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Figure 1: The trails behind this spinning ball are generated by a programmable motion effect, a new rendering mechanism for depicting
motion in computer-generated animation. Customized styles can be achieved in a flexible manner, similar to the way programmable surface
shaders are used to generate customized surface appearances.

Abstract

Although animation is one of the most compelling aspects of com-
puter graphics, the possibilities for depicting the movement that
make dynamic scenes so exciting remain limited for both still im-
ages and animations. In our work, we experiment with motion
depiction as a first-class entity within the rendering process. We
extend the concept of a surface shader, which is evaluated on an
infinitesimal portion of an object’s surface at one instant in time,
to that of a programmable motion effect, which is evaluated with
global knowledge about all portions of an object’s surface that pass
in front of a pixel during an arbitrary long sequence of time. With
this added information, our programmable motion effects can de-
cide to color pixels long after (or long before) an object has passed
in front of them. In order to compute the input required by the
motion effects, we propose a 4D data structure that aggregates an
object’s movement into a single geometric representation by sam-
pling an object’s position at different time instances and connecting
corresponding edges in two adjacent samples with a bilinear patch.
We present example motion effects for various styles of speed lines,
multiple stroboscopic images, temporal offsetting, and photorealis-
tic and stylized blurring on both simple and production examples.

1 Introduction

A huge variety of animation techniques, ranging from keyframing
to dynamic simulation to motion capture, populates the animation
toolbox and can be used to create dynamic and compelling worlds
full of action and life. During the rendering process, production-
quality renderers employ motion blur as a form of temporal an-
tialiasing. While motion blur effectively removes aliasing artifacts

such as strobing, it does so at the cost of image clarity. Fast-moving
objects may be blurred beyond recognition in order to properly
remove high-frequency signal content. Although correct from a
signal-processing point of view, this blurring may conflict with the
animator’s concept of how motion should be treated based on his or
her creative vision for the scene. Since the appreciation of motion
is a perceptual issue, the animator may wish to stylize its depiction
in order to stimulate the brain in a certain manner, in analogy to the
way an impressionist painter may stylize a painting in order to elicit
some aesthetic response. To this end, comic book artists, whose en-
tire medium of expression is based on summarizing action in still
drawings, have pioneered a variety of techniques for depicting mo-
tion. Similar methods are employed in 2D hand-drawn animation
to emphasize, accent, and exaggerate the motion of fast-moving
objects, including speed lines, multiple stroboscopic copies, streak-
ing, stretching, and stylized blurring. Although these effects have
played an important role in traditional illustration and animation
for the past century, computer-graphics animation cannot accom-
modate them in a general and flexible manner because production
renderers are hard-wired to deliver realistic motion blur. As such,
stylized motion effects are relegated to one-off treatment and infre-
quently used.

In our research, we experiment with motion effects as first-class
entities within the rendering process. Rather than attempting to re-
produce any particular style, we aim at creating a general-purpose
rendering mechanism that can accommodate a variety of visualiza-
tion styles, analogous to the way surface shaders can implement
different surface appearances. Many effects from traditional medi-
ums are directly related to an object’s movement through a region
of space and take the form of transient, ephemeral visuals left be-
hind. This observation motivates a simple yet powerful change in
the rendering process. We extend the concept of a surface shader,
which is evaluated on an infinitesimal portion of an object’s sur-
face at one instant in time, to that of a programmable motion effect,
which is evaluated with global knowledge about all portions of an
object’s surface that pass in front of a pixel during an arbitrary long
sequence of time. With this added information, our programmable
motion effects can decide to color pixels long after (or long be-
fore) an object has passed in front of them, enabling speed lines,
stroboscopic copies, streaking, and stylized blurring (Figure 1). By
rendering different portions of an object at different times, our ef-
fects also encompass stretching and bending. Other effects that ex-
tend beyond the object’s position in space, such as clouds of dust



or smoke, flashes of color that fill the frame, and textual annota-
tions (e.g., “BANG” or “POW”) are not addressed by our frame-
work. Traditional motion blur is a special case within our system,
implemented as a motion effect program that averages the relevant
surface contributions during a specified shutter time. In general,
however, our method dissolves the classic notion of a scene-wide
shutter time and allows each motion effect program to indepen-
dently specify its operating time range, so that a single rendered
frame may compose information from different periods of time.

