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Abstract

A central problem in computer graphics is finding optimal sam-
pling conditions for a given surface representation. We propose
a new method to solve this problem based on spectral analysis of
manifolds which results in faithful reconstructions and high quality
isotropic samplings, is efficient, out-of-core, feature sensitive, intu-
itive to control and simple to implement. We approach the problem
in a novel way by utilizing results from spectral analysis, kernel
methods, and matrix perturbation theory. Change in a manifold due
to a single point is quantified by a local measure that limits the
change in the Laplace-Beltrami spectrum of the manifold. Hence,
we do not need to explicitly compute the spectrum or any global
quantity, which makes our algorithms very efficient. Although our
main focus is on sampling surfaces, the analysis and algorithms are
general and can be applied for simplifying and resampling point
clouds lying near a manifold of arbitrary dimension.

CR Categories: G.1.2 [Numerical Analysis]: Approximation—
Approximation of surfaces and contours; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling—Curve, sur-
face, solid, and object representations;

Keywords: Sampling, Laplace-Beltrami, Heat Kernel, Poisson
Disk Sampling

1 Introduction

Point cloud data acquired from real world objects is often highly
redundant and noisy. This adversely affects processing the data in
many applications such as surface reconstruction or direct render-
ing. Hence, simplification and resampling are essential steps for
dealing with point sampled surfaces. However, the elegant sam-
pling theories of signal processing that are available in the Eu-
clidean domain are difficult to generalize to arbitrary manifolds.

There have been significant efforts based on spectral graph theory
and computational harmonic analysis to extend signal processing
results to discrete approximations of manifolds by utilizing tech-
niques from spectral analysis [Lafon and Lee 2006]. Following the
seminal work of Taubin [1995], these developments have been in-
spiring many successful algorithms in geometry processing [Zhang
et al. 2007; Sun et al. 2009]. Despite their excellent performance
and theoretical foundations (the Laplace-Beltrami operator captures
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Figure 1: Left: The original model with 14 million samples is adap-
tively subsampled to 300k samples and reconstructed. Total time in-
cluding out-of-core simplification and reconstruction is 6 minutes.
Right: Detail from uniform resampling of the model to 21k samples.

the intrinsic structure of the manifold and is stable under perturba-
tions [Kesavan 1998; Dey et al. 2010]), spectral methods are global,
hindering their use in practical sampling algorithms due to high
memory and time costs, especially for large real world datasets.

In this paper, we overcome this drawback and propose sampling
algorithms for point cloud data that utilize local measures de-
rived from spectral analysis of manifolds, which are conceptually
global. Combining results from spectral analysis, kernel methods
and matrix perturbation theory, we derive measures that quantify
the change a point would cause to the manifold if it was added to
the point set currently defining the manifold (Section 3 provides an
overview of our method, Section 4 the details of this derivation).
The measures are connected to kernel regression (see Section 5)
and, hence, generated samplings result in accurate reconstructions
by a variant [Öztireli et al. 2009] of Moving Least Squares (MLS)
based Point Set Surfaces (PSS) [Levin 2003; Alexa et al. 2003].
Applying gradient descent based on the local measure leads to good
global distributions of the points on the surface, i.e. the blue noise
properties desired in many applications.

To summarize, our main contributions are the following:

• Out-of-core simplification and in-core resampling algorithms
for point sampled manifolds that are efficient, simple to im-
plement, easy to control through intuitive parameters, feature
sensitive, and that result in accurate reconstructions with ker-
nel based approximation methods and high quality isotropic
samplings (see Section 6 for the algorithms).

• A discrete spectral analysis of manifolds using results from
kernel methods and matrix perturbation theory (Section 4
and 5 and the accompanying technical report [Öztireli et al.
2010]).
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Figure 2: Conceptual Overview: (a) Given a set of points, (b) we
map them to a higher dimensional space implied by the heat kernel
of the underlying manifold such that the distance of a point to the
span of the others can be used to measure (c) the influence of that
point on the Laplace-Beltrami spectrum.

