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Figure 1: Our method retargets stereoscopic 3D video automatically to a novel disparity range, based on visual importance of scene elements
and a nonlinear disparity mapping operator φ. This retargeting is accomplished using a novel stereoscopic image warping technique.

Abstract

This paper addresses the problem of remapping the disparity range
of stereoscopic images and video. Such operations are highly im-
portant for a variety of issues arising from the production, live
broadcast, and consumption of 3D content. Our work is motivated
by the observation that the displayed depth and the resulting 3D
viewing experience are dictated by a complex combination of per-
ceptual, technological, and artistic constraints. We first discuss the
most important perceptual aspects of stereo vision and their impli-
cations for stereoscopic content creation. We then formalize these
insights into a set of basic disparity mapping operators. These op-
erators enable us to control and retarget the depth of a stereoscopic
scene in a nonlinear and locally adaptive fashion. To implement our
operators, we propose a new strategy based on stereoscopic warp-
ing of the input video streams. From a sparse set of stereo cor-
respondences, our algorithm computes disparity and image-based
saliency estimates, and uses them to compute a deformation of the
input views so as to meet the target disparities. Our approach rep-
resents a practical solution for actual stereo production and display
that does not require camera calibration, accurate dense depth maps,
occlusion handling, or inpainting. We demonstrate the performance
and versatility of our method using examples from live action post-
production, 3D display size adaptation, and live broadcast. An ad-
ditional user study and ground truth comparison further provide ev-
idence for the quality and practical relevance of the presented work.

Keywords: Stereoscopy, 3D video, depth perception, disparity
mapping, warping

1 Introduction

Stereoscopic 3D is on the cusp of becoming a mass consumer prod-
uct. Cinemas show an increasing number of movies produced in

3D, TV channels are beginning to launch 3D broadcasts of sports
events, and companies are offering 3DTV sets and Blu-ray 3D play-
ers. But despite these technological advances, the practical produc-
tion of stereoscopic content that results in a natural and comfortable
viewing experience in all scenarios is still a great challenge.

The fundamental problem lies in the complex interplay of human
visual perception and the restrictions of display devices [Howard
and Rogers 2002; Hoffman et al. 2008]. As a consequence, visual
content must be adapted to the peculiarities of particular application
scenarios. For fields other than stereoscopic 3D video, this con-
tent retargeting or remapping problem has been investigated exten-
sively in computer graphics. For example, tone mapping techniques
[Reinhard et al. 2005] exploit properties of our color perception to
adapt HDR images to display devices of lower dynamic range and
vice versa by nonlinear remapping of colors. Similarly, work on
image and video retargeting [Shamir and Sorkine 2009] has shown
how to perform spatially adaptive mapping of image content to dif-
ferent output formats by considering perceptual saliency cues.

In stereoscopic content production and display, similar remapping
issues have to be addressed. Diverse studies and psychophysical ex-
periments have revealed fundamental limitations of current stereo-
scopic display devices [Hoffman et al. 2008]. While today’s 3D
display technology can recreate the effect of vergence (vertical ro-
tation of both eyes in opposite directions to maintain binocular vi-
sion), other important depth cues, such as accommodation (change
of focus), cannot be faithfully reproduced as the resulting image
is being displayed on a flat surface. This conflict has severe con-
sequences; when displaying a close object on a distant screen, the
strong negative disparity may result in an uncomfortable viewing
experience and can cause temporary diplopia, the inability to fuse
stereoscopic images. These effects are a major problem in prac-
tical 3D movie production. Content optimized for a standard 30
foot cinema screen will look completely different on a TV screen
or a handheld display, and individual viewers can have vastly differ-
ent viewing preferences. Hence, controlling and adapting disparity
to the viewing situation is of central importance to the widespread
adoption of stereoscopic 3D [Sun and Holliman 2009]. In addi-
tion, movie directors often employ (local) depth manipulation as an
artistic and narrative device. All these issues have led to a complex
set of best practice rules in the industry for how to film and dis-
play stereoscopic movies [Mendiburu 2009; Neuman 2009]. Im-
plementing these rules requires considerable expertise on how to
control disparity during filming and post-production.

A further significant problem is the realization of these guidelines
in practice. Once stereo footage is recorded, it is no longer possible



to alter relevant parameters such as camera baseline or disparity
range. In principle, techniques for image-based view interpolation
[Zitnick et al. 2004] could be employed, but these methods tend
to involve tasks such as estimating camera parameters, dense stereo
reconstruction, and inpainting of occluded scene content. These are
under-constrained and computationally complex problems, which
cannot yet be solved with the necessary accuracy and robustness
for general scenes and classical 2-view stereo footage. Therefore,
movie and video producers have to resort to labor intensive and
extremely costly manual editing of disparities (e.g., by compositing
content from multiple stereo rigs of varying baseline). While this
approach is expensive (but possible) in post-production for some
scenarios, it is prohibitive for live broadcast where modifications of
the disparity range have to be performed on the fly.

Our paper addresses the above mentioned problems with two main
contributions. As a first contribution, we introduce disparity map-
ping operators. These operators are based on four central aspects of
disparity in stereoscopy. We review these aspects from a perceptual
point of view and discuss the resulting implications and require-
ments for stereoscopic content production and display. Our oper-
ators then formalize these insights and are the basis for a general
framework for stereoscopic retargeting and disparity editing.

As a second contribution, we describe a conceptually simple but
practical and powerful new technique for applying these dispar-
ity mapping operators to stereoscopic 3D footage. Our method
is based on stereoscopic image warping instead of classical view
interpolation. In contrast to previous works, our method requires
only a sparse set of stereo correspondences which can be com-
puted with sufficient robustness. We introduce novel disparity-
based saliency measures and warp constraints which ensure con-
sistent and content-adaptive remapping of the disparity range ac-
cording to the chosen mapping operator. Additional support for
manual disparity authoring seamlessly integrates this approach into
existing production workflows. Using our warping approach, cen-
tral problems of existing view interpolation methods such as camera
calibration, accurate dense depth, and inpainting are avoided.