From a technical standpoint, the most challenging aspect of our sys-
tem is efficiently computing global information about an object’s
movement. We make this computation in the context of a ray tracer,
where a single ray cast is modified to find every part of an object
that has moved past a given pixel throughout an arbitrary long time
range. Since the motion of an object may be complex, an analytical
solution to the problem is not feasible. Instead, we construct a new
geometric object called a time aggregate object (TAO) that aggre-
gates an object’s movement into a single geometric representation.
This representation is augmented with additional information that
enables the reconstruction of a set of points representing the path
along the surface of the object that is visible to the pixel as the
object moves through the scene, along with the associated times.
Using this global information, one can develop shading algorithms
that utilize information about an object’s movement through an ar-
bitrarily large window of time.

Our primary contribution is an approach to motion depiction for
three-dimensional computer animation that fits naturally into cur-
rent rendering paradigms and offers the same generality and flexi-
bility as programmable surface shading. We also make the technical
contribution of the TAO data structure and present several examples
of programmable motion effects.

2 Background

James Cutting [2002] presents a detailed treatise about motion de-
piction in static images that examines parallels in art, science, and
popular culture. He identifies five categories that encompass the
vast majority of motion depiction techniques used to-date: photo-
graphic blur, speed lines, multiple stroboscopic images, shearing,
and dynamic balance.

Of these categories, photographic blur has received by far the most
attention within computer graphics, as an answer to temporal alias-
ing problems in computer animation. Since a rendered anima-
tion represents a sampled view of continuous movement, disturbing
aliasing artifacts such as strobing can occur if the temporal signal
is sampled naively [Potmesil and Chakravarty 1983]. Consequen-
tially, temporal antialiasing is a core component of all production-
quality renderers, and the research community has developed many
sophisticated algorithms for this purpose. These methods can be
seen as convolution with a low-pass filter to remove high-frequency
details, yielding a blurry image. Or, in analogy to traditional pho-
tographic processes, they can be interpreted as opening a virtual
shutter for a finite period of time during which fast-moving objects
distribute their luminance over regions of the film, creating blurred
motion.

Sung, Pearce, and Wang [2002] present a taxonomy of motion
blur approaches, with associated references, and reformulated these
published methods in a consistent mathematical framework. Two
features of this framework help distinguish existing motion-blur
algorithms from our presented work. First, existing methods can
be interpreted as scene-wide integration over a fixed shutter time.
In our work, we abandon the notion of a fixed shutter time and
empower individual motion effect programs to determine the time
range over which to operate. In this way, a single rendered image
may combine information from a variety of different time ranges.

This added flexibility incurs a more complicated compositing situ-
ation (Section 4.6) when multiple motion effects overlap in depth.
Second, existing methods employ a spatio-temporal reconstruction
filter responsible for averaging contributions from different times.
In our method, we generalize this filtering concept to an arbitrary
program that allows a variety of different looks to be expressed.
The averaging operation used in traditional motion blur becomes a
special case within this framework.

The value of stylized motion depiction is evident from its treat-
ment in traditional artistic mediums, including the “Futurism” art
movement of the 1900’s [Hulten 1986] and techniques taught as
tools-of-the-trade to comic book artists [McCloud 1993] and an-
imators [Goldberg 2008; Whitaker and Halas 2002]. Perceptual
studies even provide direct evidence that speed lines influence low-
level motion processing in the human visual system [Burr and Ross
2002]. Due to the importance of stylized motion depiction, many
researchers have explored ways to incorporate it into computer-
generated imagery, animation, photographs, and video.

Masuch and colleagues [1999] describe the use of speed lines, stro-
boscopic copies, and arrows in 3D graphics as a post-processing
operation, Lake and colleagues [2000] present a similar method for
speed line generation, and Haller and colleagues [2004] present a
system for generating these effects in computer games. These meth-
ods are specialized for the targeted effects and may not generalize
easily to different visual styles. A framework for generating vi-
sual cues based on object motion is introduced by Nienhaus and
Döllner [2005]. This method allows one to define rules for the de-
piction of certain events or sequences based on a scene graph rep-
resentation of geometry and a behavior graph representation of an-
imation. The authors do not address the issue of how to implement
the depictions in a generalized fashion. Researchers also present
algorithms to add stylized motion cues to 2D animation [Hsu and
Lee 1994; Kawagishi et al. 2003] and video [Bennett and McMil-
lan 2007; Collomosse et al. 2005], to filter motion in images [Liu
et al. 2005] or 3D animation [Wang et al. 2006; Noble and Tang
2007; Chenney et al. 2002] in order to create a magnified or car-
toony effect, to create stylized storyboards from video [Goldman
et al. 2006], and to summarize the action in motion-capture data
[Assa et al. 2005; Bouvier-Zappa et al. 2007] or sequences of pho-
tographs [Agarwala et al. 2004].

Taken all together, these methods cover the five categories of mo-
tion depiction techniques that Cutting [2002] proposes. However,
existing algorithms target specific looks and must explicitly pa-
rameterize stylistic deviations (e.g., Haller and colleagues’ sys-
tem [2004] represents speed lines as connected linear segments with
a parameter to control line thickness over time). The central thrust
and distinguishing characteristic of our contribution is an open-
ended system for authoring motion effects as part of the rendering
process. We extend the concept of programmable surface shading
[Hanrahan and Lawson 1990] to take the temporal domain into ac-
count for pixel coloring. While our motion effect programs define
how this extra dimension should be treated for a certain effect, they
can still call upon conventional surface shaders for the computation
of surface luminance at a given instant in time. We show examples
in four of the five categories proposed by Cutting (stylized blurring,
speed lines, multiple stroboscopic images, and shearing). And, no-
tably, within these categories, different styles can be achieved with
the same flexibility afforded by programmable surface shaders.

3 Method Principles

Many stylized motion effects from traditional mediums summarize
an object’s movement over a continuous range of time with tran-
sient, ephemeral visuals that are left behind. Motivated by this ob-
servation, we propose an alternative rendering strategy that operates



on the scene configuration during an arbitrarily long time range T .
In this section, we introduce the concept of motion effect programs,
our time aggregate object data structure, and the renderer’s com-
positing system. Section 4 discusses more specific implementation
details.

3.1 Motion Effect Programs

In analogy to a state-of-the-art renderer that relies on surface
shaders to determine the color contributions of visible objects to
each pixel, we delegate the computation of a moving object’s color
contribution within the time range T to motion effect programs. A
motion effect program needs to know which portions of all sur-
faces have been “seen” through a pixel during T . In general, this
area is the intersection of the pyramid extending from the eye lo-
cation through the pixel corners with the objects in the scene over
time. Although Catmull [1978] presents an analytic solution to this
pixel coverage problem for static scenes, extending it to the spatio-
temporal domain is non-trivial. As such, we follow the approach of
Korein and Badler [1983] and collapse the pyramid to a single line
through the pixel center before computing analytic coverage. The
surface area seen by the pixel for a particular object then becomes
a line along the surface, which we call a trace. We address the spa-
tial aliasing incurred by this simplification via supersampling in the
spatial domain.

A motion effect program calculates a trace’s contribution to the final
pixel color. In doing so, it utilizes both positional information (the
location of a trace on the object’s surface) and temporal information
(the time a given position was seen) associated with the trace. It
can evaluate the object’s surface shaders as needed and draw upon
additional scene information, such as the object’s mesh data (vertex
positions, normals, texture coordinates, etc.), auxiliary textures, the
camera view vector, and vertex velocity vectors.

3.2 Time Aggregate Objects

Computing a trace is a four-dimensional problem in space and time,
where intersecting the 4D representation of a moving object with
the plane defined by the view ray yields the exact trace. Unfor-
tunately, since the influence of the underlying animation mechan-
ics on an object’s geometry can be arbitrarily complex, a closed-
form analytic solution is infeasible. Monte Carlo sampling [Cook
et al. 1984] could be considered as an alternative, since it is used by
prominent production renderers [Sung et al. 2002] to produce high-
quality motion blur. However, it is also not effective in the present
scenario since the time period associated with a trace may be very
short in comparison to the time range over which the motion effect
is active. For example, a ball may shoot past a pixel in a fraction of
a second but leave a trailing effect that persists for several seconds.
A huge number of samples distributed in time would be required in
order to effectively sample the short moment during which the ball
passes.

Consequentially, we propose a new geometric data structure that
allows our system to reconstruct a linear approximation of the full
trace from a single ray cast. Our data structure is inspired by the 4D
polyhedra used in Grant’s temporal anti-aliasing method [1985] and
aggregates an object’s geometry sampled at a set of times ti (Fig-
ure 2) into a single geometric primitive. In addition, corresponding
edges of adjacent samples are connected by a bilinear patch, which
is the surface ruled by the edge as its vertices are interpolated lin-
early between ti and ti+1. We call the union of the sampled object
geometry and swept edges a time aggregate object (TAO).

The intersection of a view ray with a bilinear patch of the TAO rep-
resents a time and location where the ray, and thus also a trace, has
crossed an edge of the mesh. By computing all such intersections

(not just the closest one) and connecting the associated edge cross-
ings with line segments, we obtain a linear approximation of the
trace. Intersections with the sampled geometry represent additional
time and space coordinates, which improve the accuracy of the trace
approximation. The accuracy of the approximated traces thus de-
pends on the number of TAO intersections, which scales with both
the geometric complexity of the object’s geometry and the number
of samples used for aggregation. In practice, we can use finely sam-
pled TAOs without a prohibitive computation time, since the com-
plexity of ray-intersection tests scales sub-linearly with the number
of primitives when appropriate spatial acceleration structures are
used [Fóris et al. 1996].

