
EUROGRAPHICS 2010 / T. Akenine-Möller and M. Zwicker
(Guest Editors)

Volume 29 (2010), Number 2

BetweenIT: An Interactive Tool for Tight Inbetweening

Brian Whited1,2 Gioacchino Noris3 Maryann Simmons1 Robert W. Sumner4 Markus Gross3,4 Jarek Rossignac2

1Walt Disney Animation Studios 2Georgia Tech 3ETH Zürich 4Disney Research Zurich

Abstract
The generation of inbetween frames that interpolate a given set of key frames is a major component in the pro-
duction of a 2D feature animation. Our objective is to considerably reduce the cost of the inbetweening phase by
offering an intuitive and effective interactive environment that automates inbetweening when possible while allow-
ing the artist to guide, complement, or override the results. Tight inbetweens, which interpolate similar key frames,
are particularly time-consuming and tedious to draw. Therefore, we focus on automating these high-precision and
expensive portions of the process. We have designed a set of user-guided semi-automatic techniques that fit well
with current practice and minimize the number of required artist-gestures. We present a novel technique for stroke
interpolation from only two keys which combines a stroke motion constructed from logarithmic spiral vertex tra-
jectories with a stroke deformation based on curvature averaging and twisting warps. We discuss our system in
the context of a feature animation production environment and evaluate our approach with real production data.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational
Geometry—Geometric algorithms Computer Graphics [I.3.6]: Methodology and Techniques—Interaction tech-
niques

1. Introduction

Inbetweening is a cornerstone of the 2D animation pipeline.
An animator produces drawings at key frames that capture
the heart of the animated motion. The inbetweener then
draws the frames between each pair of keys that fill in the
intermediate motion. A typical feature-length animation re-
quires over one million inbetween drawings, with ratios of
3-4 inbetweens for each key [JT95].

The manual production of inbetween frames is both diffi-
cult and time-consuming, requiring many hours of intensive
labor by skilled professionals. Furthermore, its cost is a sig-
nificant part of the total production budget. Consequently,
researchers have long sought an automatic solution. Despite
a large body of work in this area spanning over four decades,
no definitive solution exists. This is in part because the prob-
lem is ill-posed—there is no concise set of rules for produc-
ing high-quality inbetweens, especially in cases of complex
motion and changing occlusion. The artist relies on his or her
perspective of the 3D world in which the animated characters
are embedded, as well as on an artistic vision for achieving
the desired aesthetics. It would not be sufficient to derive the
three dimensional world from the drawings, even if it were

possible, as most often the characters have their own, unde-
fined, laws of physics and deformation.

We approach the challenging task of automatic inbe-
tweening with two important observations derived from
studying the traditional animation process. First, tight inbe-
tweens, those drawn between two key frames that are very
similar in shape, are among the most laborious and time con-
suming to produce. These inbetweens are tedious to draw be-
cause they require the greatest amount of technical precision
and the least amount of artistic interpretation. By focusing
on tight inbetweening, we pinpoint an expensive portion of
the inbetweening process while restricting the problem to
one that is more tractable from an algorithmic standpoint.
Our second observation is that an effective system should
automate as much as possible while effortlessly deferring to
artist control whenever needed. We never take the artists out
of the loop. Instead we seek to make them more productive
by automating the tedious and time consuming tasks so they
can focus their efforts on areas where their creative talents
and expertise are required.

Based on these observations, we have developed Be-
tweenIT, an interactive environment that automates tight in-
betweening when possible while allowing the artist to guide,

c© Disney Enterprises Inc.
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Whited, Noris, Simmons, Sumner, Gross, Rossignac / BetweenIT: An Interactive Tool for Tight Inbetweening

© Disney
Figure 1: Tinker Bell: Frames (a) and (e) are the given key frames and (b-d) (except for the right hand) were generated
automatically. The “shadows” of previous frames are used to visualize their evolution. The topology of the right hand is not
compatible across the two keys and therefore not suitable for automation: the portion indicated in red was hand-drawn. Frame
(c) is overlaid on top of the original hand drawn inbetween (red) on the right.

