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Figure 1: Our method allows us to efficiently simulate complex surface tension phenomena such as this crown splash. The small scales are
handled with our surface approach, while the larger scales are computed with the Eulerian simulation. For the shown simulation, our method
requires only 22.3 seconds per frame on average.

Abstract
We present an approach to simulate flows driven by surface ten-
sion based on triangle meshes. Our method consists of two sim-
ulation layers: the first layer is an Eulerian method for simulat-
ing surface tension forces that is free from typical strict time step
constraints. The second simulation layer is a Lagrangian finite ele-
ment method that simulates sub-grid scale wave details on the fluid
surface. The surface wave simulation employs an unconditionally
stable, symplectic time integration method that allows for a high
propagation speed due to strong surface tension. Our approach can
naturally separate the grid- and sub-grid scales based on a volume-
preserving mean curvature flow. As our model for the sub-grid dy-
namics enforces a local conservation of mass, it leads to realistic

pinch off and merging effects. In addition to this method for simu-
lating dynamic surface tension effects, we also present an efficient
non-oscillatory approximation for capturing damped surface ten-
sion behavior. These approaches allow us to efficiently simulate
complex phenomena associated with strong surface tension, such as
Rayleigh-Plateau instabilities and crown splashes, in a short amount
of time.

Keywords: Physically Based Animation, Fluid Simulation, Sur-
face Tension

1 Introduction
Surface tension forces are responsible for many phenomena that
contribute essential details to liquids and interfaces in nature. The
formation of a water droplet can be attributed to a growing surface
tension instability, and small ripples on the surface of a liquid are
primarily driven by surface tension. In the typical Eulerian solvers
used for computer animation, surface tension effects are often ne-
glected, and effects such as droplet pinch off occur purely as a result
of insufficient computational resolution. Once tension effects are
explicitly modeled with forces at the liquid interface, many cells
are required to resolve the shape of a single droplet. In addition,
surface tension forces impose a strict time step restriction on the
solver. These requirements of a high resolution and small time steps
make the simulation of large bodies of liquid infeasibly expensive.

We present an algorithm for efficiently and robustly simulating



surface tension effects that is based on an a triangle mesh discretiza-
tion of the fluid surface. As such, our method is decoupled from the
resolution of the computational grid and allows for an efficient sim-
ulation of sub-grid scale surface tension effects, including droplet
pinch off and surface tension waves. At the same time, it allows
us to separate the small scales of detail that are best simulated on
the surface from the larger scales that are suitable to be resolved
within an Eulerian simulation. A key benefit of the surface mesh is
that it allows us to use a robust finite element method to discretize
our model for the surface tension dynamics. Furthermore, as sur-
face tension phenomena are driven by the curvature of the surface,
we can use the large body of work on discrete surface operators to
accurately calculate curvature and curvature flows of our fluid sur-
face. As our method enforces a local conservation of mass, it leads
to realistically bulging surfaces and reproduces natural instabilities
that result in pinch off behavior.

The key attributes of our approach to surface tension are as fol-
lows:

• A novel method for efficiently simulating sub-grid surface
tension effects that computes wave dynamics on the dis-
cretized fluid surface.

• An algorithm that has a significantly relaxed time step restric-
tion in comparison to previous approaches in graphics.

• The efficient and robust handling of pinch off, as well as merg-
ing effects with local volume preservation on sub-grid scales.

• A simple and efficient non-oscillatory approximation to sub-
grid surface tension using mesh-based volume-preserving
mean curvature flow

These contributions combine to produce highly detailed anima-
tions of surface tension phenomena with subtle secondary effects at
a fraction of the cost of previous methods.

We will now briefly outline the different steps of our simulation
algorithm, which are also illustrated in Figure 2. For simulating the
fluid, we use a standard solver in combination with a triangle-mesh
embedded in the Eulerian grid to represent the liquid surface, as
described in [Wojtan et al. 2009]. The input to our algorithm is a
triangle mesh F representing the liquid interface. First, we advect F
through the velocity field given by the previous step in the fluid sim-
ulation. Second, we compute a simplified and smoothed version S
of this surface for each connected component of F using a volume-
preserving curvature flow with a strength proportional to the spatial
and temporal resolution. Next, we calculate the closest points on S
for all vertices of F , and we use the distance from each vertex to its
closest point to initialize the height values of the simulated surface
waves. We solve the wave equation on F using an implicit New-
mark scheme with a wave propagation speed given by the surface
tension strength. We then reposition the vertices of F according to
the resulting solution, giving us an updated position of the fluid sur-
face. Meanwhile, the curvature of S represents the remainder of the
surface tension forces that can be represented within the Eulerian
fluid simulation. We apply a similar framework for animating sur-
face tension on the scale of the fluid grid by computing a second
step of volume-preserving curvature flow on S, yielding a surface
T . Similar to previous work, the pressure boundary conditions for
the surface tension on the Eulerian grid can be computed using the
distance of a point on S towards its closest point on T . Finally, the
simulation proceeds to solve for a divergence-free velocity field,
taking into account the surface tension boundary conditions com-
puted as outlined above.

