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Abstract
Vector fields are a common concept for the representation of many different kinds of flow phenomena in science
and engineering. Topology-based methods have shown their convenience for visualizing and analyzing steady flow
but a counterpart for unsteady flow is still missing. However, a lot of good and relevant work has been done aiming
at such a solution.
We give an overview of the research done on the way towards topology-based visualization of unsteady flow,
pointing out the different approaches and methodologies involved as well as their relation to each other, taking
classical (i.e. steady) vector field topology as our starting point. Particularly, we focus on Lagrangian Methods,
Space-Time Domain Approaches, Local Methods, and Stochastic and Multi-Field Approaches. Furthermore, we
illustrated our review with practical examples for the different approaches.

1. Introduction

The concept of flow plays a central role in many fields of en-
gineering. Classical application fields are, for example, the
automotive and aviation industry. However, the same con-
cepts are used in the simulation of flow in turbines of power
plants, blood flow in vessels, propagation of smoke in build-
ings, and weather simulations, just to mention a few. The vi-
sualization of data gained from the simulation/measurement
of such processes is therefore relevant for the user domain
since such visualization eases the understanding of complex
phenomena.

Topological methods for flow visualization have been
researched throughout the last decade and a specific
conference, called Topological Methods in Visualization
(TopoInVis), has been established [HHT07, HPS08].

The general setting for topological methods is more gen-
eral than described above. Namely, any vector field , inter-
preting it as the rate of change of a certain quantity, might be
visualized using such methods. Then, the vector field repre-
sents the states of a dynamical system governed by differ-

ential equations. In such a setting the evolution of a certain
point/configuration can be described mathematically as so-
lutions of the differential equation

ẋ(t) = v(x(t), t).

Because of the tight relation of this model to fluid dynamics
the vector field v is often referred to as flow. Notice, how-
ever, that the vector field needs to fulfill additional equa-
tions (Navier-Stokes) in order to represent a flow in fluid-
dynamical sense. If the vector field v does not depend on
the variable t the system is said to be autonomous, otherwise
non-autonomous. Equivalently, the expressions steady and
unsteady (or simply time-dependent) flow are used.

In the study of such flow/dynamical systems certain fea-
tures such as critical points, seperatrices and closed orbits
play an important role. In 1989, Helman and Hesselink in-
troduced these concepts to the visualization community un-
der the name of vector field topology [HH89a]. Methods for
visualizing steady flow fields, especially planar flow fields,
have achieved a high level of proficiency, while the un-
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steady case is still challenging and by no means complete
[LHZP07, PVH∗02, LHD∗04, SJWS08].

Since vector field topology (VFT) and feature extraction
build a solid base for understanding and visualizing a given
steady flow field, it is seemingly canonical to expect that
those methods, with possible extensions, may yield the same
facilities for unsteady flow.

In the remainder of this introduction we give a short
overview and attempt to structure the field. A detailed dis-
cussion with many additional references is left to the respec-
tive sections, then.

Classical vector field topology (i.e., for steady flows) seg-
ments the flow in regions where trajectories show the same
behavior when looking at the t-limits at±∞. This fact needs
special attention when taking the step from steady to un-
steady flow: in a steady field a finite number of data can be
used to determine behavior at an arbitrary instance of time.
For unsteady fields, this is not true: the information available
is usually restricted to a certain time-window. This means
that, in general, no statement about the asymptotic behav-
ior of the trajectories is possible. Visualizing time-dependent
flow essentially poses different research challenges as com-
pared to visualizing steady flow.

Despite this, the first attempts of approaching a topology-
based visualization of unsteady flow interpreted the un-
steady field as a stack of steady flow fields. This induced
the idea that a VFT-like segmentation of unsteady flow can
be achieved using the already known methods for discrete
time slices and identifying corresponding structures in sub-
sequent time steps. Methods for the topology-based visual-
ization of unsteady flow based on trajectories in individual
time steps can be classified as tracking methods (tracking in
time). In section 3 we give an overview over the of the re-
search done in this direction. The trajectories in a fixed time
step t = t0 are solutions of the following first-order ordinary
differential equation

ẋ(s) = v(x(s), t0), x(t0) = x0. (1)

These solutions are called streamlines. Notice that the inte-
gration time s is not related to the time t on which the vector
field v depends. The t-time becomes in that case a parame-
ter of the system. Even though this is no issue from a purely
mathematical point of view, the s-time still lacks physical
interpretation. Following a streamline means “freezing” the
flow at some instance of time t and integrating (along a “vir-
tual” time s) to ±∞. Only in special cases particles follow
streamlines in realistic scenarios (and usually for a while
only, if at all).

A promising approach is to investigate the behavior of
pathlines, i.e., the solutions of

ẋ(t) = v(x(t), t), x(t0) = x0. (2)

The solutions of this equation describe the theoretical path
of massless particles through the flow.

Another approach that uses the path of massless particles
is the investigation of so-called streaklines, defined as

xt(τ) = xτ(t) (3)

where xτ is the solution for the initial value problem

ẋ(s) = v(x(s),s), x(τ) = x0 (4)

evaluated at s = t. This describes mathematically the com-
mon experimental setup of injecting a marker (say dye) in
a flow at a fixed spatial location x0 for the time interval
[t0, t]. The function xt is then a parameterization of the curve
consisting of the injected particles at time t, more precisely,
xt(τ) is the position of the particle seeded at τ ∈ [t0, t] at
time t.
The concepts of path- and streakline are essentially different
from the concept of streamlines in unsteady flow. Their focus
is the behavior of one or more moving particles. Therefore
they can be classified as Lagrangian methods. We discuss
these methods in section 4. However, applied to steady flow,
which is of course a special case of unsteady flow, all three
definitions yield the same trajectories.
In the context of this view on flow scenarios, structures that
maintain their attracting (or repelling) nature over a rela-
tively long time play an important role, since they influence
all passing particles in a coherent manner. Along these lines,
a scalar measure for the local separation behavior of the flow,
the so-called finite-time Lyapunov exponents (FTLE), have
gained attention in the visualization community [Hal01a].
The notion of Lagrangian Coherent Structures (LCS) recog-
nizes that there are repeating patterns of motion in turbulent
flows [DD04]. This phenomenon of repeated, similar struc-
tures has lead to the assumption that understanding these
coherent structures will give insight into the mechanisms
of turbulence. There is no generally accepted definition of
Lagrangian coherent structures until today, but one impor-
tant notion is to identify them as the ridges of the FTLE
field [Hal02].