complement, or override the results. BetweenIT operates on
vectorized pairs of consecutive key frames that were drawn
in the program or obtained from scanned drawings. These
key frames are segmented automatically into strokes. The
strokes of one key frame are then matched with correspond-
ing strokes of the subsequent key frame. Finally, interpolated
strokes are generated for each requested inbetween frame.
Supported user editing options include: adjusting vertex tra-
jectories across frames; resolving ambiguities in the corre-
spondence; and controlling the behavior of occluded strokes.
All interactions can be specified by the artist graphically via
a drawing interface.

2. Background
While some of the underlying mechanisms have benefited
from the advent of digital technology, a 2D production today
follows much the same basic workflow as traditional anima-
tion [JT95]. The process begins with a storyboard, which
provides a visual representation of the story. In layout, the
staging for each scene is designed, including establishing the
setting, choosing and placing character and prop elements,
and specifying camera motion and cuts.

Character and effects animation is then done in multiple
stages. First, animators produce the subset of drawings that
lay down the core of the action, the “keys.” These extreme
drawings are often “ruff” versions that capture the spirit,
flow, and arcs of the animation. A “clean up” artist is re-
sponsible for taking the ruff drawings and producing clean
lines that remain true to the original intent.

Each key drawing has one or more timing charts asso-
ciated with it (e.g. see Figure 1). The animator uses these
charts to specify how many drawings should be produced
between keys, and at what intervals. It is the job of the inbe-
tweening artist to draw the requested intermediate drawings
to produce seamless motion.

When inbetweens are needed for dramatically different

key drawings, advanced artistic skill and interpretation are
required to produce satisfactory intermediate frames. In
these cases, a further “breakdown” might be done, where the
artist produces those frames within the range that present
special drawing problems. Tight inbetweens require less
artistic interpretation – but considerable technical skill to lay
down the lines accurately.

The inbetweened frames represent a significant portion of
the drawings, budget, and time for a production. A typical
feature animation averages about four drawings per frame
(for different characters, props, etc.). An 80 minute feature
with 24 frames per second requires 460,800 drawings per
production. If a quarter of these frames are done by the
animators, then that leaves 345,600 inbetweened drawings.
Since multiple drawings are often produced before arriving
at the final version, the final tally can add up to over a million
inbetweened drawings per full length production [JT95].

One critical consideration during animation and inbe-
tweening is arcs of motion. Natural motion always follows
an arc of some sort, and therefore to achieve fluid and life-
like animation, artists must capture these natural arcs. This
is one of the most challenging aspects of inbetweening since
making a drawing on an arc is much more difficult than one
placed linearly between the keys [JT95].

Our approach focuses on automating the process of
inbetweening animated frames post clean-up for charac-
ters, props, and effects. We introduce a novel interpolation
scheme which automatically derives natural arcs of motion
from pairs of consecutive keys. Our system fits into the cur-
rent 2D pipeline with minimal change.

2.1. Related work
The problem of automatic 2D inbetweening dates back more
than forty years to the inception of computer graphics as a
field of research [MIT67]. To date, it has remained unsolved.
The many challenges in automatic inbetweening include the

c© Disney Enterprises Inc.
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Whited, Noris, Simmons, Sumner, Gross, Rossignac / BetweenIT: An Interactive Tool for Tight Inbetweening

information loss and ambiguity inherent in a 2D projection
of a 3D character, and the topology variations between key
frames that result from changes in occlusion. An automated
approach must address several challenges comprising: es-
tablishing correspondence in the presence of occlusions and
topological changes, computing stroke trajectories through
time, and avoiding the unnatural distortion that often occurs
when there is a rotational component in an object’s move-
ment.