2 Related Work
While some of the first fluid simulations in computer graphics were
performed by Kass and Miller in [1990] as well as [Foster and
Metaxas 1996], a large body of work is now based on the simula-
tion approach introduced in [Stam 1999; Foster and Fedkiw 2001;

Enright et al. 2002], and many extension of this approach have
been proposed in the following years. Examples of such exten-
sions are coupling with thin shells [Guendelman et al. 2005], im-
proved boundary conditions for rigid objects [Batty et al. 2007], a
more accurate advection step [Selle et al. 2008], and stable two-way
coupling with deformable objects [Robinson-Mosher et al. 2008].
A detailed description can be found, e.g., in the book by Bridson
[2008], and we also employ this type of solver in our work. How-
ever, while level-sets [Osher and Sethian 1988] are used often to
represent the free surface of a liquid, we use the method of [Wojtan
et al. 2009] to track the fluid surface and handle topology changes.
This method is based on an accurate Lagrangian surface represen-
tation, and produces temporally coherent surfaces, which makes it
a good basis for surface tension simulations. In addition, it allows
us to overcome problems typically associated with computing cur-
vature driven flows on meshes: the mesh is re-sampled to prevent
a clustering of vertices, and topological changes are handled by ro-
bustly and locally re-constructing the mesh. Apart from this class
of solvers, different approaches have been introduced, such as par-
ticle based discretizations [Müller et al. 2003], or model reduction
[Treuille et al. 2006]. We will focus on the commonly used Eulerian
fluid solvers in this work.

Surface tension was recognized as an important aspect of fluids,
and the method of Kang et al. [2000] is a popular choice to com-
pute the surface tension boundary conditions. The discontinuities
across the liquid-air interface for boundary conditions have been
addressed in [Hong and Kim 2005], while [Müller et al. 2003] dis-
cuss surface tension forces for SPH simulations. Because purely
Eulerian surface tension simulations do not behave properly at low
grid resolutions, [Losasso et al. 2004] used an octree data structure
to simulate surface tension effects. Contact angles of liquids with
surface tension are discussed by [Wang et al. 2005], while [Wang
et al. 2007] use a shallow water solver on obstacle surfaces to com-
pute the motion of drops and streams of liquid. We similarly use
a surface based wave solver, but use a temporally changing dis-
cretization of the liquid surface itself to solve the wave dynamics.
We make use of a solver similar to [Angst et al. 2008], where waves
were simulated on animated characters with a fixed connectivity.

Specialized techniques have been proposed for simulating sur-
face tension phenomena such as drops and bubbles. Bubbles and
frothing liquids were simulated in [Cleary et al. 2007], [Kim et al.
2007] focused on volume control for foam structures, and [Kim and
Carlson 2007] presented a fast model for strongly bubbling fluids.
[Zheng et al. 2006] introduced a regional level set method with
a semi-implicit surface tension scheme for simulating bubbles. A
model for both drops and bubbles, motivated by the Weber num-
ber of the fluid, was proposed by [Mihalef et al. 2009]. While these
models handle their respective effects very well, our work focuses
on the accurate modelling of the underlying surface tension dynam-
ics to recreate phenomena such as droplet pinch off.

One inherent difficulty in direct simulations of surface tension
flows is the strict limitation of the timestep. This topic was ad-
dressed in [Cohen and Molemaker 2004], who proposed a method
to perform multiple surface tension driven advection steps per
solver iteration. This approach better resolves the surface tension
dynamics in time while safely taking larger time steps in the rest
of the fluid simulation, but is not closely related to the underly-
ing physics because it decouples the surface tension and pressure
forces. Recently, Sussman and Ohta [2009] proposed a method to
relax the time step restrictions from O(∆x3/2) to O(∆x) by perform-
ing a volume preserving mean curvature flow for the computation
of the surface tension boundary conditions. While our approach is
similar in nature, we compute surface tension on a mesh instead of
a regular grid, and we perform an additional simulation at sub-grid
scales.
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Figure 2: Overview of our surface tension approach. The two rows illustrate the steps performed for the sub-grid surface tension dynamics
in the top row, and the Eulerian surface tension in the bottom row.

As we make use of an explicit surface discretization, we can
draw from the many works on shape operators for discrete surfaces.
A good overview can be found in [Botsch et al. 2007]. Smoothing
operations on meshes have been widely investigated, e.g., in [Des-
brun et al. 1999], where an implicit scheme was presented. We will
make use of volume preserving mean curvature flows on meshes, as
was described in [Eckstein et al. 2007].