We demonstrate the versatility and practical relevance of our oper-
ators and warping technique on various types of stills and video.
In particular, we present several applications of our method to cen-
tral problems in stereo production: automatic disparity correction
of live broadcast, nonlinear disparity editing and temporal disparity
correction for movie post-production, retargeting of stereo footage
to different display sizes, and 2D to 3D conversion of video. A user
study is provided in order to validate our approach and the qual-
ity of our results and a ground truth comparison is used to analyze
errors that arise from our stereoscopic image warping technique.

2 Related Work

Stereoscopic 3D production and display for movies or 3DTV is a
challenging multi-disciplinary field, combining basic research on
binocular vision and perception, camera and display technologies,
as well as cinematography and art.

The capabilities of our visual system and depth perception have
been the topic of numerous works and experiments in research on
human vision [Burt and Juelsz 1980; Cutting and Vishton 1995;
Howard and Rogers 2002]. One fundamental limitation is the range
of disparities. As an example, we are unable to perceive extremely
close and distant objects at the same time in 3D due to the large dis-
parity range on our retina. Interestingly, however, our visual system
still has quite strong abilities to compensate for inconsistent stereo
cues, e.g., [Stelmach et al. 2000].

The rising popularity and recent developments of 3D display tech-
nology (e.g., [Matusik and Pfister 2004]) requires a reinvestigation
of perceptual limitations in the context of the technological capabil-
ities. Most of the current 3D display technology is based on display-

ing a stereo image pair on a flat screen. This approach reproduces
stereo cues such as vergence, but neglects other important depth-
cues like accommodation. It has been shown that this discrepancy
between accommodation and vergence yields problems such as dis-
torted perception or visual fatigue [Hoffman et al. 2008; Lambooij
et al. 2009], and considerable research efforts are invested to mini-
mize these issues [Siegel and Nagata 2000; Akeley et al. 2004].

In stereoscopic content production, the most important tool to ad-
dress such discrepancies between stereo cues is to adapt the range of
disparities, i.e., the depth of a scene [Mendiburu 2009; Sun and Hol-
liman 2009]. Besides pure adaption, however, control over scene
depth is also an important artistic tool. Correspondingly there ex-
ists a complex set of cinematographic guidelines and rules on best
practice in 3D movie making [Mendiburu 2009; Neuman 2009], as
well as some prior work that allows for manually-driven disparity
editing in specific application scenarios [Pritch et al. 2000; Feld-
mann et al. 2003; Wang and Sawchuk 2008]. However, a rigorous
formalization of these principles for disparity editing under consid-
eration of perceptual as well as production-related issues has not
been achieved yet. Inspired by work on content retargeting and
tone mapping [Reinhard et al. 2005; Weyrich et al. 2007; Shamir
and Sorkine 2009] we present a solution for general nonlinear dis-
parity mapping operators for stereoscopic 3D in Section 3.

Also on the technical level, disparity control of filmed stereoscopic
video is a highly non-trivial problem, since novel views have to
be generated that reflect the desired depth structure of the scene.
The classical approach to this problem has been to perform image-
based view interpolation, which either requires a very large number
of densely sampled input images or additional accurate depth maps
to achieve high quality results [Gortler et al. 1996; Levoy and Han-
rahan 1996; Shade et al. 1998; Zitnick et al. 2004; Criminisi et al.
2007; Kim et al. 2008; Smolic et al. 2008; Bleyer et al. 2009]. One
example of commercial software that uses image-based view in-
terpolation for stereo editing is Ocula [the Foundry 2010]. These
types of view interpolation involve a large number of computation-
ally complex problems such as camera calibration, accurate depth,
inpainting and rendering. Due to this complexity, fully automatic,
sufficiently robust and accurate methods for cinematographic pro-
duction and display adaptation are not available yet. There are also
some techniques that provide a simplified manual interface for cre-
ating 3D scenes from video [van den Hengel et al. 2007], or generat-
ing stereographic sequences from single view input [Guttmann et al.
2009], but these methods require either calibration, static scenes,
and manual tuning or dense depth estimation respectively. For small
scale interpolation, image-based view morphing is an alternative
[Seitz and Dyer 1996; Mahajan et al. 2009]. The great advantage
of these methods is that they directly work in image space without
the complex reconstruction and rendering. However, they are not
suitable for general adaption of the scene’s global depth, since they
do not support the required nonlocal consistency constraints.

Recently, methods based on warping have shown to be powerful
tools for complex operations on images and video which preserve
the realism of the original input, including camera stabilization [Liu
et al. 2009], optimizing image content [Carroll et al. 2009], and
video retargeting [Krähenbühl et al. 2009; Wang et al. 2009]. In-
spired by these works we present a novel technique for stereoscopic
image warping in Section 4 which enables complex disparity edit-
ing of existing stereoscopic 3D footage.

3 Stereoscopic Disparity

As motivated in the introduction, stereoscopic 3D production and
display is a complex field, involving a broad range of research and
experience on human visual perception [Howard and Rogers 2002],
display technology [Hoffman et al. 2008], and industrial best prac-
tice [Mendiburu 2009]. Addressing all involved issues requires
multi-disciplinary research efforts where progress in one field might
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Figure 2: Illustration of the stereoscopic comfort zone.

lead to the need for new research in related fields. However, similar
to the now well established fields of media retargeting or tone map-
ping, there exist a number of fundamental insights about stereo-
scopic perception and display, which are of highest relevance in
application domains such as 3DTV and 3D cinema.

One of the central parameters in stereoscopy is disparity. This sec-
tion is concerned with the discussion of four of the most important
problems related to disparity [Howard and Rogers 2002; Mendiburu
2009]. We will provide an overview of these issues from a percep-
tual point of view, and describe how they are addressed in today’s
stereoscopic production pipeline in Section 3.1. Based on these ba-
sic rules and guidelines, we then propose a set of disparity mapping
operators in Section 3.2 which formalize these ideas and provide a
first basic and extendable framework for general disparity editing
of stereoscopic 3D footage.