2 Related Work

Sampling in Computer Graphics

Efficient simplification of data is essential to process large datasets.
The fastest methods for simplification are based on clustering of
points [Pauly et al. 2002]. They are simple to implement and out-
of-core, thus suitable for very large datasets. However, sampling
quality is not sufficient for accurate reconstructions. An efficient
and still accurate set of sampling algorithms simplify the point set
by iteratively removing or adding a sample at a time based on a
measure derived from the geometry and the sampling rate. This
measure can be defined as the distance of a point to the surface
[Alexa et al. 2001], density and curvature based heuristics [Kitago
and Gopi 2006] or quadratic error metrics [Garland and Heckbert
1997; Pauly et al. 2002]. The algorithms provide better accuracy
for the final surfaces, but computing the initial scores and updating
can become prohibitively expensive [Kitago and Gopi 2006].

After simplifying the data, further resampling can be applied to
improve quality. A common approach to generate high quality
isotropic samplings of a surface is distributing points using relax-
ation techniques. These methods first compute an initial distribu-
tion of points on the surface, and then refine this distribution by
techniques such as variants of the Lloyd’s method [Yan et al. 2009;
Valette et al. 2008; Alliez et al. 2003], particle systems [Witkin
and Heckbert 1994], or advancing front algorithms [Schreiner et al.
2006]. In spite of their good sampling properties, computational
cost or critical dependence on the parameters or initial distribu-
tions hinder their use. Instead of operating on a surface, some re-
laxation algorithms first parametrize the surface and then use well
established methods [Lagae and Dutré 2008] to generate distribu-
tions with blue noise characteristics on the parameter domain [Al-
liez et al. 2002]. However, parametrization is a hard problem that
may introduce distortions. This has led to algorithms that directly
compute distributions with blue noise properties on a meshed sur-
face using geodesic distances [Fu and Zhou 2008], albeit at a high
computational cost.

Sampling for Manifold Learning

Apart from the focus on 2-manifolds in computer graphics, sam-
pling problem has also been tackled for general higher dimen-
sional manifolds and ambient spaces. The term manifold learning
refers to discovering the intrinsic manifold structure of a given point
set [Coifman and Lafon 2006]. Many learning techniques first con-
struct a weighted graph from the points and form the graph Lapla-
cian matrix. Eigendecomposition of this matrix can then be used
to estimate embeddings of the data points into a new space such
that various learning tasks can be done easily [Ham et al. 2004].
Since these operations are computationally very demanding, sev-
eral methods for sampling datasets have been proposed, but so far
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Figure 3: (a) Input to our sampling method is a set of points with
normals and a kernel function. (b) Sampling algorithms are run
on the data set based on the spectral measure computed using the
kernel function. (c) Resulting samplings can be used to accurately
reconstruct surfaces using the same kernel.

they mostly depend on random sampling [Drineas and Mahoney
2005]. Notable exceptions try to exploit the low-rank structure of
the diffusion matrix [Coifman and Lafon 2006] or find subsets of
the samples and use the Nyström method to approximate the eigen-
vectors [Liu et al. 2006]. However, the algorithms are computa-
tionally expensive and not suitable for high quality samplings of
manifolds.

3 Overview

Before going into the details of the derivation of our measure, we
would like to summarize our approach from a practical point of
view. The theoretical ideas and details can be found in Sections 4
and 5. The reader who is more interested in the algorithms can skip
those sections and jump to Section 6 after reading this section.

The input to our sampling method is a set of points lying near a
manifold with normals and a kernel function definition (Figure 3
(a)). If the normals are not provided, they can be estimated by fitting
local proxy surfaces [Guennebaud and Gross 2007].

The data together with the kernel function can be used to define
a continuous surface. We chose to use the adaptive kernel func-
tion definition of the robust and feature sensitive variant of an
MLS based PSS [Öztireli et al. 2009]. Let x = [p/σp n/σn]T ,
where p is the position of a point, n is the normal vector at that
point and σp and σn are user provided smoothness parameters,
then the kernel used for sampling and reconstruction is given by
k(x,y) = e−‖x−y‖2 . Higher values of σp leads to smoother sur-
faces and lower values of σn causes more pronounced sharp fea-
tures. This kernel definition allows us to generate adaptive sam-
plings without having to set individual shapes or bandwidths for
the kernels by operating on a 2-dimensional manifold embedded in
R6 [Lai et al. 2007].