3 Fluids with Surface Tension
The dynamics of an incompressible viscous fluid with surface ten-
sion can be described by the Navier-Stokes (NS) equations:

ut +(u ·∇)u =− 1
ρ

∇p+ν 4u+g+σκ (1)

∇ ·u = 0 . (2)

Here, u is the velocity of the fluid, ut its temporal derivative, ρ the
fluid density, g gravity, and σ denotes the surface tension coeffi-
cient, which, multiplied with curvature normal of the liquid inter-
face κ , gives the surface tension force. Note that the surface tension
terms are only evaluated at the liquid-gas interface. The NS equa-
tions are typically discretized on a Eulerian grid with cell size ∆x
and a time step of ∆t, using a staggered MAC grid for storing the
velocity information.

For level-set based surface representations, an established way
to implement surface tension effects is to compute κ with the sec-
ond derivatives of the signed distance function. The surface tension
forces are included as a pressure jump across the interface, and the
method of [Kang et al. 2000] can be used to include these bound-
ary conditions in the fluid solver. This approach gives stable results
for a moderate range of surface tension strengths. To improve sta-
bility, [Sussman and Ohta 2009] propose a method to compute the
σκ term not directly from the level-set, but by first computing a
volume-preserving mean curvature flow (VCF) of the liquid inter-
face. The distance of the original towards the evolved surface is then
used to compute the pressure boundary conditions. This strategy ef-
fectively integrates the forces for the upcoming time step taking into
account the surface evolution, and it leads to a significant increase
in stability.

However, the methods above still have to fully rely on the Eule-
rian grid to resolve features of the interface. As such, several cells

are required to accurately resolve a single drop, and for features
close to the size of a cell ∆x the methods become inaccurate and
unstable. When directly evaluating the curvature from the level-set,
this can lead to noticeable ghost forces, and smaller drops can start
to move randomly through the air. Furthermore, the surface tension
method based on VCF computes a level set advection to resolve the
curvature flow, and as such, small features can easily disappear, re-
sulting in a significant mis-estimation of the surface tension forces.

These problems are closely related to the fact that the size of the
largest stable time step for surface tension flows is strongly gov-
erned by the surface tension coefficient σ . Even though the meth-
ods outlined above can overcome this restriction, a small time step
is required to accurately resolve the motion of capillary waves. Sur-
face waves in a liquid are typically driven by gravity as well as
surface tension. Under the assumption that the gas around the liq-
uid has a negligible density, the dispersion relation, relating angular
frequency ω to wave number k, simplifies to

ω
2 =

(
|g|+ σ

ρ
k2

)
|k| . (3)

Note that for large k, which means spatially very small waves,
surface tension dominates due to the k2 factor, while large waves
with small k are driven primarily by gravity. The phase velocity
vp = ω/k of a water wave is thus given by

√
gk for gravity driven

waves, and by |k|3/2ρ/σ for surface tension driven waves. This di-
rectly implies that the smallest waves resolved on the grid would re-
quire a time step proportional to ∆x3/2. Note that even though semi-
Lagrangian methods are unconditionally stable, surface waves do
not transport mass, but are represented locally by circular motions,
and thus would still require a very small time step to be resolved.

This stringent restrictions caused by surface tension have led to
algorithms that perform multiple computational steps for the sur-
face tension during a single step of the fluid simulation. [Hochstein
and Williams 1996] predict the curvature of the surface for the next
time step, and [Cohen and Molemaker 2004] perform additional
advection operation to evolve the surface based on surface ten-
sion forces. [Sussman and Ohta 2009] can be seen in a similar line
of thought, performing multiple iterations to evolve the volume-
preserving curvature flow for calculating the surface tension forces.
Our method takes this idea further, by using a wave equation solver



Figure 3: This image shows a liquid surface after a drop impact.
A normal simulation is shown on the left, while the right image
demonstrates the small scales waves our method can resolve at the
surface.

to compute the dynamics of the capillary waves. We use an implicit,
symplectic solver for this step, which means that we can handle
waves of arbitrary propagation speed while conserving energy. In
addition, we use a VCF to compute a base surface for the wave
equation solver, which ensures that we simulate waves on the cor-
rect scale and re-introduces non-linear behavior into the linearized
wave equation dynamics.

Given a surface tension coefficient σ , we split the overall
strength into two components σ = σs +σg, where σs parametrizes
the surface wave simulation, while the remaining strength σg is in-
cluded in the grid-based simulation. Note that we could in theory
split the forces arbitrarily: for σ = σs all surface tension dynam-
ics would be handled with our sub-grid model, while for σ = σg,
the full surface tension strength would be calculated on the grid. In
practice, we will use a geometric separation based on the grid reso-
lution, so that the fluid simulation includes as much as it can resolve
on the grid, while all smaller surface details are resolved with the
wave equation. This is made possible by the fact that the algorithm
to compute surface tension using a VCF resembles a surface fairing
operation and effectively smoothes spatial frequencies according to
the strength of the flow.