Many of the early methods are stroke-based. They require
the user to identify a correspondence between the strokes
of consecutive key frames (e.g., [MIT67, BW71, Lev77,
KBB82, Dur91]) and do not handle occlusions or topolog-
ical changes. Correspondences in Reeves’s method [Ree81]
are indicated by a collection of curves called moving points
that are sketched by the user and connect the key frames to
specify both trajectory and dynamics. A cubic metric space
blending algorithm is used to find the positions of the re-
maining points, but requires heuristics to complete the patch
network defined by the key frame strokes and moving point
trajectories. Our method employs a semi-automatic corre-
spondence algorithm that infers correspondence for the en-
tire key from a small number of user gestures. Interpolation
is automatic and designed to follow natural-looking motion
arcs. However, our method supports an optional trajectory
redrawing interface similar to Reeves’s moving points that
allows customized trajectories to be specified by the artist.

More recently, Baxter and Ichi [BiA06] describe a sys-
tem for computing an N-way interpolation of several input
keyframes at the stroke level. Correspondences are com-
puted automatically and editable by the user when mis-
matches occur. This work focuses on calculating appropriate
blending weights for the N-way interpolation. Stroke pairs
are interpolated independently, whereas our technique uti-
lizes a graph structure, which preserves connectivity and
smoothness between adjacent strokes.

Kort [Kor02] presents a user-guided inbetweening system
that identifies correspondences and computes inbetweens
automatically but allows the user to correct undesired corre-
spondences, trajectories, or timing. The method is restricted
to the class of animations in which occlusions are resolved
via an invariant layering. Our method is not restricted to lay-
ers and our workflow allows occlusion ambiguities to be re-
solved with help from the artist via a simple and efficient
user interface.

Another layer-based approach by de Juan and Boden-
heimer [dJB05] targets the reuse of previously created 2D
animations. Unlike the previously discussed methods, their
system is image-based, rather than stroke-based. Charac-
ters in completed animation frames are segmented from
the background and divided into layers. Inbetweening is
accomplished via radial-basis function (RBF) interpolation
of the layer contours, followed by morphing of the in-
terior texture. The RBF interpolation requires the shapes
to be properly aligned, and artifacts can result from mis-

alignments. The MeshIK system of Sumner and colleagues
[SZGP05] includes a boundary-based interpolation scheme
that does not require alignment, but it does not address inte-
rior texture morphing. As shown by Baxter, Barla, and An-
jyo [BBiA09a], compatible embedding enables a maximally
rigid interpolation [ACOL00, FTA05, BBiA09b] that natu-
rally blends both a shape’s boundary and its interior texture.
Similar methods have also been applied for cartoon capture
and reuse [BLCD02]. Nevertheless, methods based on tex-
ture blending are susceptible to blurring artifacts unless ex-
treme care is taken to align internal texture features. Because
we use a stroke-based algorithm, our method does not suf-
fer from blurring problems. Sýkora and colleagues [SDC09]
use a similar image-based approach to register and morph
cartoon frames. Their approach works well for rigid pose
changes but is not designed to handle the precise interpo-
lation of details that we require. Recent work [MHM∗09]
on interpolating images shows promising results given two
similar input frames of video, but is not designed to handle
sparse line-drawings or allow for user editing, and is pro-
hibitively slow.

A final class of inbetweening systems employs skeleton-
based methods for key frame interpolation. In the early work
of Burtnyk and Wein [BW76], key frame components are
embedded in skeletal structures which are animated directly
to deform the embedded shape. The inbetweening work of
Melikohv et al. [MTS∗04] uses a skeleton concept to deform
the texture surrounding hand-drawn lines. The vectorized
strokes in our system encode the skeleton and the varying
thickness of the drawn lines, preserving the original hand-
drawn appearance.

Fekete and colleagues [FBC∗95] evaluate automatic inbe-
tweening in the context of a paperless 2D animation system
and identify several advantages and disadvantages. The ad-
vantage of reduced hand-drawn inbetweens and greater ani-
mation reuse is tempered by the need to specify correspon-
dences, struggle with awkward timing specification, and
build template models. Our BetweenIT system addresses
all of these concerns: correspondences are mostly automatic
and require little user guidance (Section 3), timing changes
are specified in a natural fashion (Section 4), and templates
are not required.

3. Core Algorithms
This section details the automatic algorithms, which include
graph building, matching, and interpolation. For tight inbe-
tweening, these algorithms often produce adequate results
automatically. The handling of more difficult cases that in-
volve artist intervention is discussed in Section 4 where we
present the entire workflow, including all user interaction.
Our solutions are designed with the goal of an artist-friendly
workflow: the focus is on algorithms that quickly produce a
plausible result which can then be guided or edited by the
artist.

c© Disney Enterprises Inc.
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Whited, Noris, Simmons, Sumner, Gross, Rossignac / BetweenIT: An Interactive Tool for Tight Inbetweening

3.1. Representation
A single drawing in our system is stored as a graph of
strokes. The graph nodes, which we refer to as salient points,
are the junctions at which strokes meet or end, and the graph
edges are the strokes themselves. Each salient point contains
pointers to its incident strokes, which are ordered counter-
clockwise around the salient point. A single stroke S is rep-
resented as a piecewise linear curve with n vertices. Each
vertex i has an associated thickness measure Ti, for i∈ 1 . . .n.

3.2. Stroke matching
The input to the inbetweening process is a pair of consec-
utive keys which have been segmented into a stroke graph.
The user initiates the automatic matching algorithm in one of
two ways: by selecting a pair of corresponding strokes, one
from each key frame, or by selecting a region via a selection
lasso. When the lasso is used, the most similar pair of strokes
within the selected region is chosen automatically. This ini-
tial pair provides the seed for our Correspondence Tracing
Algorithm (CTA).

In each key, starting from the selected stroke, the CTA
traverses the graph in both directions in a depth-first order,
respecting the circular order of the incident strokes around
nodes. The traversal is performed simultaneously on both
keys. The recursion stops when a incompatibility in the con-
nectivity is detected or when two corresponding strokes are
too dissimilar.

Our similarity metric computes an error E between two
strokes A and B based on two different factors, EL and EA.
EL is the difference in arc-length between the two strokes.
EA is the area of the region bound by the two strokes when
they are brought into endpoint alignment. E is then com-
puted as (EA + E2

L)/(L(A) + L(B))2 where L is arc-length,
and compared against a constant TE to determine if two
strokes are similar. We have found that TE = 1 works well
and use it for all examples presented in this paper. Other
similarity measures may be used [BiA06,Vel01,SKK03] that
take into account proximity, orientation, curvature measures,
and other shape descriptors. We have opted for a simple ap-
proach which works well in practice and is fast. No metric
is perfect in all cases and for tight inbetween situations, the
choice of particular method is not a major factor.

The inbetweening operates on the subgraph of strokes
matched by CTA. In the tight inbetweening problem, the
two keys often have identical topology and similarly shaped
strokes. In such situations, CTA establishes stroke-to-stroke
correspondence for a whole connected component of the
key. In more complex situations, especially where the keys
have different topologies, the artist has the opportunity to
provide further correspondence seeds, run CTA again, and
compute inbetweens for missing portions of the keys. When
the lasso selection is used, successive CTA traversals are ex-
ecuted, each time computing the best seed among the re-
maining strokes not covered by the previous traversals. This
process continues until no stroke pairs with E < TE remain.

3.3. Vertex Correspondence
By default, smooth (subdivided) versions of the key strokes
are re-sampled using uniform spacing in arc-length in or-
der that matched strokes on each key have the same number
of vertices. This re-sampling defines the default vertex-to-
vertex correspondence. The artist alters this correspondence
by identifying corresponding salient points, one on each
stroke of a matching pair. These salient points are inserted
as new endpoints, hence splitting the strokes. More complex
correspondence algorithms could be substituted [SKK03],
but we have found that our simple, fast, and predictable tech-
nique works well in practice.

3.4. Composite Interpolation
Our interpolation scheme is motivated by the basic princi-
ple of action arcs in 2D animation as described in the classic
Illusion of Life: “most movements will describe an arc of
some kind...One of the major problems for the inbetweeners
is that it is much more difficult to make a drawing on an arc
than one halfway inbetween...No one has ever found a way
of insuring that the drawings will all be placed accurately
on the arcs, even when experienced people are inbetweening
the action, and it is one of the most basic requirements for
the scene” [JT95]. In addition to this desire for overall natu-
ral motion arcs, inter-stroke continuity must be maintained.
The approach also must be efficient enough to fit into an in-
teractive framework. To this end, we have developed a novel
stroke interpolation scheme which combines a stroke motion
constructed from logarithmic spirals with stroke deformation
based on curvature averaging and twisting warps.

Bi
0

Bi
1

A0 A1

Bj
0 Bj

1

A0 A1At

Figure 2: Stroke motion: The left figure shows the two spiral
paths resulting from calculating the spiral parameters indi-
vidually for the strokes incident on A0. On the right they have
been computed as a weighted average of the parameters cal-
culated for each incident stroke.

3.4.1. Stroke Motion
Input strokes may be undergoing a motion that involves not
only translation, but also rotation and scaling. Hence, we
have developed a solution that provides natural, arched mo-
tions when the corresponding key features are congruent (re-
lated by a rigid body motion) or similar (related by an affin-
ity that is a combination of rotation, translation and uniform
scaling). The stroke motion is a map between time t (which
evolves from 0.0 to 1.0), and a set of similarities. A similarity
may be defined by two points and their images. Therefore,
we define a stroke motion by the movement of its endpoints.

In choosing the particular type of endpoint motion, we

c© Disney Enterprises Inc.
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Whited, Noris, Simmons, Sumner, Gross, Rossignac / BetweenIT: An Interactive Tool for Tight Inbetweening

seek trajectories that produce pleasing arcs, preserve rigid
shapes, and approximate the non-linear perspective shorten-
ing of objects that approach the viewer. Linear trajectories
yield unacceptable shortening of rotating motions. Higher
order polynomial curves (including cubic Bézier and ra-
tional B-splines) require endpoint derivatives or access to
more than two keyframes. Furthermore, cubics and bi-arcs
sometimes produce unexpected inflection points. The sim-
plest trajectory satisfying these requirements is the logarith-
mic spiral (Figure 2), a pleasing curve found in nature (e.g.
shells, weather systems, spiral galaxies) [Tho92].

Given an initial position A0 and final position A1 of an
endpoint A, we compute its position At at time t using a log-
arithmic spiral motion l(t) which is the combination of a ro-
tation r(α) by angle α and a uniform scaling s(ρ) by a factor
ρ, both with respect to a fixed point (spiral center) F . We
need to consider all strokes incident on A when computing
the appropriate values for α and ρ. The process involves the
following steps:
1. A weight is assigned to each incident stroke Si based on

its relative arc-length: We compute the sum Li of the arc-
lengths of the stroke at time t = 0 and at t = 1. The weight
wi is set as follows, where LT is the total of all Li:

LT = ∑
i

(L(Si
0)+L(Si

1)), wi =
Li

LT
. (1)

2. Each incident stroke Si, has one endpoint with initial po-
sition A0 and final position A1. Let Bi

0, Bi
1 be the position

of the remaining endpoint. We compute the angle α
i be-

tween ~A0Bi
0 and ~A1Bi

1 and the scale factor ρ
i = || ~A1Bi

1||
|| ~A0Bi

0||
.

3. The final angle and scale factor are a weighted average:
α = ∑wi

α
i and ρ = ∑wi

ρ
i.

4. The fixed point F is computed by solving the linear sys-
tem

~FA1 = r(α)s(ρ) ~FA0 (2)

In the case of pure translation, the determinant of the sys-
tem is zero (and the fixed point is at infinity). We handle
this case by performing a linear interpolation of the end-
points if the determinant is near zero.

The position At at time t of endpoint A from the initial key
moved by this logarithmic spiral motion is

At = l(t)A0 = F + r(αt)s(ρt)(~FA0) (3)

This process is carried out for each endpoint (see Figure 2
right). For any given stroke, the stroke motion is then defined
by the motions of its endpoints.

3.4.2. Stroke Deformation
The stroke motion described above produces the positions
At and Bt of the two endpoints A,B, of a stroke at time t.
We must now compute the evolving shape of the stroke that
connects these endpoints. The morph should smoothly blend
between the key stroke shapes while preserving tangent con-
tinuity between adjacent strokes that are smoothly connected

in both keys. We achieve this with a three-step deformation
involving intrinsic shape interpolation, curve fitting, and a
tangent aligning warp.

Bi
t

AtAt

It

a) b) c)
Figure 3: Stroke deformation: (a) Intrinsic shape interpo-
lation. (b) Curve Fitting: transforms I to align the position
It with Bi

t . Note the discontinuity at the endpoint where the
red stroke meets the black one. (c) Tangent Alignment warp:
enforces continuity at endpoints.

Intrinsic Shape Interpolation: Each stroke is represented
in terms of its edge lengths, vertex angles, and vertex thick-
nesses. The shape of a stroke at time t is constructed from a
linear interpolation of this intrinsic description as proposed
in [SGWM93], which is a discrete version of curvature in-
terpolation [SE02]. Note that if we start the construction at
At , the resulting interpolated curve I ends at some position
It , which does not necessarily coincide with Bt (Figure 3 a).
We avoid using the optimization described in Sederberg et
al. [SGWM93] to fix the discrepancy as it can produce unac-
ceptable results, as outlined by the authors. We also interpo-
late the thickness parameter at each vertex linearly between
keyframes.
Curve Fitting: Each stroke I is then rotated by by an-
gle 6 (~AtBt)(~At It) and scaled uniformly by || ~AtBt ||/|| ~At It ||
about At to produce I′t which coincides with Bt (Figure 3 b).
These first two steps produce pleasing morphs that preserve
the continuity of the stroke graph but fail to preserve smooth-
ness of connections between adjacent strokes. This short-
coming is addressed by the next step.
Tangent Aligning Warp: In order to be consistent with the
logarithmic spiral, we assume that the angle of the tangent
at an endpoint varies exponentially over time. Therefore, we
compute the desired endpoint tangent direction of an inter-
polated stroke by linearly interpolating the polar representa-
tion of the tangent in the two keys. Each interpolated stroke
is then warped (Figure 3 c) so that it matches the desired tan-
gents at its endpoints. To do this, we use a variation of the
Twister warp [LKG∗03]. First, assume the angles between
the endpoint tangents of I′ and the desired tangents at At and
Bt are a and b. Assume that L is the total arc length of the
stroke I′. For every vertex position P of I′, LP is the arc-
length from P to At along I′. The Twister warp moves P to
P+(PA−P)+(PB−P), which simplifies to PA +(PB−P),
where PA is the image of P by a rotation of angle rA around
At and PB is the image of P by rotation of angle rB around
Bt , where rA and rB are defined as follows:

rA = acos2(
π

2
LP

L
), rB = bsin2(

π

2
LP

L
) (4)

c© Disney Enterprises Inc.
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Whited, Noris, Simmons, Sumner, Gross, Rossignac / BetweenIT: An Interactive Tool for Tight Inbetweening
[F

u
et

 a
l.

20
05

]
Be

tw
ee

nI
T

Figure 4: Comparison with the work of Fu et al [FTA05] –
Note that with our method the motion of the inner compo-
nents is coordinated with the outer portion.

The proposed interpolation scheme produces aesthetically
pleasing results that ensure tangent continuity across smooth
junctions between strokes and preservation of features that
are present in both keys. In addition, it is an approach suit-
able for interactive use, since it does not require numeric
iterations or other optimizations.

3.4.3. Comparison with prior art
In developing our interpolation algorithm, we have eval-
uated several existing techniques. Leading contemporary
methods formulate the interpolation as a global optimiza-
tion problem that maximizes the rigidity of the inbetween
shapes to avoid scaling and shearing artifacts [FTA05,SE02,
ACOL00]. Since the optimization is formulated in the dif-
ferential domain, the result is invariant to global translation.
Consequentially, these methods cannot be applied as-is be-
cause the input to our application is made up of multiple
connected components which must move as a semantic unit
when the translation invariance is resolved—an issue not ad-
dressed by existing work. Figure 4 demonstrates this prob-
lem using our implementation of [FTA05].

Our logarithmic spirals ensure that if portions of the draw-
ing move by the same rigid body motion or affinity to new
poses in another key frame, then their trajectories are consis-
tent through inbetweening (Figure 4, 5). If the components
are transformed each by a different affinity, there is no fun-
damental reason to believe that they need to follow a consis-
tent path. In either scenario, our workflow allows the artist
explicitly specify the path, if desired. Our stroke deforma-
tion executes interactively from start to finish in contrast to
the aforementioned algorithms which require an expensive
precomputation step.

4. Workflow
We have developed a natural workflow for user-guided inbe-
tweening in which various interactive operations allow the
user to optionally guide and/or override the algorithmic tools
described in the previous section. As with other parts of
the system, the interface design was driven by conversations
with artists. For example, stroke-based interactions are gen-
erally favored over clicking, and therefore we have designed
the BetweenIT interface around the concept of guide strokes.
The semantics of a guide stroke, and hence the resulting ac-

tion, depends on the current mode. The following sections
describe the modes and user interactions in more detail.
Correspondence Editing: If not satisfied with the output of
the automated CTA stroke matching, the user can trim or
extend the set of matched stroke pairs. To remove strokes
from the matched set, the user simply draws a guide stroke
along them on one of the keys. To extend the matched set,
the user draws a guide stroke, providing a new seed for the
next round of CTA. This new CTA traversal will not over-
ride previous inbetweens and will stop once a stroke with an
existing correspondence is found.
Salient Point Editing: To fine tune the correspondence, the
user can specify additional salient points indirectly through
guide strokes. With the strokes from the adjacent keys dis-
played in the same view, the user draws a guide stroke that
passes through (approximately) the matching stroke pair.
This action splits each stroke by inserting a new salient
point. The salient point on the first stroke is the point clos-
est to the starting point of the guide stroke and the salient
point on the second stroke is computed similarly. The ini-
tial two strokes are thus broken into four. The same guide
stroke serves to define the trajectory of vertex corresponding
to the salient point as it moves between the keys. The user
may also desire to merge adjacent strokes, thereby deleting a
salient point. This operation is performed by connecting two
adjacent strokes with a guide stroke.
Timing Specification: In practice, the timing for a set of
inbetweens is specified prior to the inbetweening step and
loaded in with the input key drawings. For total flexibility,
however, the user may adjust the time parameterization in-
teractively. As the timing is edited, any already computed
inbetweens will update on the fly for immediate feedback.
Trajectory Drawing: Any of the automatically computed
vertex trajectories may be edited as follows. The user draws
a guide stroke to indicate the new, desired path. The ends
of the trajectory are fixed, as they are specified by the key
frames. It would be too tedious for the artist, however, to
require that the guide stroke coincide with the initial and
final vertex positions. In cases where the drawn path does
not match, the guide stroke is automatically retrofit through
a similarity transformation (translation, rotation, and uni-
form scaling) to meet the end constraints. The adjacent in-
betweens that are affected by such a change are recomputed
immediately. When in playback mode, the result is reflected
in the animation in real-time, giving instant feedback and al-
lowing the user to redraw the trajectory repeatedly until the
desired result is obtained.
Occluded Lines Drawing: In situations where a stroke is
partially or totally occluded in one key frame, but not in the
next or previous key frame, the graph connectivity may be
locally incompatible. The user may extend a stroke past its
occlusion point by drawing a guide stroke to indicate the
occluded portion of the stroke.

The added stroke is then intersected with other strokes in
the same frame, creating substrokes. Each substroke has an

c© