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Abstract
We present a novel representation and rendering method for free-viewpoint video of human characters based on
multiple input video streams. The basic idea is to approximate the articulated 3D shape of the human body using
a subdivision into textured billboards along the skeleton structure. Billboards are clustered to fans such that each
skeleton bone contains one billboard per source camera. We call this representation articulated billboards.
In the paper we describe a semi-automatic, data-driven algorithm to construct and render this representation,
which robustly handles even challenging acquisition scenarios characterized by sparse camera positioning, in-
accurate camera calibration, low video resolution, or occlusions in the scene. First, for each input view, a 2D
pose estimation based on image silhouettes, motion capture data, and temporal video coherence is used to create
a segmentation mask for each body part. Then, from the 2D poses and the segmentation, the actual articulated
billboard model is constructed by a 3D joint optimization and compensation for camera calibration errors. The
rendering method includes a novel way of blending the textural contributions of each billboard and features an
adaptive seam correction to eliminate visible discontinuities between adjacent billboards textures.
Our articulated billboards do not only minimize ghosting artifacts known from conventional billboard rendering,
but also alleviate restrictions to the setup and sensitivities to errors of more complex 3D representations and multi-
view reconstruction techniques. Our results demonstrate the flexibility and the robustness of our approach with
high quality free-viewpoint video generated from broadcast footage of challenging, uncontrolled environments.

1. Introduction

Image-based rendering (IBR) has been introduced in the pi-
oneering work of Levoy et al. [LH96] and Gortler et al.
[GGSC96]. The basic goal is simple: IBR strives to create
a sense of a 3D real-world scene based on captured image
data. Many subsequent works have explored the theoretical
foundations, e.g., the dependency of geometry and images
in respect to a minimal sampling requirement [CCST00],
or developed more efficient and less restrictive implementa-
tions [BBM∗01]. One important general insight from these
works is that a sufficiently accurate geometric proxy of the
scene reduces the number of required input images consid-
erably.

A small number of input views is an important prereq-
uisite in order to apply IBR in real-world environments
and applications. One prominent example is sports broad-
casting, where we observe a growing demand for free-
viewpoint replay for scene analysis [Lib]. However, for these
and most other non-studio applications, IBR should ideally
work based on existing infrastructure such as manually op-
erated TV cameras. This poses the fundamental question

how we can robustly generate a sufficiently accurate geomet-
ric proxy, despite the wide-baseline cameras, uncontrolled
acquisition conditions, low texture quality and resolution,
and inaccurate camera calibration. These problems become
even more severe for processing video sequences instead
of still images. Under these challenging real-world condi-
tions, classical 3D reconstruction techniques such as visual
hulls [MBR∗00] or multi-view stereo [Mid09] are generally
inapplicable. Due to the involved difficulties, one of the cur-
rently most popular approaches in this field is still the use
of simple planar billboards [HS06], despite the unavoidable
visual artifacts such as ghosting.

In this paper, we present a novel geometrical represen-
tation which is specifically suited for reconstruction and
high quality video rendering of human subjects under the
above conditions. Our key observation is that the 3D pose
and shape of a character can be well captured by an articu-
lated subdivision of the body into simple geometric primi-
tives: articulated billboards. Instead of relying on accurate
silhouette information for computing the visual hull or stereo
correspondences, our representation requires an estimate of
the 2D pose of a subject in the input views. We will show
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(a) (b) (c) (d) (e)

Figure 1: Overview of our method. (a) Two wide-baseline input video frames of a soccer match. (b) Zoom on one of the players.
(c) We first compute the subject’s 2D pose in the input views and a segmentation into the different body parts. (d) A multi-
view optimization then generates a 3D articulated billboard model. For clarity we show only a subset of the billboards in this
example. (e) With the articulated billboard models photo-realistic views from a large range of novel viewpoints can be rendered.

in this work how this can be achieved in a simple and ef-
ficient manner by a semi-automatic, data-driven algorithm.
From the pose it is then possible to construct a 3D articu-
lated billboard model, which is a faithful representation of
the subjects geometry and which allows for photo-realistic
free-viewpoint video. The novel technical contributions of
our work are

• Articulated billboards, a novel shape representation for
free-viewpoint video of human characters under challeng-
ing acquisition conditions.
• Semi-automatic, data-driven 2D pose estimation based on

approximate silhouettes.
• Automatic segmentation of body parts by 3D template fit-

ting and learning of color models.
• Generation of the articulated billboard model by 3D pose

optimization and seam correction for optimal texture con-
sistency.
• GPU-based, pixel-accurate blending and rendering for re-

alistic and efficient view synthesis.

Applications for articulated billboards are multi-view
videos of dynamic scenes with humans captured in uncon-
trolled environments. We will demonstrate in this paper that
even from as few as two conventional TV camera images, a
scene can be rendered at a high quality from virtual view-
points where no source camera was recording.

2. Related Work

A variety of different 3D representations and rendering
methods exists that use images or videos as source. Most of
them are tightly connected to particular acquisition setups.

If many cameras with different viewpoints are available,
the light field [LH96] of the scene can be computed, which
represents the radiance as a function of space. Buehler et
al. [BBM∗01] generalize this approach to include geomet-
ric proxies. The Eye-Vision system used for Super Bowl
[Eye09] uses more than 30 controlled cameras for replays
of sports events. The method by Reche et al. [RMD04] for
trees requires 20-30 images per object. A recent approach
by Mahajan et al. [MHM∗09] uses gradient-based view in-
terpolation. In contrast to these methods, our method does
not require a dense camera placement.

Many methods additionally use range data or depth es-

timation in their representation. Shade et al. [SGwHS98]
use estimated depth information for rendering with layered
depth images. Waschbüsch et al. [WWG07] use color and
depth to compute 3D video billboard clouds, that allow high
quality renderings from arbitrary viewpoints. Pekelny and
Gotsman [PG08] use a single depth sensor for reconstruc-
tion the geometry of an articulated character. Whereas these
methods require either depth data or accurate and dense sil-
houettes, this is not available in uncontrolled scenes with
only a few video cameras and weak calibrations.

Several methods for template-based silhouette match-
ing were proposed for controlled studio setups [CTMS03,
VBMP08, dAST∗08]. For free-viewpoint rendering, the
camera images are blended onto the surface of a matched or
deformed template model. However, these methods require
accurate source images from studio setups whereas articu-
lated billboards can be used with sparsely placed and inac-
curately calibrated cameras. In these situations, the geometry
of articulated billboards is much more robust against errors
than, e.g., a full template body model where the texture has
to be projected accurately onto curved and often thin (e.g.
an arm) parts. Moreover, the generally required highly tes-
sellated 3D template models are not efficient for rendering
the often small subjects with low texture quality and resolu-
tion. Debevec et al. [DTM96] proposed a method that uses
stereo correspondence with a simple 3D model. However, it
applies to architecture and is not straight-forward extendable
to articulated figures without straight lines.

Recently, improved methods for visual hulls, the con-
servative visual hull and the view dependent visual hull,
showed promising results [GTH∗07, KSHG07]. However,
these methods are based on volume carving that requires
selected camera positions to remove non-body parts on all
sides of the subject. Our method does not require a special
camera setting and can already be used with only two source
cameras to show, e.g., a bird’s eye perspective from a view-
point above the positions of all cameras. Recent work by
Guillemaut et al. [GKH09] addresses many challenges for
free-viewpoint video in sports broadcasting by jointly opti-
mizing scene segmentation and multi-view reconstruction.
Their approach is leading to a more accurate geometry than
the visual hull, but still requires a fairly big number of quite
densely placed cameras (6-12). We compare our method to
their reconstruction results in Section 7.
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Figure 2: (a) Skeleton structure used for our articulated bill-
board model. (b) Illustration of a single fan of two billboards
and the corresponding source cameras.

A simple method for uncontrolled setups is to blend
between billboards [HS06] per subject and camera. How-
ever, such standard billboards suffer from ghosting artifacts
and do not preserve the 3D body pose of a person due
to their planar representation. The idea to subdivide the
body into parts represented by billboards is similar in spirit
to the billboard clouds representation [DDS03, BCF∗05],
microfacets [YSK∗02, GM03] or subdivision into impos-
tors [ABB∗07, ABT99]. However, these methods are not
suited for our target application, since they rely on controlled
scenes, depth data or even given models. Lee et al. [LB-
DGG05] proposed a method to extract billboards from op-
tical flow. However, they used generated input images from
synthetic models with high quality.

Related to our approach is also the quite large body of
work on human pose estimation and body segmentation from
images. Here, we can only discuss the most relevant works.
Efros et al. [EBMM03] have presented an interesting ap-
proach for recognizing human action at a distance with ap-
plications to pose estimation. Their method requires an esti-
mate of the optical scene flow which is often difficult to es-
timate in dynamic and uncontrolled environments. Agarwal
and Triggs [AT06], Jaeggli et al. [JKMG07], and Gammeter
et al. [GEJ∗08] present learning-based methods for 3D hu-
man pose estimation and tracking. However, the computed
poses are often only approximations, whereas we require ac-
curate estimations of the subject’s joint positions. Moreover,
we generally have to deal with a much lower image quality
and resolution in our setting. We therefore present a semi-
automatic, data-driven approach, since a restricted amount
of user interaction is acceptable in many application scenar-
ios if it leads to a considerable improvement in quality.

3. Overview

Our aim is to enable virtually unconstrained free-viewpoint
rendering of human subjects from a small set of wide-
baseline video footage (see Figure 1). This requires a shape
and appearance model for rendering, which can be robustly
generated from the videos despite of limited resolution and
texture quality, inaccuracies in the camera calibration, or the
complex occlusions that may occur for articulated bodies.

We propose a representation based on articulated bill-

boards. The basis of this model is a 3D human skeleton
structure (see Figure 2(a)). Every bone, represented by a 3D
vector bi and the position of its end-joint xi, corresponds to
a major component of the body, e.g., the torso or the extrem-
ities. With each bone we associate a fan of billboards, which
contains a billboard for every input image I j of a subject (see
Figure 2(b)). More specifically, for each I j the corresponding
billboard plane is defined by the joint xi, the bone direction
bi, and the vector bi× (c j− xi), where c j is the camera po-
sition of I j. Hence, the billboards are aligned with the char-
acter bones and as orthogonal as possible to their associated
input views.

The basic idea of our method is to compute a 3D pose of
the articulated billboard model, i.e., a spatial joint configu-
ration of the underlying skeleton structure, which brings its
2D projection into correspondence with the subject’s pose in
each input frame of the video. After this alignment, a tex-
ture map and alpha mask is generated for each billboard
from its associated view. However, a fully automatic com-
putation of a single 3D pose, which is perfectly consistent
with all input views, is generally not possible in the pres-
ence of the above mentioned issues such as imperfect cam-
era calibration or low texture resolution. Hence, we devel-
oped a semi-automatic, data-driven approach which oper-
ates in three consecutive phases: a 2D pose estimation and
template-based image segmentation, the construction of the
articulated 3D billboard model, and the actual rendering.

First, for the 2D pose estimation in each individual input
view, we utilize a database of silhouettes, temporal motion
coherence of subjects in the video, and motion capture data
to assist the user in fast and accurate placement of joints.
Given these 2D joint positions, a segmentation of the image
into the different body parts, i.e., the torso or the limbs, is
computed using a human template model in order to map
image-pixels to billboards (see Section 4).

The second phase of the algorithm integrates the pose and
texture information from all individual views and generates
the final articulated billboard model for rendering. This pro-
cessing step includes an optimization of the 3D joint po-
sitions and a compensation for camera calibration errors,
which optimizes the texture overlap for each model segment,
i.e., for each fan of billboards. A final alpha-mask and tex-
ture optimization eliminates visible seams and discontinu-
ities between adjacent billboards (see Section 5).

The last step is the actual real-time rendering of novel
views. Section 6 describes an algorithm for a fully GPU-
based, view-dependent per-pixel blending scheme, which is
optimized for rendering articulated billboard models effi-
ciently while preserving the photorealism of the original in-
put video.

4. Pose Estimation and Template-based Segmentation

In the first phase of the algorithm we compute an initial
guess of the subject’s joint positions in image space and
a segmentation of the pixels into the different body parts.
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Figure 3: Silhouette-based pose estimation. (a) Typical sil-
houette of a subject. (b) The 3 best matching poses from
our database. Note that we also consider flipped images.
(c) The corresponding 2D skeleton pose estimated from the
best matching pose. (d) and (e) Further examples.

For calibration of the intrinsic and extrinsic camera param-
eters we currently use the method of Thomas [Tho06]. As
mentioned previously a fully automatic pose estimation and
segmentation is very challenging due to the relatively low
resolution and quality. Accordingly, we propose the follow-
ing semi-automatic approach which minimizes the required
user-interaction to only a few mouse-clicks. Then, given the
joint positions, the segmentation of the subject’s body parts
is computed by fitting a human template model with a known
segmentation to the input video frames.

4.1. 2D Pose Estimation

We assume that a coarse segmentation of the subject from
the background is available, e.g., using chroma keying or
background subtraction. Figure 3(a) shows a typical exam-
ple of a segmented image in our application scenario. The
basic idea to compute an initial guess of a subject’s pose,
i.e., the 2D positions of the skeleton joints, is to compare it
to a database of silhouettes, for which the respective skeleton
poses are known (see Figure 3(b)) .

First, for each view I j, we normalize for differently sized
subjects by re-sampling the silhouette on a 32×40 grid and
stack the binary silhouette information at each grid point into
a vector v j ∈ [0,1]n, with n = 32×40. Then, for each v j, our
algorithm finds the best matching k entries in the database,
which minimize the error

ES = (1−λ)
1
n

n−1

∑
i=0
|v j(i)−w(i)|+λ

1
m

m−1

∑
r=0
|p j(r)−q(r)|,

(1)
where w is an entry in the database, q its corresponding 2D
joint positions, and m is the number of skeleton joints. The
vector p j contains the joint coordinates from the previous
video frame. The first term of Eq. (1) ensures a proper match
of the silhouettes whereas the second term exploits tempo-
ral motion coherence of subject’s in the video. This is of
particular help to resolve left-right ambiguities in the silhou-
ettes. The influence of the second term can be weighted by
the value λ. For the first frame of a sequence we simply set
λ = 0, for all other frames we used a value of λ = 0.5 for all
our examples. The joint positions are processed in normal-
ized coordinates with respect to the subject’s bounding box.
Using this error ES, the k = 3 best matching silhouettes and

their corresponding 2D joint positions for each single view
I j are retrieved from the database.

In order to select the most plausible 2D pose from
each of these sets we run a multi-view optimization for
each combination of poses: we compute the 3D rays
from each camera c j center through the retrieved joint
positions in I j. Then, we compute the 3D representa-
tive for each joint which is closest to the correspond-
ing rays. Figure 4 shows an example with two cameras.

Figure 4: 3D joint es-
timation from two cam-
era images.

The measure for the quality
of a particular combination of
poses is the accumulated sum
of distances of each 3D joint
from its respective rays. In
order to make this procedure
more robust to the often in-
accurate camera calibration,
this multi-view optimization
also includes a simple correc-
tion step. For each silhouette
we additionally compute a 2D offset in the image plane,
which is optimized using the Levenberg-Marquardt algo-
rithm. This calibration correction proved to be very effec-
tive: for some silhouette images the necessary 2D offset for
minimizing the error measure can be as high as 8 pixels.

As demonstrated in Figure 3(c), this silhouette-based pose
estimation and joint optimization generally provides a good
guess of the subject’s 2D joint positions in each view I j.
With a simple interface the user can then manually correct
these positions by moving the joints (see Figure 5(a)). We
refer to the accompanying video for a demonstration of this
manual interaction step. After this joint refinement step the
silhouette and joint positions are immediately added to our
database. The increase of poses in the database has proven to
lead to significantly better matches for new sequences. Note
that, in application scenarios where no silhouette informa-
tion is available at all, the user can resort to placing all joints
manually. But even in this case the required interaction time
per subject is generally only a few seconds.

4.2. 3D Template Fitting

Even with accurate 2D joints a robust segmentation of the
image into the subject’s body parts is still a difficult prob-
lem. Using a database of segmented silhouettes instead of
the above binary silhouette segmentation is not a desirable
option, since creating such a database would be extremely
complex and time-consuming, and we could still not expect
to always find sufficiently accurate matches.

Instead, our idea is to fit a generic, pre-segmented 3D tem-
plate model to the images. This has the considerable advan-
tage that we get a good starting solution for the segmentation
process and that we can easily resolve occlusions. However,
fitting a 3D model requires, for each particular input view,
the computation of a 3D pose whose projection perfectly
aligns with the 2D joints. A 3D pose leading to a perfect
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(a) (b) (c)

Figure 5: 3D template fitting: (a) Corrected joint positions.
(b) Initial fitting of the pre-segmented 3D shape template us-
ing the method of Hornung et al. [HDK07]. (c) Our cor-
rected fit which exactly matches the joint positions in (a).

match in all views can often not be found due to calibration
inaccuracies or slight joint misplacements. Therefore, we fit
a 3D model per input view. A solution for computing an ap-
proximate 3D pose for articulated models from a single im-
age has been presented by Hornung et al. [HDK07]. Given
the 2D joint positions xi for an image I j, their approach uses
a database of 3D motion capture data to find a set of 3D
joint positions Xi whose projection approximately matches
the 2D input joints (see Figure 5(b)). We provide a simple
but effective modification to their algorithm for computing
the required accurate fit.

The approximate 3D match can be deformed, such as to
align with the 2D joints according to the following algo-
rithm. Through each 3D joint Xi, we create a plane parallel
to the image plane of I j. Then, we cast a ray from the cam-
era center c j through the corresponding target joint position
xi in I j and compute its intersection with the plane. The 3D
pose is then updated by moving each Xi to the respective
intersection point and updating the 3D bone coordinate sys-
tems accordingly. The result is the required 3D pose which
projects exactly onto the previously estimated 2D joints. The
3D template model can now be fitted to the image by de-
forming it according to this computed 3D pose using stan-
dard techniques for skeleton-based animation [LCF00] (see
Figure 5(c)). Note that this algorithm generally does not pre-
serve the limb lengths of the original 3D skeleton and there-
fore, enables an adaptation of the 3D template mesh to fit the
subjects dimensions more accurately.

4.3. Segmentation of Body Parts

The fitted, pre-segmented template model does not perfectly
segment the input frame I j and might not completely cover
the entire silhouette. Therefore, a refinement of the segmen-
tation is done in three simple steps. In a first step, a color
model is learned per body segment based on automatically
selected confident pixels of the pre-segmented body parts
(see Figure 6(a)). In a second step, the trained color model
is used to label the unconfident pixels leading to a segmenta-
tion adjusted to the subjects body dimensions and silhouette
(see Figure 6(b)). In a third step, a morphological closing
operation removes outliers as depicted in Figure 6(c).

(a) (b) (c)

Figure 6: Body segmentation. (a) Initial segmentation with
safe pixels derived from the template model and unconfident
boundary pixels. (b) Segmentation after labeling according
to the trained color model. (c) Final segmentation after mor-
phological removal of outliers.

To determine the confident pixels, we project a slightly
thinned and thickened version of the template model into
the image and label the silhouette pixels accordingly. Pixels
which receive the same label in both projections are marked
as confident pixels and labeled with the corresponding body
segment. All remaining pixels within the silhouette are la-
beled as unconfident as shown in Figure 6(a).

By learning the color model on-the-fly, we provide a ro-
bust segmentation algorithm being able to handle segmenta-
tion in uncontrolled environments. Changing lighting condi-
tions, subject specific appearance or view dependent appear-
ance can thus be handled reliably.

The pose estimation and segmentation procedure is per-
formed for every view and input frame from which free-
viewpoint renderings are to be generated. Note that our seg-
mentation approach using successive 2D pose estimation
and 3D template fitting automatically handles occluded body
parts, is robust even for low image quality and resolution,
and requires only a small amount of simple user interaction
during the refinement of joint positions. We refer to the ac-
companying video for an example of this procedure.

5. Construction of the Articulated 3D Billboard Model

We use the computed 3D joint positions of Section 4.1 as an
initial pose for the final articulated billboard representation.
If a 3D joint of the articulated billboard model is not opti-
mally positioned, the texture resulting from the rendering of
all billboards of a billboard fan will not align (see Figure 7).
In this section, we describe how the 3D joint positions can be
optimized based on a quantitative measure of the alignment
of the billboard textures.

In the following, we first define a scoring function for a
position of a joint in one view and for one camera pair. This
scoring function is then extended to several views and cam-
eras. Using this scoring function and anthropometric con-
straints the 3D pose of the articulated billboard model is op-
timized. Finally, we will describe a seam correction which
removes texture discontinuities between adjacent billboards.
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(a) (b) (c)

Figure 7: (a) Illustration of a misaligned billboard fan.
(b) Billboard fan before joint optimization. (c) Result after
optimization. Note the improved texture alignment.

5.1. Position Scoring

To score the quality of a joint position of an output view V ,
all billboards adjacent to this joint are evaluated. For each
fan of billboards, the alignment of its billboards for a pair
of input views (I1, I2) is scored by a pixel-wise comparison
of the projected textures. For every output pixel p of V , the
per-pixel score sI1,I2(p) is defined as

sI1,I2(p) =

{
1− ε(VI1(p),VI2(p)), p active in I1 and I2

0, otherwise
,

(2)
where VI j (p) is the color contribution of a billboard associ-
ated with view I j to pixel p. ε(·) is a color distance measure
in RGB. The active pixels are defined as those pixels in the
output view V which receive a valid color contribution from
the input views I1 and I2. The segmentation generated in Sec-
tion 4.3 is used to reliably resolve occlusion. The score for a
joint in a view V is the normalized sum of all pixels

sI1,I2(V ) =
∑p∈V sI1,I2(p)n(p)

∑p∈Pv
n(p)

. (3)

The normalization factor n(p) is 1, if at least one of the
two pixels is active and 0, otherwise. Thus, the scoring func-
tion measures the matching of texture values, while n(p)
penalizes non-aligned parts as in Figure 7(a). These pixel-
wise operations are efficiently implemented on the GPU us-
ing fragment shaders.

For more than two input views, we define the score as
a weighted average of all camera pairs, where the weight
depends on the angle βI1,I2 between the respective viewing
directions, with narrow angles receiving a higher weight:

s(V ) =

∑
(I1,I2)∈I

sI1,I2(V )ω(βI1,I2)

∑
(I1,I2)∈I

ω(βI1,I2)
, (4)

where I is the set of all pairs of input views and ω(β) is a
Gaussian weight:

ω(β) = e−
β

2

2σ2 . (5)

The value for σ was empirically determined to be 0.32.
Finally, the score of the joint position is the normalized sum

output view input view

(a) (b) (c)

Figure 8: Seam correction. (a) Sampling errors in the seg-
mentation mask cause cracks, e.g., the look-up of a pixel on
the blue billboard ends up on the mask of the green billboard
from an adjacent billboard fan. (b) Corresponding rendering
artifact. (c) Result after our seam correction.

of the scores in all evaluated views:

SV =
1
|V| ∑

V∈V
s(V ), (6)

where V is the set of all evaluated views.