4 Mean Curvature Flow
First we will explain how to compute the smoothed version of the
original fluid surface that is represented as a triangle mesh. It was
shown by Sussman et al. in [2009] that the surface tension forces
integrated over the length of a time step can be related to the dis-
tance of the liquid surface to another version of the surface advected
by a volume preserving mean curvature flow (VCF). In the limit,
the solution of the VCF will converge to one or more spheres with
the same overall volume as the fluid component, which is exactly
the result an isolated surface tension fluid simulation with viscos-
ity would give. Note that a single component might be split into
pieces by the surface tension, and thus form multiple spheres. We
compute the smoothed surfaces S and T using a VCF, but solve the
VCF directly on a surface mesh instead of a grid. In addition, we use
this method for both layers of our simulation: for the surface ten-
sion forces on the grid, and the sub-grid scales on the fluid surface.
Thus, in our case, S provides a separation of small spatial scales
which will be handled by our surface dynamics model and larger
scales for the Eulerian fluid simulation. As a first step we have to
solve for a VCF of the initial and possibly very detailed surface of
the liquid. Here, we can make use of the large body of research on
curvature flows for meshes. A general mean curvature flow of the
set of vertex positions X of a triangle mesh can be formulated as

Xt = γ∇
2X , (4)

where γ is the strength of the curvature flow, and the t subscript
denotes a temporal derivative with respect to the smoothing time.
Note that, by construction, Eq. (4) is equivalent to Xt = −2γκn,
with κ denoting the mean curvature , and n the surface normal. This
basic form evolves the vertices locally according to their Laplacian,

which we discretize with the standard Laplace-Beltrami operator
according to [Desbrun et al. 1999]. For a function f that takes the
value fi at a vertex vi, the discrete Laplace-Beltrami operator can
be formulated as

∇
2 f =

1
2Ai

∑
vk∈N (vi)

(cotαk + cotβk)( fk− fi) , (5)

where the area of the barycentric dual cell associated with a vertex
vi is denoted by Ai, and the neighborhood of a vertex v is denoted
as N (v), consisting of the adjacent vertices vk.

This general form can be turned into a volume preserving surface
flow by averaging the local deformations around a neighborhood of
each vertex, as described by Eckstein et al. in [2007]. Similarly, we
compute an averaged curvature κavg for each connected component
of our surface mesh with

κavg =
∑vi

Aiκi

∑vi
Ai

, (6)

and evolve the surface with

Xt =−2γ(κ−κavg)n . (7)

This system of equations is solved iteratively for a duration te. For
the boundary conditions of the Eulerian grid, te is given by te

grid =
∆tσg, while for the surface dynamics it is proportional to the grid
resolution ∆x, and is computed as te

grid = ∆t(α +∆x). We introduce
a parameter α here to manually increase the strength of the VCF for
the sub-grid scales. We have found that the Eulerian solver typically
has difficulties resolving scales on the size of one to two grid cells,
and we make sure these scales are resolved by the surface wave
dynamics by choosing α on the order of the grid cell size. This ties
the geometric differences between the surfaces F and S to the grid
size of the simulation. It is a result of our desire to cleanly separate
grid-scale volumetric physics from sub-grid-scale surface physics.

We can speed up this process by simplifying the mesh to match
the grid resolution in a first step. We do this by computing a signed
distance field from the mesh, and then reconstruct the mesh from
a level-set of this distance field using marching cubes. This imme-
diately gives us a mesh that closely resembles the details that are
representable with the given grid resolution. Note that an alterna-
tive would be to continue collapsing all edges that are smaller than
∆x, but we have found the results from the level-set reconstruction
are temporally more stable and are cheaper to compute. To ensure
that even fine details of the mesh such as thin sheets and small drops
are resolved on the grid, we triangulate the isosurface not at zero but
for a thickened level set of

√
3/2 ∆x. We handle each disconnected

component of the mesh separately, to make sure two separate com-
ponents do not erroneously merge during the reconstruction from
the signed distance field. This means, that we can use a strength of
te = ∆tα for the VCF of the wave solver.

Note that, despite the thickened level-set, we can guarantee that
the surface after the VCF has the same volume as the input sur-
face using the volume rescaling technique of Section 8. Our ex-
periments have shown that the thickened grid-based re-sampling
scheme mentioned above is faster and more consistent than the
purely Lagrangian approach based on edge collapses. The grid-
based scheme prohibits topological artifacts due to thin regions, al-
though it can cause close regions of a single component to merge
together. We did not notice any artifacts in practice, so we used this
scheme to generate the examples of Section 10.