3.1 Background from Stereography

Disparity Range. Our visual system has several constraints regard-
ing the admissible distance of corresponding points on the retina
that still allows for proper depth perception. The central param-
eters influencing retinal disparity are the interocular distance, the
vergence of the eyes, and the distance to the point of interest. For
example, if we focus on a nearby object, the images of other objects
in the distant background cannot be fused by our visual system any-
more due to too large retinal disparities and will appear as double
images (please refer to [Howard and Rogers 2002] for more de-
tail). Depending on the above parameters, there is only a restricted
disparity range around the Horopter, called Panum’s area, which
permits proper stereo vision and depth perception.

A central challenge in stereoscopic movie production is that current
display technologies only have indirect control over these parame-
ters, which they achieve by presenting a pair of slightly different
images to the left and right eyes. The only parameter, which can be
directly controlled, is the distance between corresponding features
in the two displayed images, the image disparity. The actual reti-
nal disparity then results from the convergence of the eyes, distance
to and size of the screen, etc. In the following, when we discuss
changing the “disparity” of a scene, we refer to the modification
of the image disparity. A further problem is that important depth
cues such as accommodation cannot be controlled at all; we have
to focus our eyes on the screen surface, even if objects are posi-
tioned in front or behind the screen surface, resulting in conflicting
depth cues. These technological limitations can lead to consider-
able problems, ranging from distortions of the 3D structure of a
scene to visual fatigue [Hoffman et al. 2008]. With existing capture
and display technologies these fundamental problems cannot be re-
solved. Hence, the disparity range for a displayed scene has to be
adapted in order to minimize these issues.

In production, the admissible disparity range is the so called com-
fort zone (see Figure 2). Modifying stereoscopic content and dis-
parity ranges to a generic comfort zone suitable for large popu-
lation groups has been investigated, for example, in the context
of Microstereopsis [Siegel and Nagata 2000]. A prominent solu-
tion today is linear disparity remapping [Sun and Holliman 2009;
Mendiburu 2009]. Such a linear mapping changes the disparity in-

terval from a given range to the desired range. The introduced lin-
ear distortion of the disparity space amounts to uniform flattening of
objects in the scene. Some concrete applications for linear disparity
range mapping are the adaptation of stereoscopic content to display
devices of different size, the uniform compression of scene depth
for a more comfortable viewing experience, or moving scene con-
tent forward or backward by adding a constant offset to the disparity
range. Practical values for disparity on a 30 foot cinema screen, are
between +30 (appears behind screen) and -100 (appears in front of
screen) pixels, assuming video with a width of 2048 pixels[Neuman
2009]. In practice such a mapping can be achieved by modifying
the camera baseline (the interaxial distance) during filming, and by
shifting the relative position of the left and right view after filming
to control the absolute disparity offset. For instance, objects that are
floating in front of the screen and intersect with the image borders
will cause retinal rivalry (see Figure 2). In post-production this can
be corrected using the floating window technique, which is a virtual
shift of the screen plane towards the viewer [Mendiburu 2009]. In
general, however, such adaptations have to be performed by expen-
sive and cumbersome manual per-frame editing, since the camera
baseline of recorded footage cannot be easily modified.

These disparity range limitations are the most obvious issue in
stereoscopic perception and production. However, related to this
limitation are a number of further issues, which we shall describe.

Disparity Sensitivity. Our ability to discriminate different depths
decreases with increased viewing distance. One result from percep-
tual research is that the stereoacuity is inversely proportional to the
square of the viewing distance [Howard and Rogers 2002]. This
means that our depth perception is generally more sensitive and ac-
curate with respect to nearby objects, while for distant objects other
depth cues such as occlusion or motion parallax are more impor-
tant [Banks et al. 2004].

This effect can be exploited in stereoscopic movie production by
compressing the disparity values of distant objects. For example,
a disadvantage of the previously mentioned linear range adaptation
is that strong disparity range reduction leads to apparent flattening
of objects in the foreground. Using the insights about stereoacuity,
the decreased sensitivity to larger depths can be used to apply non-
linear remapping instead, resulting in less flattening of foreground
objects. Effectively, this corresponds to a compression of the depth
space at larger distances. This idea can be extended to compos-
ite nonlinear mapping, where the disparity range of single objects
is stretched, while the space in between the objects is compressed.
Such nonlinear operations which exploit the limitations in sensitiv-
ity of our visual system have been successfully employed in related
areas such as media retargeting. But so far, they are difficult to ap-
ply to stereoscopic footage of live action, since this would require
an adaptive modification of the camera baseline. In production,
the only way to achieve such effects is complex multi-rigging by
capturing a scene with camera rigs of varying baseline and manual
composition in post-production [Neuman 2009; Mendiburu 2009].

Disparity Gradient. Besides limitations with respect to absolute
disparity values, experiments have shown that our perception is sub-
ject to limits regarding the disparity gradients in an observed scene
as well [Burt and Juelsz 1980]. In particular, the perception of dif-
ferent depth gradients strongly depends on local scene content, spa-
tial relationships between objects, etc. Consequences range from
distorted perception of the 3D structure of a scene to the inability
to see proper stereo.

Exploiting the different types of gradient sensitivities of our visual
perception (e.g., regarding color) has proven to be a valuable tool in
research on tone mapping, where locally adaptive gradient domain
processing is used for content-aware color remapping. In stereog-
raphy, locally adaptive disparity modifications are important in two
respects. On the one hand, it has to be ensured that the displayed
gradients do not violate our perceptual limits. On the other, dispar-
ity gradient editing provides the possibility to redesign the depth



Figure 3: A disparity storyboard for a 3D movie. In this plot, the
range of estimated disparity values is plotted on the vertical axis
on a frame-by-frame basis. The color indicates the frequency of
the occurrence of disparity values. The velocity is visible in the
changes in disparity histograms over time.

structure of a scene on an object basis. This type of artistic freedom
is a highly desired feature in post-production, but extremely diffi-
cult to achieve at the moment (e.g., using the previously mentioned
multi-rigging) [Neuman 2009].

Disparity Velocity. The last important area is the temporal as-
pect of disparity. For real world scenes without conflicting stereo
cues, it has been shown that our visual system can rapidly perceive
and process stereoscopic information. The reaction time, however,
can increase considerably for conflicting or ambiguous cues, such
as inconsistent vergence and accommodation. Moreover, there is
an upper limit to the temporal modulation frequency of disparity
[Howard and Rogers 2002].

These temporal properties have considerable importance in the pro-
duction of stereoscopic content. In the real world we are used to
disparities varying smoothly over time. In stereoscopic movies,
however, transitions and scene cuts are required. Due to the above
mentioned limitations such strong discontinuities are perceptually
uncomfortable and might again result in the inability to perceive
depth [Mendiburu 2009]. Therefore, stereoscopic film makers often
employ a continuous modification and adaption of the depth range
at scene cuts in order to provide smooth disparity velocities, so that
the salient scene elements are at similar depths over the transition.
Additionally, such depth discontinuities can be exploited explicitly
as a storytelling element or visual effect and are an important tool
used to evoke emotional response [Neuman 2009]. Figure 3 illus-
trates disparity histograms of a 3D movie over time, where such
smooth transitions are visible. These disparity storyboards are an
important part of the planning required for 3D productions.

We summarize the four central aspects of disparity which we utilize
to design the disparity mapping operators in the following section:

Disparity Range: Mapping of the global range of disparities, e.g.,
for display adaptation.
Disparity Sensitivity: Disparity mapping for global or locally
adaptive depth compression and expansion.
Disparity Gradient: Content-adaptive disparity remapping by
modifying disparity gradients.
Disparity Velocity: Temporal interpolation or “smoothing” be-
tween different disparity ranges at scene transitions.

These operations are of essential importance for the generation and
display of 3D footage, be it during post-production of movies or
real-time correction of live broadcasts. In the following section we
will formalize these insights into corresponding disparity mapping
operators and then present a novel framework that allows us to per-
form complex disparity editing on existing stereo footage.

3.2 Disparity Mapping Operators

We will first consider disparity mapping operators on a conceptual
level. Section 5.1 will then provide examples for relevant applica-
tion scenarios. Without loss of generality we assume that the input
footage is recorded with a stereo camera rig or is approximately rec-

tified. For a digital stereo image pair (Il, Ir) let x ∈ IR2 be a pixel
position in the left image Il. We define the disparity d(x) ∈ IR as
the distance (measured in pixels) to the corresponding pixel in Ir

(and vice versa). The range of disparities between the two images is
an interval Ω = [dmin, dmax] ⊂ IR. Our disparity mapping opera-
tors will be defined as functions φ : Ω → Ω′ which implement the
rules and guidelines described in the previous section by mapping
an original range Ω to a new range Ω′. For illustration we refer to
the examples in Section 5.1.

Linear Operator: Globally linear adaptation of a disparity d ∈ Ω
to a target range Ω′ = [d′min, d

′
max] can be obtained by a mapping

function

φl(d) =
d′max − d′min

dmax − dmin
(d− dmin) + d′min. (1)

By changing the interval width of Ω′, the depth range can be scaled
and offset such that it matches the overall available depth budget of
the comfort zone (e.g., Section 5.1 and Figure 11).

Nonlinear Operator: Global nonlinear disparity compression can
be achieved by any nonlinear function, e.g.,

φn(d) = log(1 + sd), (2)

with a suitable scale factor s. For more complex, locally adaptive
nonlinear editing, the overall mapping function can be composed
from basic operators. For example, given a set of different target
ranges Ω1, . . . ,Ωn and corresponding functions φ0, . . . , φn, the
target operator would be:

φa(d) =

(
φ0(d), d ∈ Ω0

. . . . . .
φn(d), d ∈ Ωn

. (3)

An elegant approach to generate such complex nonlinear functions
in a depth authoring system is to either use the histogram of dis-
parity values (as shown in Figures 3 and 4) for identifying domi-
nant depth regions, or to analyze the visual saliency of scene con-
tent in image space. These so called saliency maps S(x) ∈ [0, 1]
(see Figure 5) represent the level of visual importance of each pixel
and can be generated either automatically by the system (see also
Section 4.2) or manually by the user. From the saliency map, the
algorithm can infer which disparity ranges Ωi are occupied by im-
portant objects, and which regions are less important. From these
importance values, which essentially correspond to the first deriva-
tive φ′a, the actual disparity operator can be generated as the integral
φa(d) =

R d

0
φ′a(x)dx (please see Figures 1 and 7 for examples).

Gradient Domain Operator: In addition to local adaptivity in
disparity space as in φa, the remapping of disparity gradients al-
lows for additional spatial adaptivity in image space. Retarget-
ing operators for disparity gradients with spatial adaptivity can
be defined based on visual importance maps S(x) as functions
φ∇(∇d(x), S(x)). An example for adaptive compression using
interpolation between a linear and a nonlinear map φl and φn is

φ∇(∇d(x), S(x)) =S(x)φl(∇d(x))+

(1− S(x))φn(∇d(x)). (4)

The actual disparity mapping operator can then be reconstructed
from φ∇ using methods from gradient domain processing [Agrawal
and Raskar 2007].

Temporal Operator: Temporal adaptation and smoothing, as it
is required for smooth scene transitions or visual effects, can be
defined by weighted interpolation of two or more of the previously
introduced operators, e.g.,

φt(d, t) =
X

i

wi(t)φi(d), (5)



Figure 4: Left: stereo correspondences with color coded dispari-
ties (red positive, blue negative) and the disparity histogram for the
cow example after pruning. Right: close-ups of the warped stereo
pair showing the deformed isolines with respect to the input views.

where wi(t) is a suitable weighting function. An example for tem-
poral interpolation and the resulting disparity histograms is given
in Section 5.1, Figure 9.

These different operators in Eq. (1)-(5) provide the basic function-
ality required to implement the set of central disparity operations
presented in Section 3.1. In the following section, we will present
our novel image-based stereoscopic warping scheme for applying
these operators to stereo footage. Section 5.1 will then provide con-
crete applications for these operators in production.