5.2. 3D Pose Optimization

Since the scoring of the joint position depends on the eval-
uated views, we need a suitable set V . In order to cover a
reasonable range of viewing positions, we evaluate the scor-
ing function at the camera positions of all input views and
the virtual views in the center between each camera pair. For
the position optimization of a joint, we evaluate SV at spa-
tially close candidate positions on a discrete, adaptive 3D
grid. The grid is refined in a greedy manner around those
candidate positions which achieve a higher score SV , until a
given grid resolution is reached (empirically set to 1.2 cm).

To avoid degenerate configurations with billboard fans
of zero length, we additionally consider the anthropometric
consistency [NAS09] during the evaluation of each pose. A
joint position receives a zero score if one of the following
constraints does not hold:

• The joint is on or above the ground.
• Lengths of topologically symmetric skeleton bones (e.g.,

left/right arm) do not differ more than 10%.
• The lengths of adjacent bones are within anthropometric

standards.
• Distances to unconnected joints are within anthropometric

standards.

For the last two constraints, we use the 5th percentile of fe-
male subjects rounded down as minimal lengths and the 95th
percentile of male subjects rounded up as maximal lengths.

This grid-search optimization process is iteratively re-
peated over the skeleton. In our experiments, we found that
it typically converges after 4 iterations. See Figure 7 for an
articulated billboard model before and after optimization.

5.3. Texture Seam Correction

Due to sampling of the billboards’ segmentation masks dur-
ing rendering with projective texturing (see Figure 8(a)),
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small discontinuities (visible cracks) between adjacent bill-
boards might appear in the output view as shown in Fig-
ure 8(b). To overcome this problem, these seam pixels have
to be rendered for both adjacent billboards. Therefore, we
mark pixels as seam pixels in the input views if they cover
billboards on two adjacent skeleton bones (e.g., pixel en-
closed by dashed lines in Figure 8(a)).

To detect seam pixels, the segmentation mask is traversed
for each input view. A pixel p is marked as seam pixel, if it
fulfills both of the following conditions:

• At least one pixel p′ in its 4-neighborhood has a different
label but comes from the same subject
• |depth(p)−depth(p′)|< ϕ

where depth(·) is the depth value at this pixel. The thresh-
old ϕ distinguishes between occluding parts and connected
parts. It was empirically set to ϕ = 3 cm. An example for the
seam corrected segmentation mask and the resulting render-
ing improvement is shown in Figure 8(c).

6. Rendering

In the following we describe a procedure for photo-realistic
rendering of articulated billboards. We designed this algo-
rithm according to the general criteria defined by Buehler et
al. [BBM∗01]. Due to our challenging setting with calibra-
tion errors and very sparse camera positioning, our particular
focus is on:

• Coherent Appearance: Adjacent billboards should inter-
sect without cracks or disturbing artifacts and blend real-
istically with the environment.
• Visual Continuity: Billboards should not suddenly change

or pop up when moving the viewpoint.
• View Interpolation: When viewing the scene from an orig-

inal camera angle and position, the rendered view should
reproduce that of the input camera.

Input to the rendering procedure are the articulated billboard
model, the segmented input views I (Section 4.3) and the
seams computed in Section 5.3. For each rendered output
frame, the articulated billboards are sorted back-to-front for
a proper handling of occlusions. In order to meet the above
goals, we perform a per-pixel blending procedure. We sepa-
rate between per-camera weights which are computed once
per billboard and the final per-pixel weights.

6.1. Camera Blending Weights

For a smooth blending of the billboards associated with one
fan of billboards, we use the same Gaussian weight as in
Eq. (5). To achieve an interpolation at an original camera
view, we introduce an attenuation function which ensures
that all views from an original camera perspective are iden-
tical to the corresponding camera source images while still
assuming a smooth transition between different views. The
attenuation function is defined as f (IωMax) = 1 for the source
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Figure 9: Blending and smoothing. (a) Blending weight ex-
ample for two cameras. The angles are the spherical coordi-
nates of the view position. (b) Rendering without smoothing.
(c) Adaptive smoothing enabled. (d) Marked discontinuities
where smoothing has been applied.

view IωMax with the highest value of ω(·) and

f (IωMax) = 1− exp

(
−d(V, IωMax)

2

2σ2

)
(7)

for all other cameras I j. d(V, IωMax) is the Euclidean distance
from the viewers position to the camera position of view
IωMax . The constant σ is empirically determined to be 1 me-
ter, which is lower than the minimal distance between two
cameras and thus does not lead to any discontinuities.