Another advantage of simplifying the initial mesh in a first step is
that this typically reduces the number of vertices significantly, and
the complexity for solving Eq. (7) directly depends on the num-
ber of vertices. In addition, the mesh S typically has a feature size
on the comparably large scale of the underlying grid, which makes
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Figure 4: Here a comparison of the different techniques for curva-
ture flow can be seen. The input mesh is shown on the left, Lapla-
cian smoothing second from left. Note that the VCF with global av-
eraging behaves similarly to Laplacian smoothing, but conserves
volume by pushing the whole surface outward. In contrast to this,
local averaging conserves volume by locally bulging the surface.

the curvature flow cheap to compute. This is important, as the step
size of our explicit curvature flow scheme is proportional to the fea-
ture size squared. For highly detailed meshes, the implicit scheme
described by [Eckstein et al. 2007] can yield a significant speed
up. A faster, but less accurate alternative to computing this type of
volume-preserving curvature flow is to use a global κavg in equation
Eq. (7) by computing a single volume-weighted average curvature
for each component. We will use both methods interchangeably in
the following. While Figure 7 and Figure 1 make use of the local
computation of Eq. (6), the other examples below make use of the
faster per component averaging.

In a next step, we use the mesh S computed with the volume-
preserving mean curvature flow to solve for the surface dynamics
on the input mesh F . We will describe how to compute correspon-
dences between the two meshes in the following. This step will be
used to initialize the wave equation in Section 6 and set the bound-
ary conditions on the grid in Section 9.

5 Mesh Correspondence
We now have the initial, unmodified liquid surface F , and a simpli-
fied version S that was evolved in a VCF. As S represents the target
state towards which F should evolve due to surface tension, we next
map the vertices of F to their closest points on S.

To do this efficiently, any spatial data structure, such as grids,
trees or hash tables is applicable. For our implementation, we have
chosen to insert the locations of the vertices xS of S into a kd-tree
and query the closest point x̃S

i to each vertex xi of F using this tree.
We then check whether there is an even closer point xS

i to xi on
the triangle fan around x̃S

i . Note that due to the VCF the surface
might have shifted, and we have to make sure not to compute the
closest point on the wrong side of thin fluid surfaces. To prevent
this, we only return points from the kd-tree query whose normals
align with the normal of xi. After this step, each vertex xi on F
has a corresponding point xS

i on S. The set of points xS
i on S will

later on represent the reference surface with respect to which we
solve the wave equation. The signed distance hi between the two
corresponding points can be computed with

hi = (xS
i −xi) ·nS

i , (8)

where nS
i is the normal of the surface S at xS

i . These distances can
now be used to solve for the surface dynamics. Given a new water
height h′i computed from the wave dynamics, the updated positions
of the vertices is computed with

xi = xS
i +h′in

S
i . (9)

6 Wave Simulation on the Mesh
To efficiently compute the motion of capillary waves on the mesh
surface, we linearize the surface tension dynamics with the classical
wave equation. The wave equation is an often-used second order

differential equation in which the normal acceleration of vertical
elevations h is related to their second derivatives:

htt = c2
∇

2
vi

h . (10)

Here htt denotes the second derivative with respect to time. The
values of h for each vertex of F are given by Eq. (8), and c2 = σs.

We perform the wave simulation on the triangle mesh F that rep-
resents the liquid surface. Similar to [Angst et al. 2008], we use a
finite element discretization of the height values. The surface height
is a scalar function that is represented with linear basis functions,
and whose values hi are located at the vertices of the triangle mesh.
This leads to the commonly used operator with cotangent weights
for the second derivatives according to Eq. (5).

To overcome the problem of energy dissipation while ensuring
robustness, we make use of the Implicit Newmark time integration
scheme [Newmark 1959] that was proposed in [Angst et al. 2008].
In the following, we will denote the vector of the height values for
all vertices with h and write the evaluation of the Laplacian of h
as the multiplication with the matrix L. Now, given a time step ∆t,
the Newmark integration step in its unconditionally stable form is
given by (

I− ∆t2

4
c2L

)
hn+1 = hn +∆thn

t +
∆t2

4
hn

tt . (11)

These equations represent a sparse system of linear equations; the
unknowns are the positions of the next time step hn+1 that can be
solved with a standard iterative solver such as a conjugate gradient
method.

As the Newmark integrator is a symplectic scheme, this leads
to a conservation of energy when solving the wave equation. We
can manually introduce viscosity into the wave equation solve by
manually scaling the surface heights by a factor of slightly less than
one relative to the average height of the surface. After solving the
wave equation, the surface F is updated using Eq. (9).