4 Stereoscopic Warping

We now know that disparities have to be adapted to the stereoscopic
comfort zone due to our fundamental perceptual and technical lim-
itations. However, once these conflicts are sufficiently minimized,
our depth perception is quite robust, even if the resulting 3D scene
is not geometrically consistent. This is due to the additional depth
information from cues such as relative size and order of objects in
a scene, and motion parallax [Cutting and Vishton 1995; Siegel and
Nagata 2000]. In the following section we exploit these properties
and present an algorithm for automatic disparity remapping based
on stereoscopic warping.

The basic idea is to first compute a set F of sparse feature cor-
respondences (x,x′) between the left and right view of a stereo
image pair (Il, Ir) (Section 4.1). We then compute a novel, image-
and disparity-based visual saliency map S (see also Section 3.2),
which measures the visual importance of each pixel in the spatial
and in the depth domain (Section 4.2). Using our disparity map-
ping operators φ, the correspondences F , and the saliency map S,
we can compute a stereoscopic warp of the stereo pair, such that
the resulting output views fulfill the desired disparity constraints
defined by φ (Section 4.3).

4.1 Sparse Stereo Correspondences

Sparse feature correspondences between the two images (Il, Ir)
can be estimated robustly using well established standard tech-
niques [Baker and Matthews 2004; Lowe 2004], hence we refer to
these works for detail on the basic correspondence matching. Op-
tionally we exploit downsampled dense correspondence informa-
tion [Werlberger et al. 2009] between Il and Ir for large textureless
image regions which are too ambiguous for sparse feature match-
ing. Outliers can be removed automatically [Sattler et al. 2009].

Depending on scene content the resulting feature set F generally
has an irregularly clustered distribution of correspondences. More-
over, many features are not temporally stable over a longer video
sequence, but disappear after a few frames. Since our warping al-
gorithm requires only a sparse set of features, we apply a spatially
anisotropic pruning algorithm to F which favors temporally sta-
ble correspondences and is adaptive to depth discontinuities. Cor-
respondences are first sorted by their lifetime, so that long living
pairs receive a high priority and correspondences which appeared

only for a couple of frames receive a low priority. We then apply
a greedy procedure to remove low priority correspondences around
those with a high priority. Let (xl,xr) ∈ F be a high priority
correspondence pair with disparity d(xl). Our pruning algorithm
removes all pairs (x′l,x

′
r) ∈ F with‚‚‚‚„ xl

d(xl)

«
−
„

x′l
d(x′l)

«‚‚‚‚ < r. (6)

This isotropic distance measure in image and disparity space results
in a locally adaptive anisotropic filter in image space only (similar
to the idea of the Fast Bilateral Filter [Paris and Durand 2006]).
Pruning is performed symmetrically for the positions xr as well.
In principle, the radius r depends on the image resolution and the
disparity range. However, the results of our warping algorithm are
quite insensitive to different feature densities so that we could sim-
ply use a value of r = 10 in our experiments.

Figure 4 shows an example of the resulting features and the cor-
responding disparity histogram. This algorithm combines the re-
spective strengths of different methods for feature estimation and
provides a robust way to automatically compute a sparse but suffi-
ciently accurate set F of correspondences between stereo pairs.

4.2 Depth and Image Saliency

In order to determine which parts of the input images can be dis-
torted by our warp without creating visible artifacts, we need a vi-
sual importance map S for the stereo image pair. Our approach
to compute S is twofold. First, we use image-based importance
measures which are able to capture the coarse and fine scale de-
tails of image content, such as prevalent edges or textured regions.
In addition, we have the sparse disparity information from the pre-
viously computed stereo correspondences. This allows us to ex-
ploit the depth dimension as an additional source of information
to estimate visual saliency. Accordingly, we compute a composite
saliency map as a weighted combination

S(x) = λSi(x) + (1− λ)Sd(x), (7)

for all pixels x ∈ Il where Si represents the image-based saliency
and Sd our disparity-based saliency. Si is generated from the sum
of a local edge map and the global scale method of Guo et al. [2008]
(see Figure 5) for each stereo channel individually.

The disparity saliency map Sd can be computed by any operator on
the range of disparities of correspondences in F . A simple but ef-
fective solution is to assume that foreground objects generally catch
our visual attention more than the background of a scene, which is
a reasonable assumption for many application scenarios (see Sec-
tion 3.1). So for a correspondence set F comprising a disparity
range Ω = [dmin, dmax], we assign high saliency values to dispar-
ities close to dmin and a low saliency to disparities close to dmax.
Saliency values are then interpolated over the non-feature pixels
(see Figure 5). Note that in principle more complex disparity-based
saliency estimators are possible (see also Section 5.1).

Figure 5 shows all components of the saliency computation. Dark
areas in the final map are parts of the scene that are more likely
to be distorted by the warp to accommodate movement within the
images. For weighting Si and Sd our current implementation uses
a value λ = 0.5.

4.3 Warping

Our aim is now to warp the stereo image pair (Il, Ir) such that the
range of disparities Ω of the stereo correspondences F is mapped
to a new range defined by a disparity mapping operator φ : Ω →
Ω′. This means we have to compute a pair of warping functions
(wl, wr) which map coordinates from (Il, Ir) to a pair of output
images (Ol, Or), respectively, i.e.,Ol ◦wl = Il andOr ◦wr = Ir ,
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Figure 5: Individual saliency components and final automatically generated saliency map for a scene. From left to right: left image of a
stereo pair, local edge saliency, global texture saliency, disparity-based saliency, combined saliency map S.

subject to d(Ol, Or) = φ(d(Il, Ir)). Note that in principle warp-
ing only a single image would be sufficient. However, by distribut-
ing the required deformation to both images, we are more flexible
regarding the admissible disparity mapping operations without in-
troducing noticeable visual artifacts. To compute these warps we
employ the same basic methodology as existing warp-based meth-
ods for video retargeting [Shamir and Sorkine 2009]: we define
a set of constraints on the functions (wl, wr) which can then be
solved as a nonlinear least-squares energy minimization problem.