3.3 Compositing

A motion effect program acts on a trace as a whole, which may
span a range of depths and times. If objects and contributions from
their associated programmable motion effects are well separated in
depth, our renderer can composite each effect’s total contribution
to the image independently according to depth ordering. The com-
positing algorithm used can be defined by the effect itself, draw-
ing upon standard techniques described by Porter and Duff [1984].
Compositing becomes more complex when multiple traces overlap,
since there may be no unequivocal ordering in depth or time. Addi-
tionally, different motion effect programs may operate over differ-
ent, but overlapping, time domains since a single scene-wide shutter
time is not enforced.

We resolve this ambiguity by introducing additional structure to the
way in which motion effects operate. All traces are resampled at a
fixed scene-wide resolution. Each motion effect program processes
its traces’ samples individually, and outputs a color and coverage
value if that sample should contribute luminance to the rendered
pixel. Our compositing system processes the output samples in
front-to-back order, accumulating pixel color according to the cov-
erage values until 100% coverage is reached.

4 Implementation

We implement our method as a plug-in to Autodesk Maya 2010
[Aut 2010]. Our system is divided into two parts: a module to cre-
ate and encapsulate TAOs from animated 3D objects, and a new
rendering engine, which generates images with motion effects. The
rendering engine computes a color for each pixel independently by
computing all intersections of the pixel’s view ray with the TAOs,
and connecting them to form a set of traces. Then it calls the mo-
tion effect programs for each object, which compute that object’s
and effect’s contribution to the pixel color using the object’s traces.
Finally, a compositing step computes the resulting pixel color.

4.1 TAO Creation

We implement the TAO concept as a custom data structure within
Maya. We assume that animated objects are represented by triangle
meshes with static topology. Our system builds a TAO by sampling
an object’s per-vertex time dependent data (e.g., vertex positions,
normals, and texture coordinates) at a set of times ti, aggregat-
ing those samples into a single geometric primitive, and connecting
adjacent edges with bilinear patches (Figure 2). For a mesh with
NE edges and NF triangles, Nt object samples yield a TAO with
Nt ·NF triangles and (Nt − 1) ·NE bilinear patches.

The density and placement of the object sample times ti deter-
mine how well the motion of an object is approximated by our
TAO data structure. Since the approximation is linear by nature,
it perfectly captures linear motion. For rotation and non-rigid de-
formation, however, proper sampling of the motion is necessary
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Figure 2: The time aggregate object (TAO) data structure encodes the motion of an object (a) using copies of the object sampled at different
times t1 . . . t4 (b) and bilinear patches that connect corresponding edges in adjacent samples edges. These patches are shown in (c) for one
edge and in (d) for the whole mesh. This data structure is not just the convex hull of the moving object, but has a complex inner structure, as
seen in the cutaway image (e).

Figure 3: Undersampled (left) versus properly sampled (right) mo-
tion. The trace sampling rate is 10 times larger in the right image.

(Figure 3). Our systems supports both a uniform sampling and an
adaptive sampling strategy that starts with a uniform temporal sam-
pling and repeatedly inserts or deletes sample positions based on the
maximum non-linearity αi between the vertex positions of adjacent
samples:

αi = max
j
angle(vj(ti−1),vj(ti),vj(ti+1)), (1)

where angle(A,B,C) is the angle between the line segments AB
and BC and vj(ti) is the position of vertex j in object sample
i. First, the adaptive sampling strategy iteratively removes sample
times whenever αi is smaller than a given coarsening threshold. In
a second step, it insert two new samples at ti−ti−1

2
and ti+1−ti

2
if

αi exceeds a refinement threshold. In order to keep the maximum
number of object samples under control, the refinement criterion is
applied iteratively on the sample with the largest αi until the max-
imum number of samples is reached. In practice, we assume a cer-
tain amount of coherence in the motion of nearby vertices, and our
system approximates the optimal sample placement by considering
only a subset of the mesh vertices in Equation 1.

4.2 TAO Intersection

Our renderer generates a view ray for each pixel according to the
camera transform. Each ray is intersected with the primitives of
the TAO (mesh faces and bilinear patches) to compute all intersec-
tions along the ray, not just the one which is closest to the camera.
Normals, texture coordinates, and other surface properties are in-
terpolated linearly over the primitives to the intersection point and
stored.