7 Non-Oscillatory Approximation
While the method for simulating dynamic surface tension proposed
in Section 6 produces visually-appealing ripple effects on the sur-
face, we can also efficiently simulate damped surface tension ef-
fects by neglecting surface wave phenomena entirely. As mentioned
previously, we can use volume-preserving mean curvature flow to
produce a reference surface S. The capillary waves oscillate about
this surface, and they will eventually converge to it after the wave
motion damps out. Therefore, S represents a type of steady-state so-
lution to the surface tension dynamics. To efficiently simulate sur-
face tension in the absence of small-scale capillary waves, all we
have to do is run volume-preserving mean curvature flow on the
original surface F by an amount proportional to the surface tension
at each time step of the simulation. Because this approximation can
be efficiently computed even on high resolution surface meshes, it
can be used to simulate detailed droplet effects (See Figure 7).

8 Mass Conservation
A beneficial property of the triangle mesh surface representation is
that we can accurately and efficiently compute its volume, e.g., as
described in [Müller 2009]. This is necessary, as the overall con-
servation of mass can not be guaranteed despite the accurate ad-
vection calculation of the mesh vertices, e.g., with a fourth-order
Runge-Kutta method. In addition, steps such as surface subdivision,
topological changes, or the re-initialization from the wave equation
solve can cause violations of the conservation of mass. This is es-
pecially crucial for smaller liquid volumes, which could completely
disappear due to these errors. We use a rescaling along the surface
normals to correct for these errors iteratively. Given a desired vol-
ume Vt and a current volume Vc with surface area Ac, we choose



a step size of h = Vt−Vc
Ac

, and iterate the following steps. First the
positions of all surface vertices are updated with xi = hni, where
ni is the normal of vertex i. We then recompute Vc, and when the
relative error ε = (Vt −Vc)/Vt changes sign from one iteration to
the next, reinitialize the step size with h′ = −h/2. This is repeated
until converging to the desired accuracy. We have used |ε|< 0.005
for the examples below, and usually one or two iterations suffice to
reach this accuracy.

Note that similar to the other steps of our algorithm, it is impor-
tant to perform the volumetric rescaling separately for each con-
nected component of the surface. Components with a negative vol-
ume, like bubbles, can be treated in the same way. Using the algo-
rithm described in [Wojtan et al. 2009] to handle topology changes
of the surface, we only need to identify disconnected components
and update the target volume Vt for each component when a topol-
ogy change was registered. This happens infrequently compared to
the overall number of simulations steps.

9 Eulerian Surface Tension Forces
To compute surface tension forces for the grid-based fluid simula-
tion we can re-use several steps of the framework described above
for computing the sub-grid scale wave dynamics. As in [Sussman
and Ohta 2009], we compute the term σκ from the distance be-
tween two surfaces, one of which is evolved in a VCF correspond-
ing to the strength of the surface tension. As the difference between
the original surface F and the ground surface for the wave equation
S is handled as described in Section 6, we perform another step of
VCF with Eq. (7) on S. For this step, the strength is given by σg,
yielding an even smoother surface T .

Now we perform another correspondence computation from Sec-
tion 5 to match the position of the vertices xi of S with their closest
points on T , denoted by xT

i . Note that xi is the actual position of
a vertex, while xT

i can lie anywhere on the surface of T . Next we
compute the surface tension strength for all cells of the grid at the
interface with

σgκ = (xT
i −xi) ·ni. (12)

As the points in S will typically not align with the centers of the
grid cells, we again use a kd-tree to retrieve the closest point on
S with respect to the cell center. We interpolate the data if a closer
point is found on an adjacent triangle. For this step, we can estimate
the normal at the cell from the signed distance field of S and only
query points from the kd-tree with aligning normals. While var-
ious approaches could be used to compute the distance from S to
T , we decided to use a kd-tree primarily because of its temporally
consistency. After using this surface tension value as a boundary
condition for the Eulerian fluid solver, we then proceed to advect
the surface mesh F according to the fluid velocities and handle
topological changes with a local re-sampling method. The details
of this process can be found in [Wojtan et al. 2009]. Next we will
demonstrate the capabilities of our method with several test cases.

10 Results
The following simulations and performance measurements were
performed on a standard PC with 3GHz without multi-threading.
First, we compare our method to a surface tension computation
performed by calculating the curvature of a level set surface rep-
resentation. Several frames of a simulation of two merging drops
with strong surface tension can be seen in Figure 5, where the top
row was performed with the level-set, and the bottom row with
our method. In each simulation, the drops have an initial diame-
ter of 9 cells. While both simulations result in a similar behavior,
our method is able to capture the waves on the surface of the drop
that are caused by the merge. In addition, our method does pre-
serve the volume of the fluid, and does not start to drift. However,

Figure 5: Comparison of a level set based surface tension forces
(top row) with our method (bottom row). While both simulations
show an overall similar behavior of the two merging drops, our
method is able to capture a capillary wave travelling around the
merged drop with a high speed. In addition, our method is much
better at conserving volume.