Recently, a mathematical framework called Feature Flow
Field has been introduced which can treat the concepts of
path- and streamlines in a unified way [TS03]. The idea be-
hind this approach is that the unsteady flow is transformed
into a higher dimensional steady flow. Then the computa-
tion of path- and streamlines reduces to the computation of
streamlines of some related vector fields. Classical vector
field topology is not applicable to these fields, however, since
they do not contain isolated critical points. Nevertheless, it
is possible to capture parts of the topological information
of the original vector field, e.g., critical points, periodic or-
bits, vortex axes, by constructing respective auxiliary vector
fields. For different tasks different vector fields are needed.
These and similar methods can be classified as space-time
domain approaches and we discuss them in more detail in
section 5.

As addressed above, the extraction of features is an im-
portant complement to VFT in the steady case (to be precise,
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Figure 1: Approaches and methods used on the way towards topology-based unsteady flow visualization and their relations.
Thematic overlap is represented by intersecting building blocks. Solid arrows represent conceptual relations and dashed arrows
methodical. The orange square collects the current available brick stones that come closest to the topology-based visualization
of unsteady flow. The numbers indicate the sections in which the respective building blocks are discussed.

the extraction of some features, e.g., critical points, is a step
in computing the topology of a steady flow). Of course, it
is desirable to extract the unsteady counterparts of the fea-
tures in steady flow. Most of the methods for feature extrac-
tion are local methods, i.e., they use point-wise information.
The actually extraction is carried out by methods also known
from image processing. In contrast to methods that involve
integration, most of these techniques can be used for un-
steady vector fields (at least to a certain degree). Currently
this methods focus mainly on vortex structures and separa-
tion and attachment lines. Local methods of that kind are
discussed in section 6.

One problem that feature extraction suffers from is that
the definition of such often involves parameter such as
thresholds or time windows (which is also true for FTLE)
or that the definition is not unanimous (e.g. as for vortices).
Often features are not detected in the actual vector field but
in a field derived from the original one and the detection of
multiple features (or various definitions of the same feature-
type) has to deal with multiple fields, consequently.

Since dealing with multiple features at once can be inter-
preted as dealing with multivariate data, the use of Interac-
tive Visual Analysis (IVA) has been suggested [BMDH07].
The idea is to combine several feature detectors in order to
investigate combinations of them. This is valuable both for
extracting those features and for understanding the param-

eters that determine behavior that might be intuitively clear
but not precisely defined.

Another opportunity offered by IVA is to detect correla-
tions between different feature definitions. Furthermore, this
method offers the possibility to meet the needs of the user
domain more flexibly. An engineer, for instance, might be
interested in additional properties (e.g., pressure, tempera-
ture, ...) of the medium, apart from the actual flow. On the
other hand, engineers may use different models for the same
situation, according to different tasks. IVA gives the op-
portunity to interactively investigate the relations between
different variables/models using multiple views and link-
ing+brushing.

One prerequisite regarding feature extraction is that the
user has to be aware of which feature should be searched
for. Recently, information theory based approaches were
presented that are capable of detecting regions in which
something extraordinary is likely to happen automati-
cally [JWSK07].

Finally, one may be interested in displaying both flow
topology and features. Unfortunately, it is known that seper-
atrices may cross features (e.g. vortices) and therefore split
them. Stream- and later pathline predicates offer a possi-
bility to combine several feature detectors and flow topol-
ogy in order to refine the latter, while keeping features in-
tact [SS07, SGSM08].
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Figure 2: Types of first-order critical points in 2D

IVA and the above mentioned methods addressing similar
problematics will be discussed in section 7.

In accordance with this brief overview of the building
blocks available on the way towards topology-based visu-
alization of unsteady flow, the rest of the paper is structured
as following: (2) Classical Vector Field Topology, (3) Track-
ing of Topology, (4) Lagrangian methods, (5) Space-Time
Domain Approaches, (6) Local Methods, (7) Stochastic and
Multi-Field Approaches, and (8) Discussion and Conclu-
sions.

Figure 1 gives a graphical overview of the classes of ap-
proaches and methods and how they are related to each other
as well as a graphical table of content of this article.

2. Classical Vector Field Topology

This section gives a brief overview on both historical and
theoretical aspects of classical, i.e, steady, vector field topol-
ogy as well as its application in visualization and further ap-
plications.

2.1. History

The theory of dynamical systems goes back to the 19th cen-
tury work of Henri Poincaré [Poi92]. A modern introduction
can be found e.g. in Guckenheimer and Holmes [GH83].
In our context the case of deterministic, continuous, and
autonomous dynamical systems is most interesting, since
such systems can be used to formulate velocity fields of a
steady fluid flow. Many patterns in a flow can be described
and analyzed by concepts from dynamical systems such as
critical points, separatrices and periodic orbits. Perry and
Chong [PC87] gave a comprehensive overview of such 2D
and 3D flow patterns. Helman and Hesselink introduced
these methods to the scientific visualization community, and
under used them the notion of vector field topology for the
visualization of computed and measured velocity fields, first
in 2D [HH89b] and later in 3D [HH91]. Vector field topol-
ogy was further popularized both by Asimov’s excellent tu-
torial [Asi93] and by Globus et al.’s TOPO module [GLL91]
for NASA’s FAST visualization software. Over two decades,
topologically-based flow visualization has been an active re-
search topic. A state-of-the-art report [LHZP07] was pub-
lished in 2007.

2.2. Background

Let v(x) denote a steady velocity field. Then a stream-
line, i.e., the solution of the initial value problem given
in equation (1), exists uniquely if v(x) is Lipschitz-
continuous [GH83], which is the case for discrete data inter-
polated with any of the popular schemes. Vector field topol-
ogy now deals with the two kinds of singular streamlines,
namely stationary points and periodic orbits. These singu-
larities are of particular interest if they are isolated. A suffi-
cient condition for an isolated stationary point, called a criti-
cal point, is that the velocity gradient tensor is regular at this
point (while its velocity is vanishing). Similarly, a periodic
orbit is isolated if the gradient tensor of the Poincaré map
is regular [GH83]. For these first-order singularities, a type
classification can be made by analyzing the eigenvalues of
the gradient tensor. For 2D vector fields, there are the five
possible types saddle, node source, node sink, focus source
and focus sink, plus transitional types which are structurally
unstable, see Fig. 2. In the special case of a divergence-free
2D vector field, there are no sources or sinks, but instead the
center is a structurally stable type.

Type classifications exist also for first-order critical points
in 3D fields and for first-order periodic orbits in 3D
fields [Asi93]. Finally, higher-order singularities can be fur-
ther analyzed. Depending on higher-order derivatives, the
singularity (critical point or periodic orbit) can still be an
isolated one. A classification of higher-order critical points
in 2D was given by Firby and Gardiner [FG82]. Scheuer-
mann et al. [SHK∗97] introduced a visualization of higher-
order critical points.

The topological skeleton is obtained by computing all sin-
gularities plus their lower-dimensional invariant manifolds.
In 2D fields only the saddle type critical points have 1D
invariant manifolds. These are the so-called separatrices,
i.e. the streamlines converging in either positive or negative
time to a saddle point. As the topological skeleton contains
most of the topological information of a (steady) vector field,
it is a concise characterization of the vector field. The separa-
trices divide regions of different flow behavior and they often
have physical relevance. In 3D velocity fields, such topolog-
ical structures can indicate phenomena like flow separation
or vortex axes.

2.3. Visualization methods based on vector field
topology

A considerable amount of research has been done to extract,
analyze, modify and visualize the topology of steady vec-
tor fields. Several approaches can be used to extract criti-
cal points. In piecewise linear fields, the zeros can be com-
puted explicitly. In more general settings, one might use a
Newton-Raphson approach [Kel03]. An octree-like method
is presented by Mann et al. [MR02]: they compute the index
of each cell and a non-zero index triggers a recursive sub-
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(a) (b)

Figure 3: (a) Periodic orbits detected in a turbulent 2D flow field (image courtesy of Wischgoll et al. [WS01]); (b) Visualization
of saddle connectors in a flow behind a circular cylinder (image courtesy of Theisel et al. [TWHS03]).

division. Trotts et al. [TKH00] introduce the notion of criti-
cal points at infinity to find new separatrices. The curvature
of streamlines in the proximity of critical points has been
studied by Theisel and Weinkauf [The95,WT02] for 2D and
3D vector fields. Mahrous et al. [MBS∗04] present an algo-
rithm to extract separation surfaces to segment topologically
steady 3D flow. They do this sampling the vector field by
streamlines, deriving a segmented data set from the original
field and using this data set for the construction of the sepa-
ration surfaces. In a later paper Mahrous et al. present an im-
proved algorithm [MBHJ03]. Regions of different flow be-
havior on the boundary of 2D vector fields as well as the cor-
responding separatrices have been considered by de Leeuw
and van Liere [dLvL99a] and Scheuermann et al. [SHJK00].

A first approach to detecting periodic orbits was given by
Wischgoll and Scheuermann [WS01] which uses the under-
lying grid structure of a piecewise linear vector field: each
grid cell is analyzed concerning the re-entering behavior of
streamlines that start at its boundaries. Figure 3(a) shows re-
sults obtained by this method. The method was extended to
3D [WS02] by the same authors.

Peikert and Sadlo discuss peroidic orbits in 3D vector
fields [PS07b]. Li et al. [LVRL06] discuss how to repre-
sent higher-order critical points on triangular surfaces using
a carefully chosen triangulation and interpolation. Scheuer-
mann et al. [SHK∗97, SKMR98] explained visualization
approaches for planar flows. An algorithm for computing
2D invariant manifolds of singularities in 3D vector fields
was presented by Krauskopf and Osinga [KO99] where the
surface mesh is organized in geodesic circles. Theisel et
al. [TWHS03] proposed to display only pairwise intersec-
tions of such streamsurfaces, known as saddle connectors or
heteroclinic orbits. Figure 3(a) shows saddle connectors in a
flow behind circular cylinder. Peikert and Sadlo [PS09] pre-
sented a streamsurface algorithm that robustly handles start-
ing from and converging to singularities.

Separation and attachment lines play an important role
considering the flow around and on bodies in 3D flow fields.
Kenwright [Ken98] and Kenwright et al. [KHL99] present
methods to extract attachment and separation lines. Wiebel

et al. [WTS09] present a robust method to extract separation
surfaces from these lines using topology extraction in cross
sections of the flow.

2.4. Further applications of topological features

As described by Theisel et al. [TRW07] topological features
of vector fields have not only proved to be a valuable visual-
ization tool, they can also be used for other tasks in process-
ing vector fields.

Compressing vector fields To simplify and compress large
and complex flow data sets, methods based on topologi-
cal concepts allow for more efficient computational han-
dling and transmission. Compression in this context means
to reduce the amount of data while maintaining impor-
tant structures. Lodha et al. [LRR00, LFR03] introduce a
compression technique for 2D vector fields which prohibits
strong changes of location and Jacobian matrix of the critical
points. Theisel et al. [TRS03b] present an approach which
guarantees that the topology of original and compressed vec-
tor field coincides both for critical points and for the connec-
tivity of the separatrices. It is shown that even under these
strong conditions high compression ratios for vector fields
with complex topologies are achieved.

Topological simplification of vector fields The topological
skeleton of a vector field may become very complex due to
the presence of noise. The reduction of unimportant topo-
logical features can be accomplished by simplifying the re-
sulting topological structure. Besides smoothing of the vec-
tor field before extracting the topology as described by De
Leeuw et al. [dLvL99b], more involved techniques start with
the original topological skeleton and repeatedly apply lo-
cal modifications of the skeleton and/or the underlying vec-
tor field in order to remove unimportant critical points. De
Leeuw and van Liere [dLvL99a] measure the importance
of a critical point by computing the area from which the
flow ends in forward or backward integration. Based on this
area metric, the unimportant critical points are repeatedly
collapsed to more important critical points in the neighbor-
hood. The system described by De Leeuw et al. [dLvL99b]
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finds couples of first order critical points by considering dis-
tance and connectivity of them. Then less important critical
points are pairwise collapsed. Tricoche et al. [TSH01a] use a
similar approach but provide a way of consistently updating
the underlying vector field. Further the simplification of the
topology of a 2D vector field is accomplished by replacing
clusters of first order critical points with a higher order criti-
cal point. Weinkauf et al. [WTS∗05] extend this to 3D vector
fields. Theisel et al. [TRS03a] solve the coupling problem of
critical points by a feature flow field approach which will be
explained in section 5.2 in further detail.

Topological comparison of vector fields The definition of
useful metrics on vector fields plays a crucial role in the ma-
jority of applications mentioned above. The first approaches
on metrics (distance measures) of vector fields as proposed
by Heckel et al. [HWHJ99] and Telea et al. [TvW99] con-
sider local deviations of direction and magnitude of the flow
vectors in a certain number of sample points. These distance
functions give a fast comparison of the vector field but do not
take any structural information of the vector fields into con-
sideration. A first approach to define a topology based dis-
tance function was given by Lavin et al. [LBH98]. Given two
vector fields v1 and v2, all critical points are extracted and
coupled. Then the distance of the vector fields is obtained
as sum of the distances of the corresponding critical points
in v1 and v2. To compute the distance between two critical
points, a number of approaches exist [LBH98, TW02]. To
couple the points, Theisel et al. [TRS03c] proposes to use
feature flow fields. A general demonstration of this compar-
ison on real data sets is given by the same authors [TRW07].

Constructing vector fields Besides using a simulation
or measurement process for data acquisition the vector
field data can also be obtained by construction. Theisel et
al. [The02] present an approach oriented at methods from the
CAGD (Computer Aided Geometric Design) context. First,
a topological skeleton of a vector field is constructed by a
number of control polygons. Second, a piecewise linear vec-
tor field of exactly the specified topology is automatically
created. An approach for constructing 3D vector fields is
presented by Weinkauf et al. [WTHS04]. There, a number
of specified control polygons is used to determine location
and characterization of first or higher order critical points
and the saddle connectors. The resulting skeleton is used to
construct a piecewise linear vector field. In application to
3D surfaces topology-based construction and editing of vec-
tor fields can be used to enrich surfaces with additional in-
formation. Thus vector fields have been used for generating
non-photorealistic visualizations, like painterly renderings
or pen-and-ink visualizations, and remeshing of the under-
lying surface [PZ07]. Zhang et al. [ZHT07] present a system
to interactively create and edit 2D static vector field which
can be applied to the limited domain of a 3D surfaces. Re-
cently topological methods have been successfully applied

to extract salient features on discreet 3D surfaces as shown
by Weinkauf et al. [WG09].

3. First Approaches towards Unsteady Flow Fields:
Tracking of Topology

First attempt to cope with time-dependent velocity fields
where done by looking at the instantaneouse velocity fields.
Taking this as starting point some extensions to classical
vector field topology are available. However, newer research
showes clearly the limitations of this aproach.

3.1. Tracking of singularities

Instantaneous topology extraction can be combined with
tracking of the singularities over time. Tricoche et
al. [TSH01b, TWSH02] present a method for tracking the
location of critical points and detecting local bifurcations
such as fold bifurcations and Hopf bifurcations. This ap-
proach works on a piecewise linear 2D vector field and com-
putes and connects the critical points on the faces of a prism
cell structure, which is constructed from the underlying tri-
angular grid. An extension to 3D has been given by Garth
et al. [GTS04] together with a visualization of the paths in
space-time of the critical points. Wischgoll et al. [WSH01]
track closed streamlines over time by applying a contouring
and connecting approach. At each time step closed stream-
lines are detected independently of each other, then the cor-
responding lines in adjacent time steps are connected.

3.2. Deficiency of vector field topology for unsteady flow

There are certain extensions of vector field topology to time
dependent velocity fields. An obvious approach is to look
at the instantaneous velocity field. However, streamlines do
not capture the temporal change of the flow. In the context
of experimental flow visualization researchers noted very
early that a correct frame of reference is important to extract
meaningful structures. Perry and Tan [PT84] suggested to
extract patterns as ’seen’ by an observer who is moving with
the eddies. They used correlation technique to compute the
velocity of an eddy and found the resulting measurements
to be quasi-steady. Later, Perry and Chong [PC94] stated
clearly that topological information is only meaningful in a
Galilean reference frame in which the velocity field is nearly
steady. This implies that vector field topology is not applica-
ble if such a frame does not exist.

While known in theory, practice largely ignored this prob-
lem until when Shadden et al. [SLM05] gave with the “dou-
ble gyre” an example of an unsteady flow for which a sad-
dle type critical point substantially deviates from the actual
point of flow separation. Recently, Wiebel et al. [WCW∗09]
demonstrated the failure of vector field topology to find
moving attractors in simulation data of a rotating liquid sus-
pension. They suggested a procedural solution based on the
evolution of density of virtual particles seeded in the flow.
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critical point
FTLE ridge

(a) (b) (c)separation repulsion& FTLE ridges

Figure 4: Applications of FTLE to visualization. (a) In the double gyre example the critical point disjunct to the FTLE ridge
seprarting different regimes of the flow (image created following Shadden et al. [SDM06]). (b) Volume rendering of the FTLE
field shows the regions of locally maximal attracting and repelling behavior (image courtesy of Garth et al. [GGTH07]).
(c) Extraction of ridges from the FTLE field allows additional processing and filtering to concentrate on the salient features of
the flow (image courtesy of Sadlo et al. [SP07a]).