Stereoscopic Constraints. The most central set of constraints ap-
plies the disparity mapping operator φ to the stereo correspon-
dences (xl,xr) ∈ F . For each correspondence pair we require

wl(xl)− wr(xr)− φ(d(xl)) = 0, (8)

meaning that the disparity of a warped correspondence pair
(wl(xl), wr(xl)) should be identical to applying the disparity map-
ping operator φ to the original disparity d(xl).

Since the above constraints only prescribe relative positions, we
require a small set of absolute position constraints which fix the
global location of the warped images. We compute these position
constraints for the 20% temporally most stable feature correspon-
dences, i.e., those features which have been detected throughout a
sequence of frames in the video. The warped positions are defined
by the average previous position and the novel disparity:

wl(xl) =
xl + xr

2
+
φ(d(xl))

2

wr(xr) =
xl + xr

2
− φ(d(xl))

2
(9)

Eq. (8) and (9) define the basic stereoscopic warping constraints so
that the warped images match the target disparity range Ω′.

Temporal Constraints. For video with moving scene elements
one has to ensure that local image distortion is properly transferred
along the local motion flow [Werlberger et al. 2009] between suc-
cessive video frames. The local image distortion can be measured
based on the derivatives of the warp. Let ∂wt

x/∂x denote the par-
tial derivative of the x-component of the warp wt at time t, and let
xt−1 and xt be two corresponding pixels in It−1 and It, respec-
tively. The transfer of the warp distortion is then expressed by

∂wt
x

∂x
(xt) =

∂wt−1
x

∂x
(xt−1). (10)

This constraint is enforced for the y-component ∂wt
y/∂y as well

and performed for the left and the right image warp independently.

Saliency Constraints. Besides these novel stereoscopic and tem-
poral warp constraints, we additionally employ a set of standard
constraints which minimize the perceivable visual distortion. The
idea is to enforce a certain rigidity of the warp in salient regions, and
to allow for larger image distortions in non-salient regions. Hence,
the constraints consist of terms for

• Distortions: ∂wx
∂x

=
∂wy

∂y
= 1,

• Bending of edges: ∂wx
∂y

=
∂wy

∂x
= 0,

• Overlaps: ∂wx
∂x
∧ ∂wy

∂y
> 0.

Figure 6: Warping example showing stability over different num-
bers of stereo correspondences. Upper row, left to right: origi-
nal stereo input, disparity mapping results (depth range increased)
computed with about 2000 features, the same result using only
about 200 features. Bottom row: close-ups showing the respective
feature density and a difference image of the warped images.

During the actual warp computation these constraints are then
weighted by the saliency map S in Eq. (7) to achieve an adaption
of the warp to the image-content. Since these basic constraints are
identical to related work on video retargeting, please refer for ex-
ample to [Krähenbühl et al. 2009] for details.

Implementation. Our implementation of these warping constraints
follows the standard procedure in image-based warping: The con-
straints are converted into energy terms so that the computation of
the warps (wl, wr) can be solved as an iterative nonlinear least-
squares problem. In our current implementation we simply sum all
of the above energy terms and weight the saliency constraints by
multiplication with the saliency map S. The warp-induced defor-
mation is illustrated in Figure 4 by overlaying isolines of the orig-
inal input images. Figure 6 is an example with differing number
of stereo correspondences and shows that the results of our stereo-
scopic warping are quite insensitive to the number of features.

In addition to automatic constraints it would be interesting to in-
clude the possibility to manually add high level constraints regard-
ing region positions or global lines [Krähenbühl et al. 2009]. Since
at its core our warp is similar to previous warping methods, the
inclusion of these techniques is straightforward. However, as we
show in our results, the current automatic solution already provides
very acceptable results for a variety of stereoscopic 3D footage.

5 Results

As motivated in Section 3, the question of how the disparity range
should be adapted for different types of stereoscopic footage de-
pends strongly on the particular target application. Our goal was to
achieve practical disparity retargeting that can be employed in ac-
tual application scenarios. Hence, we present nonlinearly and lin-
early mapped results for three important application scenarios. We
also evaluate the quality of our method quantitatively by a ground
truth comparison, and present the results of a user study to validate
the perceptual quality of the warping.
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Figure 7: Post-Production. For an input frame (a) and a given im-
portance map (c) the average importance for individual disparities
s(d) can be computed. This is automatically converted into a non-
linear depth mapping operator φ(d) as described in Section 3.2.
The resulting image in which the key characters are emphasized by
stronger depth is shown in (b).

Figure 8: Nonlinear disparity remapping. The disparity range of
the original (left) is quite large leading to diplopia on large screens.
Our nonlinearly remapped image (right) displays the cow behind
the screen and compresses the depth range without apparent flat-
tening of the cow’s head.

The results in this section are presented as red (left) - cyan (right)
anaglyph images (optimized for zoomed on-screen display).

More results and stereoscopic videos are included in the supple-
mental material. A free stereoscopic player is available at [3dtv.at
2010]. Note that in the anaglyph images, changes in disparity can
generally also be estimated from the different displacement of the
red and cyan channels (e.g., Figure 8).

5.1 Applications

The three production scenarios we present in this section include
nonlinear and linear editing for post-production, automatic dispar-
ity correction, and display adaptation. Furthermore we illustrate the
versatility of our method with an example for 2D to 3D conversion.

Post-Production. The first major application area of our disparity
mapping operators and warping is post-production of stereoscopic
content. We may assume a studio environment where skilled op-
erators apply software tools within an interactive workflow to edit
previously captured material. Using the proposed methodology and
algorithms, depth composition can be modified and authored by
combining different nonlinear and linear disparity operators.