Figure 6: Example of the self-reinforcing instability of a fluid jet
causing droplet pinch off. The images from left to right show the
change in behavior when increasing the surface tension of the liq-
uid (σs = 3e-5 to 0.01). In Table 1, the settings for the second sim-
ulation from the left can be seen.

the level-set style simulation took less time to compute. We also
compared the stability of both methods with this setup: while level-
set based simulation quickly becomes unstable with an increase in
surface tension, our approach gives violently moving, but reason-
able, results even for a 50 times higher surface tension coefficient.
Because the time step restriction increases super-linearly for such
explicit schemes, this difference in stability increases strongly at
higher simulation resolutions.

The simulations shown in Figure 6 highlights that our method
is able to very efficiently resolve droplet pinch off for liquid jets.
This form of instability is caused by slight perturbations of the
initial cylinder that grow over time. If the diameter of the jet is
small enough, this ultimately leads to a pinch off. This phenomena
is known as the Rayleigh-Plateau instability, and has been widely
studied in experiments and simulations, see, e.g., [Bush 2004] for
details. For our simulation, the jet is resolved with less than 5 grid
cells in diameter, and the simulation ran at five frames per second.
The images from left to right show how the behavior of the jets
differs when increasing surface tension. The left-most image has
a surface tension coefficient close to zero, resulting in barely any
droplet pinch off, while the right-most one shows a simulation with
strong surface tension, causing drops to pinch off right below the
inlet.



Figure 7: A fast drop is colliding with a planar obstacle, resulting in a horizontal sheet of liquid. The images show simulations with increasing
surface tension (from top to bottom) at the same instants in time. Stronger surface tension causes the liquid sheet to break up earlier.

An example of a larger fluid simulation with a resolution of 1283

can be seen in Figure 9. Here, a larger drop is falling into a body of
water, and the resulting back splash causes a single drop to pinch off
at its end. In this case, the high fluid simulation resolution is nec-
essary to counter the numerical viscosity of the fluid simulation’s
semi-Lagrangian advection scheme.

The non-oscillatory approximation of Section 7 is demonstrated
in Figure 7, where no grid based surface tension was active. The
setup is a well studied experimental one: a liquid drop (or jet) with
high velocity is hitting a planar or curved obstacle, causing a hor-
izontal liquid sheet to develop [Clanet and Villermaux 2002]. The
sheet breaks up at a specific radius inversely proportional to the sur-
face tension strength. Our method allows us to re-create the effect
that high surface tension causes an early break up, while low sur-
face tension results in a large spreading sheet. For this simulation,
we make use of the technique presented in [Wojtan et al. 2010] to
track the very thin liquid sheets.

Finally, a simulation of a crown splash can be seen in Figure 1.
This phenomenon develops when a drop hits a shallow volume of
water, and the evolving circular liquid sheet breaks up at its outer
boundary, resulting in regularly spaced droplets. For this simula-
tion, we have used a combination of the grid-based surface ten-
sion forces and the non-oscillatory approximation. By varying the
strength of the grid-based component, we are able to control the
evolution of the liquid sheet, as can be seen in the accompanying
video. To our knowledge, we are the first in the graphics and com-
putational science field to simulate a full crown splash with droplet
pinch off, and our method allows us to efficiently perform a very

detailed simulation with a relatively low grid and surface resolu-
tion.

11 Discussion
The complexity of our algorithm predominantly depends on the res-
olution of the surface discretization. For a liquid surface mesh F
with n nodes, and a smoothed version S with m < n nodes, we ob-
serve that the following steps have a complexity of O(n): the signed
distance field computation, the calculation of correspondences from
F to S, and solving the wave equation on F . On the other hand, the
following steps have a complexity of O(m): computing the volume
preserving mean curvature flow for S and T , the correspondences
from S to T , and the calculations of the boundary conditions for
the grid-based simulation. The magnitude of both n and m predom-
inantly depends on the surface area of the liquid interface, instead
of the grid resolution.

The simulation settings and computation times for the shown
simulations can be seen in Table 1. The fastest simulation was the
Rayleigh-Plateau instability from Figure 6 with 0.2 seconds per
timestep on average, while larger simulations, such as the crown
splash from Figure 1 require up to 22.3 seconds per timestep. For
the simulations shown, are always able to perform a single timestep
per frame of animation. The resolution of the fluid simulations
is typically determined by how many cells the solver requires to
achieve a viscosity that is low enough to produce the desired mo-
tion. Our surface meshes are typically parametrized relative to the
grid resolution, and the small simulations such as Figure 6 have



Figure 8: These images show a simulation purely with our sub-grid wave equation solver, and without Eulerian surface tension forces. While
the right drop is moving towards the large drop, it splits up, and finally merges with the large drop. Throughout the simulation, detailed
capillary waves can be seen on the surfaces of the drops.