For the intersection with bilinear patches, we use the algorithm de-
scribed by Ramsey and colleagues [2004]. If an edge connects vj

and vk, then for each 0 < i < Ni − 1 a bilinear patch is defined as

pijk(r, s) = (1− r)(1− s) · vj(ti) + (1− r) · s · vk(ti)

+ r · (1− s) · vj(ti+1) + r · s · vk(ti+1).
(2)

Solving for a ray intersection yields a set of patch parameters (r, s)
that corresponds to the intersection point. With parameter r, we can
compute the time at which the ray has crossed the edge:

t = ti + r · (ti+1 − ti). (3)

The parameter s represents the position along the edge at which the
crossing has happened. It can be used to interpolate surface proper-
ties stored at the vertices to the intersection point, and to compute
the position of the intersection point in a reference configuration of
the object. Mesh face primitives in the TAO are intersected accord-
ing to standard intersection algorithms. A parametric representation
of the intersection points with respect to the primitives is necessary
for interpolating the surface properties.

To accelerate the intersection computation, we partition the im-
age plane into tiles and create a list of all primitives for which the
bounding box intersects a given tile. Each view ray only needs to
be intersected with the primitive list of the tile containing the ray.

4.3 Trace Generation

The set of all intersection points of a ray with the TAO can be used
to reconstruct the locus of points traced by the ray on the mov-
ing object. Consider the interpretation of the ray-TAO intersection
points on the input mesh. As an individual triangle passes fully by
the ray, the ray crosses the edges of the triangle an even number of
times, assuming that the ray was not intersecting at the beginning or
at the end of the observed time. Each edge crossing corresponds to
an intersection of the ray with a bilinear patch of the TAO, and vice
versa. Since our system is restricted to a piecewise linear approxi-
mation of motion, we assume that the trace forms a linear segment
in between two edge crossings. The task of constructing the trace
is thus equivalent to connecting the intersection points in the proper
order.

To facilitate this discussion, we refer to the volume covered by a tri-
angle swept between two object samples within the TAO as a Time
Volume Element (TVE). This volume is delimited by two corre-
sponding triangles that belong to adjacent object samples and the
three bilinear patches formed by the triangle’s swept edges (Fig-
ure 4). Since there is an unambiguous notion of inside and outside,
a ray originating outside of a TVE will always intersect the TVE
an even number of times, unless it exactly hits the TVE’s boundary.
A pair of consecutive entry and exit points corresponds to a seg-
ment of the trace on the triangle. Therefore, by sorting all ray-TVE
intersection points according to their distance from the viewer and
pairing them sequentially, we can construct all trace segments that
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Figure 4: This figure shows two triangles at 3 consecutive object
samples, t1, t2 and t3, which results in four Time Volume Elements
(TVEs). A ray intersects the TVEs 4 times. At intersection A, the ray
enters the blue triangle though an edge. Point B is an intersection
with a sampled mesh triangle, indicating that the ray moves from
one time sample to the next. In C, the ray leaves the blue and enters
the green triangle, which it finally exits at D. The reconstructed
trace visualized on the two triangles is shown in the inset figure.

cross the corresponding triangle within the time range spanned by
that individual TVE.

Next, we consider trace connectivity. TVEs that share a common
TAO primitive (triangle or bilinear patch) are adjacent in space. If
the shared primitive is a triangle, the TVEs were formed by the
same triangle of the input mesh in adjacent object samples. If it is
a bilinear patch, the triangles that formed the TVEs are adjacent to
one another on the input mesh, separated by the edge that formed
the patch. This combined adjacency information determines the
connectivity of trace segments associated with neighboring TVEs.
Our system processes TVEs in turn to reconstruct the individual
trace segments, and then uses this connectivity information to con-
nect them together into different connected components.

4.4 Trace Resampling

At this point, we have the traces that the current pixel’s view ray
leaves on moving objects in the form of connected sequences of
intersections with the TAO. Each intersection point corresponds to
an animation time and a position on an object, and, in conjunction
with the trace segments that connect to it, we can determine and in-
terpolate surface properties such as attached shaders, normals, and
texture coordinates.

In order to facilitate compositing, our system imposes a consistent
temporal sampling on all traces by dividing them into individual
trace fragments of fixed spacing in time. This resampling should
be dense enough so that depth conflicts among different traces can
be resolved adequately. The visibility of individual trace fragments
during each sampling interval is also determined at this stage. Our
system does not delete occluded or back facing trace fragments,
however. Instead, it is left up to the motion effect program to decide
whether obstructed segments should contribute to pixel coverage.

