliberately decided
to create tube-structured materials. Due to current physical printer
limitations, these void tube structures can only be printed along the
z-axis of the printer, otherwise they would get filled with structure
material, which is difficult to remove. Printing blocks or objects
with isotropic hole structures (similar to Swiss cheese) is currently
not possible. This comes at the cost of requiring a transversely
isotropic material model.

Looking into the future, we predict that the next generation of 3D
multi-material printers will be able to use many more base mate-
rials with a wider range of material properties and more complex
internal structures. As the cost of these printers decreases and their
capabilities increase, we believe that the goal of personalized de-
sign, modeling, simulation, and fabrication will become reality.
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Preserving topology and elasticity for embedded deformable
models. ACM Trans. Graph. 28, 3 (July), 52:1–52:9. 2

NEUMAIER, A., AND POWNUK, A. 2007. Linear systems with
large uncertainties with applications to truss structures. Reliable
Computing 13, 149–172. 5.2

OBJET. Connex500 Multi-Material 3D Printing System. http:
//www.objet.com/3D-Printer/Connex500/. 1

O’BRIEN, J. F., AND HODGINS, J. K. 1999. Graphical modeling
and animation of brittle fracture. In Proc. of SIGGRAPH 99,
Computer Graphics Proc., 137–146. 2

OGDEN, R. W. 1997. Non-Linear Elastic Deformations. Courier
Dover Publications. 2

OKABE, H., IMAOKA, H., TOMIHA, T., AND NIWAYA, H. 1992.
Three dimensional apparel cad system. In Computer Graphics
(Proc. of SIGGRAPH 92), 105–110. 1

PAI, D. K., VAN DEN DOEL, K., JAMES, D. L., LANG, J.,
LLOYD, J. E., RICHMOND, J. L., AND YAU, S. H. 2001. Scan-
ning physical interaction behavior of 3d objects. In Proc. of ACM
SIGGRAPH 2001, Computer Graphics Proc., 87–96. 2
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