Figure 9: A drop is falling into a body of water. The strong surface
tension causes a reinforcement of the instabilities during the back
splash, and finally results in a drop pinching off.

around 2100 vertices for the mesh, while larger ones such as Fig-
ure 1 resolve the surface with up to 270 thousand vertices. Similarly,
the amount of time that is required for our algorithm is determined
by the complexity of the surface. For larger fluid simulations, such
as Figure 9, on average one third of the overall time is spent for
the surface tension calculations, while others, such as the large sur-
faces of Figure 7, require two thirds of the overall time to compute
the surface tension dynamics.

Note that we model the non-linear surface tension behavior of a
fluid simulation with a linear wave equation. We originally imple-
mented a fully non-linear wave solution for the sub-grid scale dy-
namics, but our early attempts were plagued with self-intersections
and numerical instabilities. The linearized version avoids these
problems. However, the linearization also means that we can only
simulate a single wave propagation speed given by the choice of
the parameter c in Eq. (10). However, we achieve a non-linear be-
havior even without an underlying fluid simulation due to the fact
that the positions updated by the wave equation solve are the input
for the next mesh simplification and smoothing step, as described
in Section 4. In the limit, our wave equation solver will iteratively
converge towards a uniform height on the smoothed mesh S, which
in turn will converge towards one or more spheres. This means that
our method shows the desired behavior for a flow driven by surface
tension and converges towards spheres as the final shapes for each
disconnected component. However, some effects that are missing
with only surface waves are the lower frequency oscillations of the
surface, which occur on the scale of the smoothed surface S. In con-
trast to the small scale capillary waves, these larger oscillations can
by construction be resolved on the Eulerian grid, and we can re-
use many components of the algorithm above to compute surface
tension boundary conditions for the grid based fluid simulation.

An important property of the wave equation is its ability to lo-
cally preserve the volume of the surface height function. This means
that it is able to capture, e.g., the effect of a bulging front of a fluid
sheet even when the sheet is much smaller than a grid cell. It can
thus capture effects such as the breakup of thin sheets and droplet
pinch off without having to rely on a Eulerian fluid simulation.

Our approach to surface tension does have some limitations. The
surface wave equation does not completely conserve the mass of the
overall fluid, but more specifically, that of the represented heights.
This fact, in combination with the inaccuracies of the iterative solve
make it necessary to enforce mass conservation with the method ex-
plained in Section 8. Luckily, we can accurately measure the initial
volume of each component and keep its mass constant. In addi-
tion, despite the energy conserving nature of our implicit solver, the
equation can lose energy due to the re-sampling of the underlying
mesh. We currently only linearly interpolate the wave equation vari-
ables for triangle subdivisions and edge collapses, so higher-order
interpolations could help to conserve energy.

In addition, as with any grid based method, our Eulerian ap-
proach for surface tension forces can be inaccurate for fluid compo-
nents the size of a grid cell, because the boundary conditions can not
be accurately represented on this scale anymore. We can however,
reduce the strength of the Eulerian surface tension for connected
components with a volume on the order of a grid cell, because we
can rely on our sub-grid model to handle its dynamics.

12 Conclusion and Future Work
We have presented a method to simulate surface tension flows us-
ing a mesh-based surface representation. Our method handles grid
based surface tension forces with high stability and allows for effi-
cient simulations of fast capillary waves on the liquid surface. This
enables detailed simulations featuring strong surface tension forces
with droplet pinch off as well as capillary waves. In addition, we
have shown how to use a fast approximation of the wave equation
solution with a steady state surface flow to yield highly detailed
surfaces. The mesh surface makes it possible to accurately compute
volume preserving mean curvature flow, which is the basis for our
grid based forces and sub-grid dynamics. Our approach allows us
to simulate a wide range of surface tension phenomena with a low
computational cost.

There are a number of extensions to our basic technique that we
are considering as future work. We would like to include a non-
linear wave solver, to more accurately handle dispersive capillary
waves on the liquid surface. In addition, our method could be used
to create interesting effects for bubbles and underwater phenomena,
instead of only drops. For the grid based surface tension component,
we would like to use more accurate immersed boundary methods
from [Peskin 2002]. Finally, it would be intereting to include in-
teractions with obstacle surfaces, such as enforcing certain contact
angles as in [Wang et al. 2005].
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grid mesh time σg α σs

Figure 5 753 0.5 1.0s 0.4 0.002 0.015
Figure 6 152x75 0.5 0.2s 5e-5 0.001 4e-3
Figure 7 1602x80 0.25 12.6s 0 0 1.5e-4∗

Figure 9 1283 0.5 14.1s 2e-4 0.003 2e-4
Figure 8 503 0.45 1.0s 0 0.01 2.25e-3
Figure 1 1802x50 0.55 22.3s 3e-6 0 3.5e-4∗

Table 1: This table shows the settings used for our simulations.
The mesh resolution is given relative to the grid size, while the tim-
ing is the average simulation time per frame of animation. σs with
an asterisk ∗ denotes simulations with the non-oscillatory approxi-
mation.
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