4. Lagrangian Methods

In the Lagrangian point of view the fluid is described by the
motion of its particles. Since the analysis is based on trajec-
tories of one or multiple particles such methods are inher-
ently suited for unsteady flows.

4.1. The Finite-Time Lyapunov Exponent

The finite-time Lyapunov exponent (FTLE), by some
authors referred to as direct Lyapunov exponent
(DLE) [Hal01b], is a measure for the stretching of an
infinitesimal neighborhood along a finite segment of a flow
trajectory.

More formally, let v(x, t) denote the velocity field. Then,
a trajectory x(t) starting from x0 at time t0 is the solution
of an initial value problem (see also Equation 2). The set
of all trajectories provide the flow map x(x0, t0, t) that maps
the position at time t on the trajectory started at time t0 from
x0. By computing the flow map gradient and left-multiplying
it with its transpose, the (right) Cauchy-Green deformation
tensor field [Mas99] is obtained as

Ct
t0(x0) =

[
∂x(x0, t0, t)

∂x0

]T [
∂x(x0, t0, t)

∂x0

]
. (5)

From this, the (maximum) FTLE is defined as

FTLEt
t0(x0) =

1
2(t− t0)

lnλmax
(
Ct

t0(x0)
)
, (6)

where λmax(M) denotes the maximum eigenvalue of
M [Hal01b].

In the limit t → t0 the FTLE is the maximum principal
rate-of-strain, i.e. the maximum eigenvalue of the rate-of-
strain tensor

S = [∇v(x0, t0)]
T [∇v(x0, t0)] . (7)

In the limit t→∞, the FTLE is the (standard) Lyapunov

exponent which is independent also of t0. Discovered by A.
M. Lyapunov in the 1890’s, the Lyapunov exponents be-
came popular in the 1970’s for the analysis of chaos and
predictability in dynamical systems. The finite-time variant
was used [GSO87, YN93] originally also for predictability
of systems, especially for atmospheric models. In a seminal
paper [Hal01a], Haller applied FTLE to velocity fields of
fluid flow and revealed their relationship to the Lagrangian
coherent structures (LCS), which can provide the informa-
tion on flow separation similar to the separatrices of vec-
tor field topology, however often also correctly for strongly
time-dependent flow. In his subsequent paper [Hal02], he
identified the ridges of the FTLE as LCS. In Figure 4 we
show some applications of FTLE.

Shadden et al. [SLM05] applied FTLE to the “double
gyre” example (where vector field topology fails) and var-
ious other example flow fields in 2D. They showed visually
that particles seeded near the FTLE ridges do not cross them.
Another counter-example for vector field topology was sug-
gested by Wiebel et al. [WCW∗09] where the FTLE peak
was shown deviate much less from the observed (moving)
attractor than the topological sink.

Garth et al. presented an algorithm for FTLE computa-
tion in 2D transient flow [GLT∗07]. They proposed to ap-
proximate 3D FTLE by 2D FTLE computed in the orthog-
onal space of the velocity vector [GGTH07]. The computa-
tion of ridges is avoided by using a direct volume render-
ing approach. With a variation of this technique Garth et
al. [GWT∗08] computed 2D FTLE on offset surfaces of solid
boundaries resulting in a visualization of flow separation and
flow reattachment. Sadlo et al. addressed the problems of ef-
ficient computation of height ridges of FTLE [SP07a] and
of tracking FTLE ridges over time by using a grid advection
technique [SP09].

Comparisons of FTLE with other criteria in terms of suit-
ability for visualization were made by several authors. Shad-

page 7 of 18



A. Pobitzer et al. / Topology-based Unsteady Flow Visualization STAR

(a) (b)

Figure 5: Analysis of a vortex ring. (a) Topological methods can benefit from the infinite integration time available and give
detailed insight into regions of stability and folding structures of the flow (image courtesy of Peikert et al. [PS07a]). (b) Even
though much less integration time is available the FTLE field can give insight into the structure of the vortex ring (image
courtesy of Shadden et al. [SDM06]).

den et al. [SDM06] showed that FTLE is able to reveal the
fine lobes of a chaotic vortex ring while producing tempo-
rally more consistent results than an approach based on vec-
tor field topology. In Figure 5 we compare VFT and FTLE.
In (a) we can see that the possibility to integrate streamlines
into a chaotic region of the flow for very long integration
times allows to extract sharply defined regions of stability.
In Figure 5(b) we can see that the restriction to a finite time
domain is alleviated using FTLE to visualize the structure of
the vortex ring.

In recent studies by Green et al. [GRH07] and Shi et
al. [STW∗08] FTLE is validated against other indicators of
LCS in a number of analytical and numerical flow fields, and
FTLE was found to generate more detail. In a study done
by Sadlo et al. [SP07b], FTLE was shown to extract flow
separation structures, but not the axes or centers of rotating
flow. In comparison with vector field topology, this means
that FTLE provides only partial information. In the example
of a spiral saddle critical point, where vector field topology
would give a 1D and a 2D invariant manifold that can be in-
terpreted as a vortex axis and a separation surface, only the
latter is reliably detected by FTLE.

Another current limitation of FTLE is that it requires the
choice of a time window the effect of which has not been
studied sufficiently. Also, the result is influenced by the def-
inition of a ridge, given the choice of height ridges, water-
sheds, maximal curvature ridges [Ebe96] and others.

4.2. Other Lagrangian Feature Detectors

While FTLE in addition to its advantages it also has the
aforementioned limitation to inform only about flow separa-
tion, other calculations can be performed in the Lagrangian
frame that reveal other types of flow features. Basically, by
computing the Cauchy-Green deformation tensor from the
flow map gradient, the rotational part is discarded. However,
to detect a vortex, this information is needed. Therefore, ei-

ther the flow map gradient must be used in a different way or
a different type of temporal integration must be performed.