Using the Gaussian kernel, our simplification and resampling algo-
rithms can be run on the input data (Figure 3 (b)). For both algo-
rithms (Section 6), we utilize our measure derived from the spectral
analysis of manifolds as explained in Section 4. The resulting dis-
tribution of points has high quality blue noise properties and the
sampled data can be used to accurately reconstruct a continuous
surface with the PSS [Öztireli et al. 2009] (Figure 3 (c)). The same
kernel with the same parameters σp and σn is used for both sam-
pling and reconstruction.

4 Measuring the importance of a sample

The essence of our method is measuring the effect of a point on the
manifold using the Laplace-Beltrami spectrum. It is well-known



that eigenvalues of the Laplace-Beltrami operator provide an almost
unique identification of the manifold up to isometry [Reuter et al.
2006; Rustamov 2007]. Although there exist isospectral manifolds
(i.e. sharing the same spectrum) that are not isometric, these cases
are very rare, and many geometric and topological properties of a
manifold can be extracted from the spectrum [Kesavan 1998; Lévy
2006]. The eigenspectrum is also stable under perturbations of the
manifold, thus similar manifolds will have close spectra [Dey et al.
2010]. We utilize these facts to measure the changes in a manifold
through changes in its spectrum. Measuring this change due to a
single point is performed by considering a higher dimensional space
implied by the heat kernel (Figure 2).

In this section, we will show how to efficiently compute the effect of
adding a point to the point set defining the manifold on the Laplace-
Beltrami spectrum. First we present our choice of the discrete ap-
proximation for the spectrum of the Laplace-Beltrami operator via
the heat kernel. Next, we derive our measure in terms of the heat
kernel, and show how to compute it.

4.1 Laplace-Beltrami and its discretization based on
the heat operator

The Laplace-Beltrami operator is a generalization of the Laplace
operator in Rd to Riemannian manifolds. For our purposes, we will
concentrate on compact manifolds without boundary. The eigen-
functions ui(x) and eigenvalues λi of this operator are the solutions
of

4ui(x) = λiui(x) (1)

where x ∈ M for a manifold M and 4 denotes the Laplace-
Beltrami operator (on M ).

In order to compute the Laplace-Beltrami operator in practice, we
need to discretize it. For samples forming a simplicial mesh, sev-
eral discrete approximations with nice invariance and convergence
properties have been derived (e.g. [Wardetzky et al. 2007]). How-
ever, during sampling or re-sampling we wish to avoid repeatedly
constructing such a mesh, as it can be a challenging problem in
itself. We rather follow the line of approximations motivated by
methods in manifold learning, spectral graph theory, and compu-
tational harmonic analysis [Belkin and Niyogi 2006; Belkin et al.
2009; Coifman and Lafon 2006]. These approaches rely on the
connection between the Laplace-Beltrami operator and the heat op-
erator.

The heat operator Ht gives the heat distribution Htf(x) at time t
for an initial distribution f(x) on the manifold. For small t this
operator converges to the Laplace-Beltrami operator [Belkin and
Niyogi 2006]. Associated with the heat operator, one can define
the heat kernel ht(x, y) : M × M × R+ → R+. It can be
shown [Öztireli et al. 2010] that the eigenvalues of the heat ker-
nel matrix (Ht)ij = ht(xi, xj) converge to those of Ht up to a
constant. Hence, the eigenvalues of the Laplace-Beltrami operator
can be approximated by computing those of the discrete heat oper-
ator, i.e. the matrix Ht as t→ 0. It remains to measure the change
in the spectrum of Ht.

4.2 Effect of a Point on the Spectrum

Given points xi on the manifold that are used to form Ht, we seek
to quantify the change in the spectrum of Ht due to addition of a
new point x. We reformulate this problem in another space and use
matrix perturbation theory and properties of the eigenfunctions of
the heat kernel to arrive at our measure.