6.2. Per-Pixel Processing

The billboards of a billboard fan are blended per-pixel. As
shown in Figure 8(a), a camera look-up in the corresponding
segmentation mask of each billboard is performed. This de-
termines if the current output pixel p is on the body part be-
longing to this billboard. If so, then the corresponding color
contribution VI j (p) from source view I j and its alpha value
αI j (p) can be added to the output view V . Otherwise, we
set αI j (p) = 0, i.e., transparent. The latter case also occurs
when the corresponding body part is occluded in I j and the
color information should be taken from other cameras. The
resulting color value V (p) of the screen pixel is then

V (p) =
∑

I j∈I
VI j (p)w(I j, p)

∑
I j∈I

w(I j, p)
(8)

with the per-pixel weights

w(I j, p) = αI j (p)ω(βI j ) f (IωMax). (9)

This is done for all color channels separately. The resulting
alpha value is

αV (p) =


αIωMax

(p), if w(IωMax , p) 6= 0

∑
I j∈I

αI j (p)w(I j ,p)

∑
I j∈I

αI j (p)ω(βI j )
, otherwise

(10)

where the first case applies, if the closest camera is used for
this pixel. Eq. (8) and Eq. (10) make sure that the color val-
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(a) (b)

Figure 10: (a) Direct comparison for a view in the middle of
two source cameras. Each player is rendered with a stan-
dard billboard technique and with articulated billboards.
The standard billboards exhibit considerably ghosting arti-
facts. (b) An example of a bird’s eye perspective. While stan-
dard billboards are simply tilted (left), articulated billboards
give an impression of the actual 3D pose.

ues are blended such that the factors sum up to 1. However,
the alpha values do not have to sum up to 1, e.g., if contin-
uous alpha mattes are available instead of binary segmenta-
tion masks.

In addition to this, billboards seen at an oblique angle or
from the backside, i.e., having a normal in an angle close
to or more than 90 degrees away from the viewing direction,
are simply faded out. For simplification, these factors are not
shown in the equations.

An example for blending of intensities (i.e., one color
channel) of two cameras is shown in Figure 9(a) where the
azimuth and altitude angles are from spherical coordinates of
the view position around the fan of billboards. The two peak
points at (0.0,0.0) and (0.5,0.5) correspond to the positions
of the source cameras. As it can be seen in the plot, when
approaching these points the corresponding camera’s weight
increases to 1.0 and all other camera weights decrease to 0.0.
Therefore, in this case only the source camera is used which
results in the exact reproduction of the source image.

Finally, to prevent non smooth edges at the boundaries of
a fan of billboards with respect to the background, other bill-
board fans, and at locations where other input views receive
the highest weight (e.g., due to occlusions on a billboard), an
additional Gaussian smoothing step is applied. This is done
adaptively as a post-process only at discontinuities detected
and stored while rendering the billboards. Figure 9 shows an
example.

6.3. Implementation on the GPU

The per-pixel blending can be implemented efficiently on the
GPU by using textures for the masks and fragment shaders
for blending. We use the three color channels of the mask
textures to store the subject ID, the billboard ID and whether
it is a seam pixel or not. The blending is done in a fragment
shader. Finally, the adaptive smoothing is implemented us-
ing multiple render targets such that the locations which re-
quire smoothing can be stored in the same render pass. In a
second pass, this information is used for the smoothing.

(a) (b) (c) (d)

Figure 11: Qualitative comparison. (a) Visual hulls cannot
capture geometric detail and are sensitive to camera cali-
bration errors. (b) Stereo reconstruction is problematic due
to low texture resolution and noise. (c) The recent method of
Guillemaut et al. [GKH09] improves the silhouette segmen-
tation considerably. However, the shape reconstruction is
still rather inaccurate, leading to ghosting artifacts. (d) The
articulated billboard reconstruction (for a similar scene)
captures the geometry much more faithfully. See the video
for a 3D rendering. (a)-(c) Courtesy of [GKH09].

7. Results

We applied our method to footage of real scenes of a soccer
game, captured by TV cameras, which were used to broad-
cast the game in HD resolution (1920× 1080, interlaced).
The background (pitch, stadium) was simply blended onto
large planes.

Figure 10(a) shows a direct comparison of our articulated
billboards to standard billboard rendering with one billboard
for each player and input camera. Whereas simple billboard-
ing suffers from duplications of arms and legs, our method
keeps the 3D perception, e.g., self-occlusions, correct due to
the adaptive geometry. Even in the worst case, i.e., the view
from a position in the middle of two source cameras, the
overall body pose is preserved. In Figure 10(b) a bird’s eye
view is depicted. It shows how standard billboarding sim-
ply tilts the large billboards, whereas articulated billboards
provide a realistic rendering of the entire pose.

Figure 12 shows a comparison of our rendering to ground
truth data using a leave-one-out test, which shows that our
method is able to realistically reproduce the visual appear-
ance of a scene from only two input views even at distant
novel viewing positions.