Cucitore et al.’s non-local vortex detector [CQB99] uses
a reference frame that moves with a particle to be tested. In
this frame, the path of a neighbor particle is calculated for
a certain time window. Then, the distance of the end point
from the origin is divided by the arc length of the path. Low
values of this ratio indicate a vortex center. Haller proposed
another vortex detector Mz [Hal05] that is objective, i.e. in-
variant not only under Galilean transforms, but also for ro-
tating frames of reference. Finally, any local vortex detector
designed for steady flow can be adapted to unsteady flow
by applying a Lagrangian smoothing, i.e. by computing a
weighted average of the quantity obtained for the same par-
ticle at several time steps. Lagrangian smoothing has been
shown to be better then a purely steady analysis by Shi et
al. [STH∗07] and by Fuchs et al. [FPS∗08].

Recently, several authors brought up the idea to adapt the
definitions underlying vector field topology for unsteady ve-
locity fields. Kasten et al. [KHNH09] propose minima of the
acceleration magnitude, after a temporal smoothing in the
Lagrangian frame, as a replacement for critical points in un-
steady velocity fields.

5. Space-Time Domain Approaches

In order to be able to handle the problem of detecting fea-
tures in time dependent data sets one way is to lift this
problem into a higher dimension by interpreting the time
as an additional axis and thereby assume the steady case
again. This definition allows a clear definition of pathlines by
means of streamlines in the lifted higher-dimensional case.

5.1. Streamlines and Pathlines

When dealing with a time-dependent vector field v(x, t), we
usually are interested in its spatiotemporal characteristics.
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(a) Stream lines of s correspond to
the stream lines in v.

(b) Stream lines of p correspond to
the path lines in v.

(c) Streamline oriented topology (d) Detail view with a saddle con-
nection and a fold bifurcation

Figure 6: Streamlines (a) and pathlines (b) of a simple 2D time-dependent vector field obtained by linear interpolation of two
steady 2D vector fields and shown as illuminated field lines. The extracted and visualized topological skeleton (c) and detailed
structures (d) of the cavity data set (image courtesy of Theisel et al. [TWHS05]).

As discussed in the introduction, several concepts can be
used to explore those characteristics. In a specified space-
time point (x0, t0) ∈ D we can start a streamline (cf. eq.(1))
or a pathline. The defining ODE system (2) can be rewrit-
ten as an autonomous system at the expense of an increase
in dimension by one, if time is included as an explicit state
variable:

d
dt

(
x
t

)
=
(

v(x(t), t)
1

)
,

(
x
t

)
(0) =

(
x0
t0

)
In this formulation space and time are dealt with on equal
footing – facilitating the analysis of spatio-temporal fea-
tures. Pathlines of the original vector field v in ordinary
space now appear as streamlines of the vector field

p(x, t) =
(

v(x, t)
1

)
(8)

in space-time. To treat streamlines of v, one may simply use

s(x, t) =
(

v(x, t)
0

)
. (9)

This is valid for arbitrary space dimensions.

Figure 6 illustrates s and p for a simple example vector
field v. It is obtained by a linear interpolation over time of
two bilinear vector fields.

Now the problem of finding a streamline or pathline ori-
ented topology is reduced to finding the topological skele-
tons of s and p. Unfortunately, neither for s nor for p the
classical vector field topology extraction techniques for 3D
vector fields are applicable: s consists of critical lines (i.e.,
for every critical point x∗ of the original vector field v any
point (x∗, t) in the time-space domain will become a non-
isolated critical point of s), while p does not have any critical
points at all.

5.2. Feature Flow Fields

In the feature flow field (FFF) approach [TS03], a specially
designed vector field in the 4D space-time domain captures
parts of the topological information (critical points, periodic
orbits, vortex axes) in its temporal evolution. Consider an
arbitrary point x known to be part of a feature in a (scalar,
vector, or tensor) field. A feature flow field f is a well-defined
vector field at x pointing into the direction where the feature
moves to. Thus, starting a streamline integration of f at x
yields a curve where all points on this curve are part of the
same feature as x.

Feature flow fields are commonly used with local features,
which can be described by a local analysis of the underlying
field and possibly its derivatives. Here, f can usually be de-
scribed by an explicit formula. In the 2D case the underlying
vector field is given as follows:

v(x,y, t) =
(

u(x,y, t)
v(x,y, t)

)
(10)

Using this description the direction of maximal change of the
u and v-component of v is given by the gradients grad(u) and
grad(v). In the plane perpendicular to grad(u) the u compo-
nent remains constant in a first order approximation of v.
A similar statement can be made for v. Thus, the only di-
rection in which u and v remain constant is the intersection
of the perpendicular planes denoted by the cross product of
grad(u) and grad(v):

f(x,y, t) = grad(u)×grad(v) =

 det(vy,vt)
det(vt ,vx)
det(vx,vy)

 (11)

In contrast to this, a FFF for a global feature can only be
given in an implicit manner, since it can neither be decided
locally whether a point belongs to a feature nor into which
direction the feature evolves. Instead, the FFF approach has
to be tightly coupled with a global feature detection strategy
in order to assess global features.
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Tracking features in time-dependent fields is one of the
main applications of feature flow fields [TS03, TWHS04,
TWHS05]. The temporal evolution of the features of v is de-
scribed by the streamlines of f. In fact, tracking features over
time is now carried out by tracing streamlines. The location
of a feature at a certain time ti can be obtained by intersecting
the streamlines with the time plane ti. Integrating the stream-
lines of FFF in forward direction does not necessarily mean
to move forward in time. In general, those directions are un-
related and the direction in time may even change along the
same streamline. Those changes are always related to special
events, where multiple critical points merge, split up or van-
ish within the underlying vector field. Hence, FFF provides
a tool to localize, characterize and classify bifurcations.

Besides tracking, FFF have been used for a variety of re-
lated problems. Those include topological simplification and
comparison of vector fields based on critical point track-
ing [TRS03b], extraction of vortex core line defined as
ridges/valleys of Galilean invariant quantities [SWH05], ex-
traction and tracking of vortex core lines defined as cen-
ters of swirling motion [TSW∗05], extraction of topological
lines in tensor fields [ZP04,ZPP05], and identification of pe-
riodic phenomena from insufficiently time-resolved data sets
measured using particle image velocimetry [DLBB07].

6. Local Methods

Features such as edges or ridges [Har83, EGM∗94, Lin98]
of images can be extracted by a type of methods that are
local methods in the sense that they work on point-wise in-
formation, including derivatives. These methods carry over
naturally from image data to scalar field data as they occur
in scientific visualization problems. Height ridge extraction
has been applied to pressure data by Miura and Kida [MK97]
and to vorticity magnitude by Strawn et al. [SKA98], both
times for finding vortex core lines. Ridge extraction from
FTLE data was proposed by Shadden et al. [SLM05] for
finding Lagrangian coherent structures.

For the visualization of vector fields such as velocity
data, adaptations or generalizations of these methods can be
used. Such techniques exist for the extraction of separation
and reattachment lines [KHL99], vortex core lines [LDS90,
SH95, BS95, MK97, RP98]. Some of these vortex core line
methods involve additional physical quantities, in particular
the pressure gradient [BS95,MK97], but the remaining ones,
such as the classical methods by Levy et al. [LDS90] and by
Sujudi and Haimes [SH95] are based solely on the velocity
field and its derivatives.

Many of these structures can be expressed with a
unifying formalism, called the parallel vectors operator
(PVO) [PR99]. The PVO concept is not restricted to line-
like features, but can be extended to surface-like fea-
tures [TSW∗05]. For the case of height ridges, simplified
extraction methods were recently proposed for arbitrary di-

mensions, together with a new class of filters for the filtering
of raw features [PS08].

In contrast to integration-based methods, local methods
are comparably little affected by the unsteadiness of the ve-
locity field. Therefore, most of the mentioned methods are
directly applicable to unsteady flow. An exception is the
recent extension of the vortex core line detector of Sujudi
and Haimes to unsteady flow [WST07,FPH∗08]. The reason
for this was that the Sujudi and Haimes method can be re-
interpreted as an operation on the acceleration field. If this is
computed from a given unsteady velocity field, it requires a
temporal derivative term, which is not needed in the steady
case.

The general approach of defining and extracting features
based on local criteria for the velocity field and its deriva-
tives is a powerful concept, due to its mathematically rig-
orous formulations and the simple algorithms derived from
them. At first glance, it may look wrong to describe global
structures of a vector field by local operators. In fact, the
different behavior of height ridges and watersheds in im-
age data led to a lively dispute [KvD93, Ebe96] about the
correctness of local vs. global methods. However, while in
steady flow one of the most interesting topological structure,
the separatrix, can be computed only using global methods,
there is no reason to assume that this applies to unsteady flow
as well. In a related context, Ginoux and Rossetto [GR06]
showed that in 2D and 3D slow-fast autonomous dynami-
cal systems, the slow manifold can be computed by finding
zeros of curvature or torsion, resp., of the local trajectory. Fi-
nally, local methods can be combined with integration-based
methods. An example is FTLE computation which leads to
a scalar field and which has to be post-processed if sharp
structures, such as height ridges, are needed.

Although the problem of detecting vortices usually is
addressed using local methods as described above, they
are methods that use a geometric approach. Sadarjoen and
Post [SP99] suggest two methods detecting vortices in
steady 2D flow fields detecting clusters of the osculating
circle centers and streamlines with winding number 2π and
relatively close start and end point. The latter method has
been extended to 3D by Reinders et al. [RSVP02]. Petz et
al. [PKPH09] propose a new criterion to characterize 2D vor-
tex regions. In order to do so, they detect and cluster loops
that intersect the underlying flow at a constant angle. Their
algorithm is parameter-free and is not restricted to a certain
type of geometry (e.g. star domains or convex domains).

Figure 7 shows visualizations of vortical flow using local
(7(b)) and non-local (7(a)) detectors.

7. Stochastic and Multi-Field Approaches

Rarely the user is just interested in one aspect (i.e., one sin-
gle feature type) of a flow field. It is more common to look
at multiple features, features in combination with additional
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(a) (b)

Figure 7: (a) Flow past a tapered cylinder visualized using a non-local vortex detector (image courtesy of Reinders et
al. [RSVP02]); (b) Visualization of the core of swirling particle motion in the Hurricane Isabel data set (image courtesy of
Weinkauf et al. [WST07]).

measures and/or multiple definitions of the same feature at
once to get an understanding of the underlying field. Re-
cently, a number of new approaches and methods have been
introduced in order to take into account these requirements.

7.1. Interactive Visual Analysis

As the amount and complexity of data sets grows, auto-
matic analysis methods are often not sufficient any more.
In order to effectively cope with such data sets, interac-
tive visual analysis (IVA) tries to balance human cogni-
tion and automatic analysis. The power of human percep-
tion and cognition is used to guide the analysis. The IVA
approach provides an interactive discovery framework. It
helps the user in getting insight, in understanding the data
as well as complex, often hidden, correlations between cer-
tain data dimensions. The visual information-seeking mantra
– overview first, zoom in, details on demand – as defined
by Shneiderman [Shn96], summarizes the main idea. Coor-
dinated multiple views [Rob07] are often used in this do-
main [MGJH08] as a proven concept. The main idea is to
depict multiple dimensions using multiple views and to al-
low the user to interactively select (brush) a subset of data
in one view and all corresponding data items in all linked
views will be highlighted as well [MW95, DGH03]. One of
the first examples of linking and brushing with different vi-
sualization approaches in different views is a system called
WEAVE [GRW∗00], which was used to interactively ana-
lyze and visualize simulated data of a human heart applica-
tion using focus+context visualization [Hau03]. IVA is used
in many domains [KMSZ06]. In the following, however, we
will focus on engineering and scientific applications.

Doleisch et al. have developed a system called SimVis for
interactive feature specification and localization in 3D flow
data [Dol07, DMG∗05, DMH04, LGD∗05]. They use simple
2D linked views, such as scatter plots or histograms, for the
specification of flow features. Linked 3D views provide spa-
tial information and advanced flow visualization techniques.
Complex features can be described by composite brushing.