4.5 Motion Effect Programming

A motion effect program operates on the resampled representation
of a trace. It is called once per object and processes all trace frag-
ments associated with that object. The motion effect program has
two options when processing an individual trace fragment. It can
simply discard the fragment, in which case no contribution to the
final pixel color will be made. Or, it can assign a color, depth, and
pixel coverage value and output the fragment for compositing. The
coverage value determines the amount of influence a fragment has
on the final pixel color in the compositing step. When making this
decision, the motion effect program can query an object’s surface
shader, evaluate auxiliary textures (e.g., noise textures, painted tex-
ture maps, etc.), or use interpolated object information.

The effect program can also subdivide the trace even further if the
effect requires a denser sampling of the object’s surface. For ex-
ample, further subdivision could be the needed if the effect must
integrate a surface texture of high frequency. Decreasing the trace
resampling distance (Section 4.4) has a similar effect, although it
affects all motion effects in the scene.

4.6 Compositing

By emitting trace fragments, each motion effect program specifies
its desired contribution to the pixel color. The compositing engine
combines all of the emitted fragments to determine the final pixel
color by processing fragments in depth order (front to back) using
a clamped additive model based on the coverage values. The cov-
erage values of the fragments, which range between 0 and 1, are
accumulated until a full coverage of 1 is reached or until all frag-
ments have been processed. If the coverage value exceeds 1, the
last processed fragment’s coverage is adjusted so that the limit is
reached exactly. The final pixel color is computed by summing the
processed fragment colors weighted by the corresponding coverage
values. The accumulated coverage value is used as the alpha value
for the final pixel color.

5 Results

In this section, we show a number of results obtained with our pro-
grammable motion effect renderer and describe how the effect pro-
grams were set up to achieve these results.

5.1 Motion Effects

To better explain the mechanism of programmable motion effects,
we supply pseudo-code algorithms for five basic effects used in
our examples. These algorithms show the framework of each ef-
fect using a common notation. A trace segment ts consists of two
end points, denoted ts.left and ts.right. Each of the end points car-
ries information about the animation time at which this surface lo-
cation has been intersected by the view ray and linearly interpo-
lated surface properties. They may be interpolated further with the
INTERPOLATE function, which takes a trace segment and a time at
which it should be interpolated as parameters. By ts.center, we des-
ignate the interpolation of the end points’ properties to the center of
the segment. The SHADE function evaluates the object’s surface
shader with the given surface parameters and returns its color. The
animation time of the current frame being rendered is denoted as
“current time.” The output of a motion effect program is a number
of fragments, each with a color and coverage value, that represent
the effect’s contribution to the pixel color. Passing a fragment to the
compositing engine is designated by the keyword emit.

Instant Render The most basic program renders an object at a
single instant in time. The program loops through all trace seg-
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Figure 5: A comparison of our motion blur implementation with production renderers. The test scene, rendered without blur, consists of a
translating checkerboard square with a stationary spotlight. The three middle images were created with equal render time. The rightmost
image shows a high-quality render obtained with our system with a denser trace sampling.

ments and checks whether the desired time lies within a segment.
If so, it interpolates the surface parameters to that point, evaluates
the surface shader accordingly, and emits just one fragment to the
compositing stage with a coverage value of 1. Any surfaces behind
that fragment will be hidden, as is expected from an opaque surface.

Algorithm 1 INSTANT RENDER(time)

for all trace segments ts do
if ts.left.time <= time < ts.right.time then

eval at := INTERPOLATE(ts, time)
color := SHADE(eval at)
coverage := 1
emit fragment(color, coverage)

Weighted Motion Blur Photorealistic motion blur integrates the
surface luminance within a given shutter time. We extend this pro-
cess with an arbitrary weighting function w(t) that can be used
both for realistic and stylized blurring. For photorealistic blur, the
weighting function is the temporal sampling reconstruction filter
function. A flat curve corresponds to the commonly used box filter.
In general, the weighting function need not be normalized, which
means that luminance energy is not necessarily preserved. This
flexibility increases the possibilities for artistic stylization. For ex-
ample, a flat curve with a spike at t = 0 results in motion blur that
has a clearly defined image of the object at the current frame time.

Algorithm 2 MOTION BLUR(w(t))

for all trace segments ts do
if ts time interval overlaps with {t | w(t) > 0} then

clip ts against {t | w(t) > 0}
color := SHADE(ts.center)
δt := ts.right.time - ts.left.time
coverage := δt · w(ts.center.time)
emit fragment(color, coverage)

The effect program in Algorithm 2 describes weighted motion blur
in its most basic form. A more advanced implementation could
take more than one surface shading sample within a segment and
use a higher order method for integrating the luminance. With the
given effect program, however, the fidelity of the image can be im-
proved by increasing the global trace sampling rate (Section 4.4). A
comparison of motion blur from our implementation with that from
production renderers is shown in Figure 5.