A qualitative comparison of the shape representation with
articulated billboards to visual hulls, stereo reconstruction,
and a recent method by Guillemaut et al. [GKH09] is shown
in Figure 11. Due to its articulated structure with a planar
geometric proxy for each limb and input view, our method
generally provides a better geometrical approximation of the
subject’s shape, in particular for challenging and inaccurate
input data as in our application setting. The benefit is an im-
proved rendering quality with less ghosting artifacts.

Figure 13 shows virtual views of two different scenes.
Due to our articulated billboard structure, the 3D poses of
the players remain consistent even for extreme viewpoint
changes and the viewer gets a clear impression of the actual
positions of different body parts.
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(a) (b) (c) (d)

Figure 12: Leave-one-out example. (a) and (b) are two wide-baseline input views. (c) From these two input views we computed
a virtual view of the scene from a novel viewing position. (d) Ground-truth view of an actual camera at this position. Note that
the ghosting on the ground plane in (c) stems from the camera calibration.

Figure 13: Novel views of a soccer game. The 3D pose and realism of the players is preserved for strongly varying viewpoints,
e.g., the arms and the legs within the rotation. More examples and video sequences are shown in the accompanying video.

The accompanying video shows 4 examples of free-
viewpoint video rendered with our system in real-time at HD
resolution (> 40fps). Two of these scenes feature video re-
play from the virtual viewing positions. To our knowledge
this has not been shown before in a similarly challenging
application scenario with only two cameras. The interaction
time per subject and camera view is only about 10 seconds.
Hence, even for large scenes with 14 subjects and 2 camera
views, the manual interaction time per video frame is gener-
ally only 4 to 5 minutes.

In the video, subjects visible only in one camera have been
removed from the scene. Optionally, the automatic segmen-
tation of body parts can be manually corrected in ambigu-
ous regions. We performed slight corrections in the single-
frame examples for maximum quality. Note, however, that
we did not use such a manual correction for the dynamic
scenes with video replay.

The timing for automatic processing of our system is gen-
erally a matter of seconds. The most expensive step is the
joint position optimization which takes maximally 30 sec-
onds per subject for three cameras. Therefore, the overall
processing time including manual and automatic steps is
about 6 minutes for a single frame scene with two cameras.
Since we currently do not use temporal information exten-
sively for dynamic scenes, this results in about 3 hours for a
sequence with 30 frames on a standard workstation with an
NVIDIA 8800GTX graphics card. In the future we plan to
speed this up by a 3D joint computation exploiting temporal
coherence.

The silhouette/skeleton database consists of currently
1966 silhouettes (983 poses and their mirrored versions)
from about 20 different players. Since it is set up as a boot-
strapping process, the database is refined on the fly using
the manually corrected pose estimations. These new poses

are continuously integrated into the database to improve the
pose estimation for novel scenes.

Limitations and Future Work Designed for low qual-
ity input data recorded with large base-lines, articulated bill-
boards are an optimal approximation if the player has a
height up to about 200 pixels in the original as well as in
the rendered image. If higher resolutions or dense camera
setups are used, more complex primitives should be used to
prevent ghostings within a billboard fan.

Similar to previous work, the view range is naturally lim-
ited to the vicinity of the source cameras. Nevertheless, as
shown in Figure 12, our method features a quite large view-
ing range even from only two input cameras. As shown in
Figure 3(e), occlusions reduce the quality of the pose estima-
tion and thus increase the manual interaction in such cases.
During rendering, occlusions are only a problem at pixels
which are not visible in any of the cameras. For these cases
we plan to apply a hole filling algorithm. Additionally, due
to our current depth sorting, flickering artifacts can appear.
Therefore, we will investigate the computation of a per-pixel
depth based on the billboard planes.

Finally, we would like to investigate whether our semi-
automatic pose estimation can be further automated, e.g., us-
ing techniques discussed in Section 2 such as [EBMM03]. In
order to improve temporal coherence, we plan to investigate
global optimization over all video frames.

8. Conclusion

We presented a representation and rendering method for hu-
man bodies suited for uncontrolled scenes. Our articulated
billboards provide an improved geometric shape approxima-
tion for challenging acquisition conditions, where methods
based on accurate silhouettes, stereo correspondences, or
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calibration generally fail. Our semi-automatic, data-driven
pose estimation and model computation provides a practical
solution even in challenging setups, and our pixel-accurate
processing results in high quality renderings with a realis-
tic reproduction of the subject’s appearance for novel views.
We have shown results in a quality comparable to the source
images from HD-TV broadcast cameras. With their simple
representation, articulated billboards can be rendered highly
efficiently and thus will be applicable even for mobile de-
vices.
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