In machine learning, it is common to use expansions of symmet-
ric positive semi-definite kernels to define a possibly infinite di-
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Figure 4: On the left, black curve shows the spectrum of the heat
kernel matrix and on the right, the measure s(x) is plotted for the
six black points and the heat kernel of R2 (blue:low, red:high).
When a new point (represented by the blue triangle) in a region
of high s(x) is added to the set of black points, eigenspectrum be-
comes the blue curve, and hence changes significantly. In contrast,
another point in a region of low s(x) (red square) results in the red
curve on the left and hence does not cause much change.

mensional feature space where dot products are given by the ker-
nel [Schölkopf et al. 1998]. The expansion of the heat kernel
(e.g. [Grigor’yan 1998]) in terms of the eigenvalues and eigenfunc-
tions of the Laplace-Beltrami operator allows us to use a similar
approach. By rewriting the expansion we get

ht(x, y) =

∞∑
i=0

e−λitui(x)ui(y) = φt(x)
Tφt(y) (2)

Here, φt(x) is a vector such that the ith component is given by√
e−λitui(x). This interpretation allows us to define a new space

where these vectors live. For brevity, we will drop the time de-
pendency from all identities and write φi = φt(xi) for the points
xi. With these definitions, the heat kernel matrix can be written as
Hij = h(xi, xj) = φTi φj . More interestingly, we can define the
covariance matrix C =

∑
φiφ

T
i . Non-zero eigenvalues λi(C) of

C are the same as those of H [Schölkopf et al. 1998]. Thus we can
equivalently consider the change in the spectrum of C.

Adding a sample x to the point set means forming a new perturbed
covariance matrix C′ = C + φφT with φ = φ(x). Using this
form, one can apply results from the matrix perturbation theory to
show [Öztireli et al. 2010] that the change in the spectrum can be
bounded above by ‖o‖2/‖φ‖2 ∈ [0, 1], where o is the component
of φ that is orthogonal to the span of φi’s. This measure can be
computed in terms of the heat kernel as [Öztireli et al. 2010]

s(x) = 1− hTH−1h/h(x, x) (3)

where (h)i = h(x, xi). We illustrate that s(x) correctly captures
changes to the spectrum in Figure 4. If s(x) is low at a location,
placing a new sample at that location does not change the spectrum
much.

Note that since we do not know the heat kernel of a given manifold,
a direct computation of this expression is not possible. Neverthe-
less, for a given set of points {xi ∈ Rd}n1 lying near a manifold,
graph based methods [Belkin and Niyogi 2006; Coifman and Lafon
2006] can be used to approximate s(x) in terms of the Gaussian
kernel k [Öztireli et al. 2010] (see Section 3 for the exact definition
we use), which leads to the final expression for our measure

s̃(x) = 1− kTK−1k/k(x,x) (4)

where Kij = k(xi,xj) and ki = k(x,xi). In a sampling algo-
rithm, computing s̃(x) will require inverting the global matrix K
many times as more points are added or removed, which will make
the algorithm very inefficient. Fortunately, this global matrix can
be substituted by a local matrix constructed from the neighbors of
x [Öztireli et al. 2010]. An example of this behavior is shown in
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Figure 6: Using a Gaussian kernel, the measure s̃(x) for the white
point converges to a value as more and more neighboring points are
used for the computation. The points in the blue region are sufficient
for an almost exact computation, illustrating the local nature of the
measure.

Figure 6. Since the number of neighboring points in the support of
k for a point x will be much smaller than total number of points in
the set, this local computation makes our sampling algorithms very
efficient.

5 Relation to Kernel Regression

Reconstructions from the sampled data are desired to match that of
the full data. A versatile approach to surface reconstruction is using
weighted averages of kernels. Prominent examples are Radial Basis
Function and some MLS based reconstruction methods. In particu-
lar, we use a feature preserving implicit MLS surface [Öztireli et al.
2009]. Since our measure also involves a kernel based approxima-
tion, it is closely connected to these methods.

Consider a general weighted sum of a positive definite and sym-
metric kernel

∑
wiki(x,xi). Since we can write k as a dot

product in its feature space, we can rewrite this expression as∑
wiϕ(x)Tϕ(xi) = ϕ(x)T

∑
wiϕ(xi). Thus the kernel approx-

imation becomes nothing but a dot product of ϕ(x) with a weighted
average of the vectors ϕ(xi).

We can decompose any arbitrary vector ϕ(xj) into a component
dj in the span of other vectors and a component oj orthogonal to
the span. Furthermore, dj can be written as a linear combination
of others, such that dj =

∑
i 6=j a

j
iϕ(xi). With these definitions,

the expression for the weighted average becomes
∑
i6=j wiϕ(xi)+

wjdj + wjoj =
∑
i6=j (wi + wja

j
i )ϕ(xi) + wjoj . It can be

shown [Öztireli et al. 2010] that s̃(xj) = ‖oj‖2/‖ϕ(xj)‖2. If
s̃(xj) is small, then we can ignore the term wjoj and the weighted
average can be computed by modifying the weights and storing only
the vectors ϕ(xi), i 6= j. Thus a small s̃(x) implies the kernel
k(x,xj) can be ignored in the reconstruction.

6 Algorithms for Sampling

Having derived our measure and demonstrated how it can be effi-
ciently computed, we move on to algorithms utilizing this measure
for sampling. We propose a subsampling algorithm and a resam-
pling algorithm that can be applied to the subsampled data to further
improve the sampling.

6.1 Randomized Linear Scan

Point sets acquired from the real world can be very large and thus
out-of-core, fast algorithms are needed to sample these datasets ef-
fectively for a given detail level. For this reason, we designed a
simple linear scan algorithm. The algorithm starts with an empty
output point set. At each step, it randomly selects a point xk from
the input set and computes s̃(xk) using the already added points in
the output set. If s̃(xk) > ε, then xk is added to the output point set.
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Figure 7: Points are moved so as to maximize and equalize their
contribution to the surface iteratively. Sum of movements of the
points decreases quickly.

The algorithm stops when all input points have been considered. A
pseudo code of the algorithm is given in Algorithm 1.

Algorithm 1 Simplification by Randomized Linear Scan
Input: Initial Point set X
Output: Subsampled point set O
O = ∅
while (X 6= ∅)

remove a random point xk from X
find set of local neighbors Nk of xk among the points in O
if (Nk 6= ∅)

compute s̃(xk) (see equation (4)) using points in Nk
if (s̃(xk) > ε or Nk = ∅)

add xk to O

Iterative Inversion

The main computational burden of the linear scan algorithm comes
from finding local neighbors and inverting the local kernel matrix.
To keep this cost at a minimum, we propose to use an iterative al-
gorithm. To compute s̃(xk), first, the points in the neighborhood
of xk are sorted according to their distance to xk in ascending or-
der. This is because points closer to xk will contribute to s̃(xk)
more. Starting from the closest point, at each iteration, a new point
is considered, the new inverse is computed and s̃(xk) is updated.
Since every added point decreases s̃(xk) [Öztireli et al. 2010], once
s̃(xk) ≤ ε, no further iterations are needed because it is certain that
xk will not be added to the output point set.

To compute the inverse iteratively, one can use the block matrix
inversion formula that has been proven to be very effective for sim-
ilar cases [Moghaddam et al. 2008], which reads as follows for our
case:

K−1
n+1 =

[
K−1
n + gnana

T
n −gnan

−gnaTn gn

]
(5)

where Kn is an n by n matrix with elements (Kn)ij = k(xi,xj)
for i, j ≤ n, an = K−1

n kn(xn+1), gn = (k(xn+1,xn+1) −
kn(xn+1)

TK−1
n kn(xn+1))

−1, and (kn(xn+1))i = k(xn+1,xi)
for i ≤ n.

Note that in this update rule, instabilities arise when g−1
n is close to

zero. We can safely avoid these cases by omitting the added point
xn+1 for which g−1

n is close to zero [Öztireli et al. 2010].

6.2 Iterative Gradient Ascent

Recall that s̃(x) measures the contribution of a point to the mani-
fold definition. Hence, by maximizing and equalizing s̃(x) for all
points, we can make sure that each point has an equally large con-
tribution to the surface. In general, this is a difficult non-linear opti-
mization problem involving modifying positions of points to reach
a global optimum. Instead of a global optimization, we use local
operations and move points in a simple gradient ascent iteration on



Figure 5: Uniform resamplings by our algorithm.

s̃(x). Specifically, at each step, a point x is selected, moved to the
position

xk+1 = xk +
1

2
∇s̃(xk) (6)

and projected onto the surface. The algorithm then continues with
the next point randomly chosen from the points that have not been
moved. Once all points are exhausted, the algorithm continues with
another iteration until a criterion is met.

In practice, this algorithm converges very fast and produces high
quality samplings with blue noise properties. A resampling pro-
cess example is shown in Figure 7. We illustrate and further ex-
plain properties of the samplings in Section 7. For reference, one
can easily compute the gradient for a Gaussian kernel as ∇s̃(x) =
(−2/σ2)

∑
(2x− xi − xj) k(x,xi)k(x,xj)K

−1
ij .

6.3 Implementation

Parameters For our simplification algorithm (Algorithm 1),
threshold ε is the only free parameter apart from the kernel param-
eters. Since s̃(x) ∈ [0, 1], we set ε = 0.5 for all results in this
paper. For resampling, due to the high convergence rate of the algo-
rithm, we use 10 iterations. According to the decay of the Gaussian
k(x,y) = e−‖x−y‖2 , the neighborhood size is set to r = 2.5.

Data Structures During the simplification by linear scan, points
are added one by one to the output point set, and the measure com-
putation for a new point is done using only its neighbors in the
output set. Thus we need a dynamic data structure that allows lo-
cal neighbor retrieval. We used a dynamic kd-tree for these rea-
sons. For the iterative gradient ascent algorithm, the data structure
should also allow us to alter positions of the points already added.
Although a grid or octree can be used efficiently for this case, we
chose to simply use a kd-tree for computing indices of neighboring
points and assume the same neighborhoods in all iterations. This
assumption does not cause a significant error in practice since the
points are already near the optimum positions after the subsampling
algorithm.

7 Results

To assess the effectiveness of our algorithms, we test the quality of
the samplings, the accuracy of the reconstructions resulting from
the sampled points and the performance of the algorithms quantita-
tively in extensive experiments. For all experiments, the models are
scaled such that their bounding box has a maximum length of 100.

7.1 Quality of the Samplings

To test the quality of the distributions generated by our sampling
algorithms, we first show that they possess high quality blue noise
characteristics on a toroidal square. We then show that the same
characteristics exist when sampling general surfaces. Finally, we

illustrate that the algorithms generate state-of-the-art results when
applied to the remeshing problem with well-shaped triangles. Being
out-of-core and efficient, to our knowledge, our algorithm is the first
to generate such high quality remeshing results directly from points
with little time and space complexity.

Sampling in R2 One of the special cases of isotropic mani-
fold sampling is sampling the plane or a bounded region in R2.
For this case, quantitative measures to assess the quality of distri-
butions exist. In Figure 9, we show a distribution example on a
toroidal square, a mean periodogram [Ulichney 1987], and power
and anisotropy plots computed using 10 different random initial dis-
tributions for our and Lloyd’s (100 iterations) method. The distri-
butions obtained by our algorithms have characteristics similar to
Lloyd’s method, with an average normalized Poisson disk radius
of ρ = 0.793. To obtain this distribution, we start with a random
sampling of n points and resample by gradient ascent for 10 itera-
tions. The width of the Gaussian kernel is set to σ = 2.5r, where
r = ρ/

√
(2
√

(3)n) with ρ = 0.75 the optimal Poisson disk ra-
dius [Lagae and Dutré 2008] to ensure there are enough points in
the support of the kernel. We can get the same distributions if we
start from a dense sampling of the domain, set a kernel width, sub-
sample and then resample using our algorithms.

Sampling Surfaces We tested our sampling algorithms on dif-
ferent models with different parameters. The parameter σp can
be tuned to get different smoothness and number of points, and
σn controls the adaptivity of the samplings. Example samplings
are shown in Figure 1, Figure 5 and Figure 8. Setting σn = ∞,
one can get uniform sampling of the surface with well-distributed
points. Lower values of σn cause the algorithms to place more sam-
ples in the curved regions and features, resulting in preservation of
details. As illustrated in Figure 10 and Figure 14, our sampling
algorithms are also resilient to noise. Our algorithms depend on
both the point set and the kernel to determine the manifold they are
working on. Hence, whether a point with noise is considered im-
portant or not depends on the smoothness level of the kernel. In
Figure 10 (top row), the input to our sampling algorithms contains
a point with high normal noise. This point is consistently kept for
smaller values of σp (middle two figures) and the corresponding
bump is present on the circle. For bigger σp (rightmost), it is no
longer selected as important by the subsampling algorithm and the
bump is eliminated.

Remeshing Isotropic distributions are used to remesh surfaces

Figure 8: Feature adaptive sampling (σp = 0.25, from left to right:
σn =∞, 1, 0.5).
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Figure 9: (a) A distribution of points, (b) mean periodogram,
and (c) power and anisotropy graphs for our algorithm (top) and
Lloyd’s algorithm (bottom).

with well-shaped triangles [Yan et al. 2009; Valette et al. 2008].
To quantitatively measure quality of our samplings, we use Tight
Cocone [Dey and Goswami 2003] to triangulate the samples and
compare triangle qualities to those generated by a fast clustering
based approach (VR) [Valette et al. 2008] and a high quality triangle
producing but slower method (YR) [Yan et al. 2009].

For comparisons, we use the same measures as used in the pa-
pers [Yan et al. 2009; Valette et al. 2008]. As can be observed
from Table 1, our algorithms run in comparable times to VR but
still provide triangles with qualities similar to YR. Owing to the
inherent smoothing of our algorithms, it also works for very noisy
cases without pre-smoothing as illustrated in Figure 14 (and the
corresponding entry in Table 1). The triangle quality is higher and
geometry is well-captured. The blue noise characteristics of the dis-
tribution of the points generated by our algorithms result in more
non-regular triangles as can be seen in Figure 13. Furthermore,
since our algorithms are out-of-core and very efficient, they can be
applied to very large datasets such as the Lucy model with 14 mil-
lion points (Table 1).

7.2 Surface Reconstruction

We test the accuracy of the reconstructions by direct comparisons
with two point-based iterative simplification algorithms, which re-
move points according to their distance to the surface (AS) [Alexa
et al. 2001], or a kernel based measure (KS) [Kitago and Gopi
2006]. Reconstructions using the initial dense point set and the
simplified point sets are compared in terms of the root mean square
(RMS) error and the Hausdorff distance. Note that we run only
our simplification algorithm and not the resampling, to ensure fair
comparisons.

We use a variety of models of different complexity, genus, and
source and a range of σp values to illustrate the quality of the re-
constructions under different conditions. The parameter σn is set
to 0.75 to provide adaptive sampling [Öztireli et al. 2009]. After
densely triangulating the implicit function we use for reconstruc-
tions, Metro tool [Cignoni et al. 2001] is run for computing the
errors. We plot the results of our tests in Table 2 and show exam-
ples of reconstructions obtained in Figure 11. Our simplification al-
gorithm results in more accurate reconstructions, with considerable
improvements, especially for complex models. In Figure 11 bottom
row, the reconstructions using the simplified point sets of AS and
KS result in extra surface parts and distortions on the surface while

Figure 10: Top: Input to our algorithms contains one point with
high normal noise (leftmost). Resamplings are shown for increas-
ing σp. Bottom: A noisy surface part and its resampling.

Model Num Method Ѳmin Ѳmin, ave Qmin Qave Ѳ < 30o Time

Owl
Ours 19.34 52.62 0.3007 0.8998 0.0012 3.37 + 6.51

13161 VR 0.61 39.19 0.0112 0.7194 6.3025 4.453
YR 37.35 54.71 0.6548 0.9371 0 319

Horse
Ours 32.52 53.01 0.5844 0.9057 0 2.25 + 4.18

8600 VR 14.76 46.24 0.3148 0.8250 0.3372 3.579
YR 37.92 54.84 0.6562 0.9389 0 290

Rabbit
Ours 35.19 53.02 0.5573 0.9054 0 2.50 + 4.65

9635 VR 10.69 44.67 0.2138 0.8036 1.1747 4.859
YR 39.04 55.09 0.6649 0.9414 0 255

Bimba
Ours 17.10 52.68 0.2664 0.9016 0.0003 1.109 + 2.61

13318 VR 0.91 37.73 0.0144 0.6993 0.0948 4.031
YR 20.13 46.17 0.3722 0.8266 0.0030 1424

Lucy 3259 Ours 13.58 51.81 0.2727 0.8915 0.2222 367.56 + 1.46
7395 Ours 11.14 51.74 0.2538 0.8906 0.3547 367.29 + 3.79

Table 1: Quantitative comparisons of the remeshing results. Tim-
ings for our method, as well as for Tight Cocone is given in the
rows for our algorithm. “Num” refers to the number of vertices in
the output mesh.

our algorithm almost exactly reproduces the original reconstruction
from all points.