Examples and results for nonlinear and linear disparity editing are
shown in Figures 1, 7, 8, and 9. In Figure 1 we modify the global
scene depth structure with a nonlinear function which emphasizes
foreground content and compresses empty space in-between while
retaining the maximum disparity of the background. In Figure 7 we
exploit a visual saliency map to automatically design an adaptive
disparity mapping operator. It enhances salient regions and simul-
taneously compresses the depth of unimportant regions (see also
Eq. (3)). In Figure 8 the images were captured with a consumer 3D
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Figure 9: Temporal adaptation for a scene cut. Before adaptation
both sequences have considerably different disparity histograms
with a clearly visible discontinuity in-between (upper left). Our
temporal disparity mapping operator adapts the disparity range of
the first sequence (first frame of the sequence in the upper right) to
the disparity range of the second sequence (bottom row) and thus
achieves a smoother transition.

camera (Fuji Finepix 3D). The resulting disparity range in combi-
nation with negative parallax is too large for a comfortable viewing
experience on large screens. We compressed the depth nonlinearly
by moving the cow behind the screen surface (positive parallax)
and in addition applied a discontinuous nonlinear map retaining the
dimensionality of the cow’s head without altering the maximum
disparity. A further example is shown in Figure 6.

Another important scenario in stereoscopic content production re-
lates to the temporal adaptation of the depth structure in scene
transitions and the focus on salient objects therein (Section 3.1).
Currently, cinematographers are designing depth storyboards in ad-
vance and modification of convergence by global image shift is the
only tool to smooth over shot transitions. Our methods enable us
to compensate for the sharp disparity jumps by slowly adapting the
disparity ranges of the previous and/or current scenes. Figure 9 de-
picts the disparity histograms before and after correction.

Automatic Disparity Correction. Stereography in live action con-
tent production is a difficult art. Camera parameters such as base-
line and vergence have to be adjusted carefully to ensure a high-
quality view experience while keeping the overall action within the
stereoscopic comfort zone. Settings are adjusted to match a cer-
tain depth range in which the action is expected to take place. In
movie productions such decisions are taken by the directors, can be
adjusted as appropriate, tested, and shots are repeated if necessary.

This is not possible in live broadcast scenarios or for the amateur
home user. Any error will immediately lead to degradation in view-
ing quality or even result in diplopia. 3D sports broadcast is a popu-
lar and timely example. Movements of camera and objects are fast,
spontaneous, often unpredictable, and interleaved with rapid scene
cuts. This frequently leads to violations of the stereoscopic window
or transgressions of admissible disparity ranges. Similar consider-
ations apply to stereoscopic footage captured by amateurs. Simple
shift convergence for correction will not help if the overall depth
range of the scene is sufficiently large. Instead, careful limitation
and compression of the disparity is required. Figure 10 displays
examples for automatic disparity correction of such content.

Display Adaptation. A third application area is 3D display adapta-
tion and retargeting. It is motivated by the observation that 3D con-
tent optimized for certain target display size and viewing distance
(e.g., theatrical) will appear differently on a different medium (e.g.,
3DTV). In order to retain a high viewing quality and the artistic
intention, disparity adaptation is necessary when reformatting 3D
content, e.g., from theatrical to TV or even to a handheld device.
Examples of depth editing are illustrated in Figure 11.

2D to 3D Conversion. In order to demonstrate the versatility of
our method we illustrate an example for 2D to 3D conversion.
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Figure 10: Automatic correction of disparity. The original stereo
pairs are shown on the left, our result is on the right. The cropped
racing car captured with strong negative disparities and a large
overall scene depth results in the so-called framing problem. With
a simple linear disparity scaling the car is pushed behind the screen
without increasing the background disparity. In the bottom exam-
ple, taken with a consumer 3D camera, the subject was moving
towards the camera and finally exceeded the maximum disparity
range. In our result, the global disparity range has been adapted
so that the background remains at constant depth while the fore-
ground is pushed closer to the screen.

Recreating 3D stereo pairs from existing 2D images or video in-
volves an expensive and cumbersome interactive workflow. Re-
cently, Guttmann et al. [2009] presented a novel approach that sim-
plifies this task by solving for dense depth maps from sparse user
scribbles to generate stereographic sequences. Using our method
the requirement for dense depth can relaxed, so that the sparse
scribbles alone are already sufficient. The warp interpolates the
pixel disparities and generates a stereographic image pair from a
single input image (see Figure 12).

5.2 Ground Truth Comparison

The purpose of the ground truth experiment was to assess the vi-
sual quality of the our warping approach. We utilized a publicly
available data-set generated with a multi-camera rig [Mobile 3DTV
2010]. We picked two views (numbers 8 and 10) from 3 different
data-sets and then applied the warp to generate intermediate and
extrapolated views (numbers 7, 9, and 11). The extrapolated views
represent a doubling of the camera baseline while the interpolated
view corresponds to a baseline of 0. We then compared the quality
of our result to the known ground truth images using both a per-
ceptually motivated structural similarity metric SSIM [Wang et al.
2004] and by computing the RMSE of the difference images. Single
pixel shifts can cause a high RMSE error while contributing little to
perceived image quality. Hence, perceptual measures like SSIM are
generally better suited for such types of comparisons. The values
for extrapolated views in Table 1 are averaged over the two views 7
and 11. As Table 1 and the images in Figure 13 reveal, our method
is able to compute interpolated and extrapolated views of a scene
that are perceptually indistinguishable from the original, provided
the disparity range is not too large. Please note, however, that ge-
ometrically consistent view interpolation has not been an explicit
goal of this work.

5.3 User Study

To further assess the suitability of warping for disparity mapping
we conducted a user study with 22 subjects and 15 test cases. The
goals of the user study were to show specifically that (1) warping
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Figure 11: Display adaptation into both directions. The middle
images are the original stereo pairs, while the left images feature a
linear reduction of the disparity range to 50% and the right images
an increase to 200%. These results show that our method allows to
preserve the initial depth structure relative to the screen geometry
to adapt content to actual viewing conditions.