The feature definitions are expressed in an XML-based fea-
ture definition language and are persistent across analysis
sessions. The SimVis system has been used to analyze flows
from numerous applications, such as flow through a catalytic
converter, flow around a car, cooling jacket flows, etc.

Another approach deals with the parametrization of path-
lines in order to understand flow. The main idea is to com-
pute various attributes from pathlines in order to understand
the flow itself. Shi et al. [STH∗07] compute scalar and time
series attributes of pathlines, such as: winding angle, Lya-
punov exponent, direction vector, etc., and then use coordi-
nated multiple views in order to understand the flow behav-
ior.
Figure 8(a) shows their interface while analyzing a data set.

Bürger et al. [BMDH07] have computed several local fea-
ture detectors of the same flow and used IVA to compare
them. In addition other flow attributes (such as pressure, ...)
were taken into account as well. In this way it can be intu-
itively decided which automatic method gives more accurate
results in certain areas or time intervals. Such an approach
enhances the credibility and combines the advantages of sev-
eral detectors in an interactive visual analysis system.

IVA is not a competitor or an alternative to the detectors
described before. It has to be used in parallel. It offers great
potential in the exploratory phase, during hypothesis gener-
ation. The flow segmentation is not an isolated process, it
is part of a larger work flow. Domain experts analyzing the
flow have to choose detectors, and IVA can help in deciding
if detectors are applicable, if a detector functions in partic-
ular case. If sampling is too coarse maybe some detectors
do not function, for example. Domain experts have to eval-
uate multiple detectors. Engineers, for example, compute a
vortex detector first, and then check if this is an area of low
pressure, as well. The analysis can be refined for areas where
this holds, and can be skipped for other areas. IVA, with its
multiple views, intuitive interfaces and quick selection pos-
sibilities, offers a useful tool for such complex task. IVA can
also help to improve robustness of detectors. A filtering step
is almost always necessary after a detector is evaluated. If
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(a) (b)

Figure 8: (a) Pathlines with small Lyaponov exponents in a flow behind a circular cylinder. The region to display is selected
in the histogram (upper left window) the corresponding pathlines (upper right display) and their seeding points (lower right
display) are displayed (image courtesy of Shi et al. [STH∗07]); (b) Comparison of the visualization of a flow around a cuboid
using the standard λ2-criterion (left) and local statistical complexity (right) (image courtesy of Jänicke et al. [JBTS08]).

we allow smooth brushing [DH01], a method which allows
non-strict brush boundaries, local characteristics of detectors
can be examined much easier. Hauser and Mlejnek [HM03]
showed how similar approach can be efficiently applied to
isosurfaces in the analysis of flows in a catalytic converter.

IVA is certainly not another flow segmentation method,
but rather integrative approach which helps domain experts
to understand detectors and flow behavior. It has a great po-
tential and is increasingly used in order to efficiently com-
bine various approaches and integrate them in the engineers’
work flow.

7.2. Fuzzy Feature Detectors

While IVA handles multi-field structures (induced by multi-
ple features, multiple definition of features and/or additional
quantities) inducing multiple views and linking+brushing,
other attempts have been made to address problems related
to feature extraction and visualization in fashion that corre-
sponds more to the classical methods in flow visualization
with respect to their outputs.

One of the drawbacks of feature extracting methods is that
the user has to be aware of the type of feature which should
be extracted. Additionally, the feature one is looking for may
not be defined unanimously (e.g. votices). In order to address
this problem, Jänicke et al. [JBTS08] recently presented an
improvement of the algorithm of Jänicke et al. [JWSK07]
for an automatic extraction and visualization of regions of
interest in 3D unsteady multi-flow. The authors detect space-
time points that have high probability to develop into un-
likely in future using a statistics-based algorithm. As a mea-
sure for the unexpectedness of the value at a point they pro-
pose local statistical complexity, which is, roughly speaking,
the amount of information needed to predict the future of a
space-time point.
Figure 8(b) shows a visualization of a flow around a cuboid
obtained by this method.

Salzbrunn and Scheuermann suggest the use of stream-
line predicates in order to combine flow topology with fea-

ture extraction [SS07]. The main idea is to decompose the
domain into disjoint regions with coherent streamline be-
havior like flow topology does, adding other distinctions
than asymptotic behavior. This addresses, e.g., the problem
that some features (e.g. voritces) can be split up by usual
flow topology. Mathematically speaking, streamline predi-
cates are Boolean maps on the set of all steamlines with dis-
joint support. Flow topology is then a special case of seg-
mentation gained through streamline predicates, called flow
structure. Classical feature detectors can be used to refine
flow topology using streamline predicates.
The same ideas are applied to unsteady flow by Salzbrunn
et al. [SGSM08]. In analogy to the steady case the authors
introduce the notation of pathline predicates. Additionally,
the authors present a pathline placement strategy in order
to combine the structural overview provided by the partition
gained by means of pathline predicates with the dynamical
insight into the flow provided by tracing single particles.

In engineering context feature models with parameters are
often used. The quantification of these parameters is obvi-
ously an important task. Ebling et al. [EWGS07] point out
that topology-based methods are not capable of doing this.
They show, e.g., that for an arbitrary vector field the topolog-
ical skeleton of the normalized field is the same as the skele-
ton of the original field. Another drawback of topological
methods in this context is that superposing features may not
be detected correctly. The authors suggest therefore the use
of vector masks and pattern matching. This approach empha-
sizes the interpretation of a vector field as the superposition
of many (simpler) fields.

8. Discussion and Conclusions

This paper describes the current state of the art in topology-
based flow visualization of unsteady vector fields. To this
date, the solutions for unsteady flow remain still incom-
plete, compared to the level of proficiency achieved for
steady flow. Incremental extensions of methods for steady
flow are proven to be not able to capture the true flow be-
havior. Therefore new approaches and methods have been
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introduced, including both new theoretical frameworks and
methodical novelties. Many of the new approaches seem to
overlap to some extent. This hints to that a unified frame-
work for treating unsteady flow with topology-based meth-
ods could be found. Future work in this direction seems
promising.
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