Speed Lines Speed lines are produced by seed points on an ob-
ject that leave streaks in the space through which they travel. They

can be distributed automatically or placed manually. The program
computes the shortest distance between trace segments and seed
points. If the distance is smaller than a threshold, the seed point has
passed under or close to the pixel, and the pixel should be shaded
accordingly. A falloff function based on distance or time can be
used to give the speed line a soft edge.

Algorithm 3 SPEED LINES(seed vertices, width, length)

for all trace segments ts do
for all seed vertices v do

if DISTANCE(ts, v) < width
and current time − ts.center.time < length then

color := SHADE(ts.center)
compute coverage using a falloff function
emit fragment(color, coverage)

Stroboscopic Images This effect places multiple instant renders
of the object at previous locations. It imitates the appearance of a
moving object photographed with stroboscopic light. The intensity
of the stroboscopic images is attenuated over time to make them
appear as if they are washing away. We keep the locations of the
stroboscopic images fixed throughout the animation, but they could
also be made to move along with the object. The falloff function can
be composed of factors considering the time of the stroboscopic im-
age, geometric properties of the mesh (e.g., the angle between the
motion vector and the normal at a given point), or an auxiliary mod-
ulation texture to shape the appearance of the stroboscopic images.

Algorithm 4 STROBOSCOPIC IMAGES(spacing, length)

for all trace segments ts do
if ts.left.time < current time − length then

t1 mod := ts.left.time modulo spacing
t2 mod := ts.right.time modulo spacing
if t1 mod <= 0 < t2 mod then

color := SHADE(ts.center)
compute coverage using a falloff function
emit fragment(color, coverage)

Algorithm 5 TIME SHIFT(ts, shift magnitude)

time shift := |ts.center.vmotion| · shift magnitude
shift time values in trace segment ts according to time shift
return ts

Time Shifting The time shifting program modulates the instanta-
neous time selected from the trace. We use it in conjunction with



Figure 6: Different speed-line styles.

the INSTANT RENDER so that each pixel in the image may repre-
sent a different moment in time. If fast-moving parts of an object
are shifted back in time proportional to the magnitude of their mo-
tion, these parts appear to be lagging behind. They “catch up” with
the rest of the object when it comes to a stop or changes direction.
This effect is only visible if an object’s motion is not uniform across
the surface, as in the case of rotation. In this algorithm, vmotion des-
ignates the motion vector of the corresponding part of the surface.

5.2 Examples

Translating and Spinning Ball The results in Figure 6 demon-
strate speed lines in different visual styles. The first two images use
the SPEED LINES effect (Algorithm 3) with a falloff function that
fades in linearly at both ends of the speed lines and modulates the
width of the speed line over time. For the last image, the distance of
the seed point to the current pixel is used to manipulate the normal
passed to the surface shader, giving a tubular appearance.

Bouncing Ball The example in Figure 7 shows a bouncing toy
ball, rendered with a modified version of the MOTION BLUR effect
(Algorithm 2). The effect program computes a reference time for
the input trace, and uses the difference between this reference time
and the current time to determine the amount of blur, or the shutter
opening time in conventional terms. As a result, the blur increases
toward the end of the trail.

Spinning Rod This result shows a rod spinning about an axis
near its lower end. Figure 8 (a) combines a MOTION BLUR effect
(Algorithm 2) that uses a slightly ramped weighting function with
an INSTANT RENDER effect (Algorithm 1) to render a crisp copy
of the rod. Figure 8 (b) additionally uses the TIME SHIFT func-
tion (Algorithm 5) with a negative shift magnitude so that quickly
moving surface parts lag behind. As shown in the accompany-
ing video, these parts “catch up” when the rod stops moving or
changes direction. In Figure 8 (c), MOTION BLUR is replaced with
a STROBOSCOPIC IMAGES effect (Algorithm 4). The falloff func-
tion fades the stroboscopic images out as time passes and addition-
ally uses the angle between the motion vector and the surface nor-
mal to make the rod fade toward its trailing edge.

Toy UFO In Figure 9, we have attached speed lines to a UFO
model to accentuate and increase the sensation of its speed. To keep
the effect convincing when the camera is moving with the UFO,
the length and opacity of the speedlines are animated over time.
An animated noise texture is sampled using the texture coordinates
from the seed point of each speed line, which gives the attenuation
value for that speed line.

Figure 7: A bouncing ball rendered with non-uniform blur.

(a) (b)

(c)

Figure 8: A spinning rod showing (a) weighted motion blur, (b)
weighted motion blur and time shift, and (c) stroboscopic images
with time shift.

Pinocchio’s Peckish Pest The last set of examples show our re-
sults on a production-quality scene. Figure 10 uses a combination
of speed lines and weighted motion blur. The motion blur’s weight-
ing curve has a spike around the current time, so that Pinocchio
is shown clearly in every frame, even when he is moving quickly.
In Figure 11 a comparison between conventional motion blur (also
rendered by our system) and our weighted motion blur is made.

Statistics about all examples are shown in Table 1. The values are
taken from a representative frame for each animation, where the
full TAO is within the visible screen area. Render time depends
greatly on the motion and the amount of screen space covered by
the objects. The numbers shown resulted from rendering an image
with 1280x720 pixels on an 8-core 2.8 GHz machine.

6 Conclusion

In this paper, we have presented a novel approach to depict mo-
tion in computer-generated animation. Our method fits naturally
into current rendering paradigms and offers the same generality and
flexibility as programmable surface shading. Our results demon-
strate that it is a powerful platform for experimenting with different
depiction styles.

Limitations of our work motivate a number of rich future research
possibilities. In our current implementation, the screen-space re-



Figure 9: Speed lines applied to a flying UFO animation.

Figure 10: Results from applying speed line and motion blur effects
(bottom), and the stroboscopic image effect (top) to an animation
of Pinocchio and a woodpecker.

Figure 11: A comparison of conventional motion blur (left) with
our weighted motion blur including speed lines (right).

gion of the motion effect is limited to the convex hull of the object’s
motion, since the motion effect programs operate only on pixels that
intersect the TAO. One future research avenue would be to consider
installing the motion depiction framework further upstream in the
rendering process as a geometry shader, allowing new geometry to
be created and expanding the range of possible depiction styles.

We experiment with the core idea of programmable motion effects
and provide a proof-of-concept that they can be used to express
a variety of motion depiction styles. However, our renderer im-

Example # Tri TAO Trace Mem Time
Spinning Ball 1200 160 0.1 12 2.6
Rod 80 100 0.1 0.5 0.25
UFO (shot 2) 3400 20 0.5 4.5 2
Pinocchio (shot 2) 37k 60 0.005 130 4.3
Pinocchio (shot 3) 122k 60 0.005 300 65

Table 1: Example statistics for a representative frame. # Tris:
number of source mesh triangles; TAO: number of object samples
(Section 4.1); Trace: trace sampling distance (Section 4.4); Mem:
memory required to store the TAO in MiB; Time: render time in
minutes.

plements only the most basic functionality and does not consider
global illumination, reflection, refraction, caustics, participating
media, or other effects that are standard in production renderers.
One immediate avenue of future work is applying the core princi-
ple of recursive ray tracing to our framework by casting secondary
rays for shadowing, reflection, and refraction. Naturally, computa-
tion time may become an issue if many secondary rays are used.

The performance of our system is reasonable for the examples
shown, with most frames requiring only a few minutes to render.
The slowest aspect of the system lies in the way it interfaces with
Maya. Creating the TAO structure requires sampling the animation
system at tens or hundreds of sample positions to cache time vary-
ing mesh data. Additionally, many of our motion effect programs
evaluate an object’s surface shader or other auxiliary textures. If
the parameters of these shaders and textures are themselves ani-
mated, then each and every evaluation must call back to the ani-
mation software in order to work in the proper temporal context.
Due to Maya’s system design and assumptions about the distinct
separation of animation and rendering, such out-of-context shader
network evaluations are prohibitively expensive. This observation
speaks to a future animation and rendering design that does not
draw a hard line between the two, but rather couples both as tightly
as possible.

Our current TAO data structure requires the mesh connectivity to be
constant throughout the animation. This limitation prohibits the use
of our system in scenarios where the connectivity changes, such as
in the presence of level of detail or certain physical simulation tech-
niques. A related issue comes with the requirement for the motion
to be sampled consistently within one TAO, even if some parts of
the input object move with a different complexity than other parts.
Sampling each primitive’s motion at its optimal rate would improve
performance and flexibility.

The implementation presented in this paper uses a ray tracing ap-
proach for rendering, but we believe that the general concept can
be adapted to other rendering paradigms. It would be interesting to
investigate how programmable motion effects can be implemented
on GPUs and in the Reyes architecture [Cook et al. 1987]. An al-



ternative approach would be to replace the TAO data structure with
an image sequence that stores additional per pixel data such as face
correspondence and surface parameters. Motion effect programs
could combine a number of these images to create one frame. This
approach can be seen as an extension of deferred shading for mo-
tion depiction.
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