Figure 12: 2D to 3D conversion. From a single 2D input image
and providing only a sparse set of disparity cues shown as rough
scribbles, our method produces a convincing 3D result.
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Figure 13: Ground truth comparison showing a known ground
truth image (left) versus our warped image (middle left), and abso-
lute difference images of warped and known ground truth for both
baseline reduction (middle right) and extension (right).

indeed results in a perceivable change of a scene’s depth structure,
and that (2) the quality is not degenerated by visual artifacts.

We performed the study with a line-wise polarized 46 inch full HD
display manufactured by Miracube. All 22 participants were tested
for their ability to perceive depth on a stereo screen using a random
dot stereogram. One subject had to be excluded due to a negative
test. The remaining 21 subjects took part in a pairwise evaluation
[David 1963] of video material composed from short clips from 3D
Hollywood movies, 3D sports and other professional stereo video.
Every side-by-side comparison featured the original scene as well
as a disparity mapped version of it using our method. For nine
test cases we doubled the initial disparities and for six test cases we
reduced them by a factor of 0.5. We randomized the order of videos
as well as the locations of the original and manipulated videos. For
every comparison the participants had to answer the following two
questions:

1: Q: Which video features more depth? A: Left or Right

2: Q: Which video is the original? A: Left, Right, or Don’t know

Depth perception. In total we received 311 valid votes regarding
the depth impression. Overall, 253 votes (81%) correctly recog-
nized the example with larger disparity range. Kendall’s coefficient
of agreement [David 1963], which measures the interobserver vari-
ability for pairwise comparison tests, is u = 0.391 with a p-value
< 0.01. Two sequences (street view, train) only reached a corre-
spondence of 66%. Both videos feature a very strong perspective
depth cue. One sequence had a recognition rate of only 55%. This
sequence contains fast and complex motion cues for scene elements
confirming well-known observations in stereo perception, such as



Table 1: SSIM and RMSE values of ground truth comparison with 3
different datasets for view interpolation and extrapolation. SSIM=1
means no difference to the original,

Dataset 1 interp. 1 extrap. 2 interp. 2 extrap. 3 interp. 3 extrap.
SSIM .9999 .9998 .9999 .9999 .9999 .9999
RMSE .0313 .0334 .0235 .0242 .0228 . 0236

the domination of motion parallax cues and the resulting difficulty
to focus on binocular depth effects. 17 participants correctly rec-
ognized the depth mapping for 11 or more sequences. One subject
drastically diverges with only 5 recognitions (9 is the next better
result). Removing these outliers (three sequences and one subject)
from the evaluation leads a recognition rate of 88%.

Quality. Question 2 was answered in 56% cases as Don’t know.
25% of the votes correctly identified the original, but 19% were
wrong and assumed that the manipulated video was actually the
original video. Some originals were correctly recognized by over
80%, but some of the manipulated sequences were also considered
originals by over 80%.

The major conclusion we draw from the study is that disparity map-
ping based on image warping can change the depth structure of a
scene in a perceptually believable way without introducing distract-
ing visual artifacts. As we have demonstrated earlier, the suitability
of a particular operator (local, global, linear, nonlinear) highly de-
pends on the application, artistic intention, scene content and mo-
tion, and other criteria.

5.4 Limitations

A limitation of our method is depicted in Figure 14. For image
regions in which the disparity changes rapidly, such as around the
pigeons’ heads, the sparse features and warp can lead to visible
distortions. These artifacts could be addressed by using a higher
feature count, denser depth information, or by adding manual con-
straints to enforce feature preservation. Such methods have been
successfully proposed in work on image warping [Krähenbühl et al.
2009].

However, it is very interesting to observe that, when viewed in 3D,
such artifacts are often visually less apparent due to the complex
compensation mechanisms of our visual system. These phenom-
ena clearly deserve additional research in the context of stereo-
scopic warping. From research on media retargeting it is also well
known that there are certain limits for warping-based methods on
how strongly image content may be deformed before artifacts be-
come visible [Shamir and Sorkine 2009]. But since most often the
required deformation for disparity adaptation lies in the range of
only 1-2% of the overall pixel resolution, these limits are typically
not reached. In none of the examples presented in this paper did we
observe visible artifacts, which is further proved by the user study.
Finally, our method is limited in the extent to which we can modify
the camera baseline for nearby objects, since such operations imply
explicit handling of occluded areas to avoid conflicting cues.

6 Conclusions

In this paper we presented a set of disparity mapping opera-
tors providing a basic formalization of perceptually motivated and
production-oriented rules and guidelines for nonlinear disparity
editing of stereoscopic 3D content. In order to implement these op-
erators we proposed a novel technique based on stereoscopic warp-
ing, which allows us to deform input video streams in order to meet
a desired disparity range. We applied our techniques to three dif-
ferent scenarios, all of which are of very high practical relevance
in stereoscopic production and display, and demonstrated that auto-
matic image-based warping could be used as a general alternative
for rendering even complex depth manipulations. The quality of

c©2010 Disney Enterprises

Figure 14: Limitations. For image regions with frequent and
strong changes in disparity, the sparse features and the warp can
lead to distortions visible around the pigeons’ heads. Interestingly,
however, such distortions seem to be compensated to some extent
by our visual system during stereoscopic viewing.

stereoscopic warping was evaluated with a ground truth experiment
and a user study.

Automatic disparity correction could be implemented in future gen-
eration stereo camera systems to support the cinematographer or
cameraman in realtime. In addition to professional live broadcast
systems, consumer electronic systems could also benefit from such
methods, since amateur users generally do not have the experience
and background required for proper stereo capture. Moreover, al-
gorithms for disparity adaptation could be implemented as part of
future 3D display devices or TVs enabling viewers to control dis-
parity on-the-fly in order to match the display size and the user pref-
erences, much like we control aspect ratio, contrast, or color today.
In future research we would like to refine our nonlinear mapping
operators to accommodate additional features of stereoscopic per-
ception. The current user study was limited to assess the suitability
of warping for disparity mapping. Future studies will investigate
the influence of various nonlinear and local operators on the per-
ceived quality of the results. Furthermore, we want to investigate to
what extent conflicting cues, such as inaccurate occlusions, can be
compensated for by additional cues like motion parallax.
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