7.3 Performance

Linear scanning of the input points avoids costly operations such as
finding neighbors and taking local kernel matrix inverses among all
input points. This makes our algorithms run in comparable times
to even mesh-based subsampling methods. Point based simplifica-
tion algorithms AS and KS have much larger time complexity and
become infeasible to use for large models and large σp.

The performance of our algorithms is illustrated in Figure 12. In
Figure 12 (a), total time (including kd-tree queries and disk reads)
needed to subsample models of various sizes is plotted. The com-
plexity grows linearly with the input size due to the linear scan used
in the subsampling algorithm. Figure 12 (b) illustrates the same
performance analysis for the resampling algorithm. Note that the
input to this algorithm is the output by the subsampling algorithm
and thus the number of neighbors to be considered for the kernel
matrix inversions stays approximately constant. In Figure 12 (c),
number of output points, hence σp, is changed for the subsampling
algorithm. Since we use iterative inversion, as explained in Sec-
tion 6.1 for computing our measure, the iterations are cut earlier if
σp is large and the complexity stays constant.

8 Conclusions

We presented new algorithms for the simplification and resampling
of manifolds. The algorithms depend on a measure that restricts
changes to the Laplace-Beltrami spectrum. By utilizing kernel
methods and matrix perturbation theory, we were able to derive a
local measure for efficient sampling. We then utilized this mea-
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Figure 11: Reconstructions of the Igea (top row, σp = 0.75, σn =
0.75) and Filigree (σp = 0.5, σn = 0.75) models using the full
data, and subsampled data output from different algorithms.

sure in an efficient, out-of-core and accurate simplification algo-
rithm. Using the same measure, we showed that resampling can be
achieved by simple gradient ascent on the simplified point set. The
generated samplings have high quality isotropic characteristics and
result in accurate reconstructions.

Limitations Although our algorithms are efficient and accurate,
they are greedy and thus not theoretically guaranteed to give the
optimal sampling. We believe, however, that our analysis of the
Laplace-Beltrami spectrum can be utilized for more sophisticated
algorithms as well.

Future Directions The current sampling scheme can be adapted
to settings where a function, such as texture on a surface, needs
to be faithfully reconstructed by adding new dimensions to the
space where the kernel operates. By utilizing local feature size,
smoothly degrading triangles and isotropic adaptive remeshing can
be achieved. The application of our algorithms to high dimen-
sional datasets can speed up existing methods. Local resampling
can also be supported by selecting a local patch and keeping the
patch boundaries fixed.

Sampling is ultimately related to signal processing and multires-
olution analysis. Computational harmonic analysis gives us a uni-
fied framework to perform multiresolution analysis on general man-
ifolds. We presented an effective application of it to sampling. We
believe that these and similar ideas from irregular sampling, sparse
coding, and machine learning will be useful to understand the sam-
pling problem better and to develop practical algorithms with theo-
retical guarantees.

0

20

40

60

80

0 1 2 3 4

INPUT POINTS (millions)

TI
M

E 
(s

ec
)

INPUT POINTS (millions)

0

20

40

60

0 0.1 0.2 0.3

TI
M

E 
(s

ec
)

OUTPUT POINTS (millions)

0

20

40

60

80

0 0.05 0.1 0.15 0.2

TI
M

E 
(s

ec
)

(a) (b) (c)

Figure 12: Effect of the input model size on the time complexity
of the (a) subsampling algorithm and (b) resampling algorithm.
(c) Timings for the subsampling algorithm for a fixed model with
changing output sample sizes.

VR OURSYR

Figure 13: Remeshing results for the Owl model.

INPUT YR OURS

Figure 14: Remeshing results for the Bimba model with YR and
our algorithm. Due to the inherent smoothing of our approach,
the geometric shape is well-captured while achieving high triangle
quality without pre-processing.
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ÖZTIRELI, C., ALEXA, M., AND GROSS, M. 2010. Spectral
sampling of manifolds: Extended version. Tech. Rep. 683, ETH
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SCHÖLKOPF, B., SMOLA, A., AND MÜLLER, K.-R. 1998. Non-
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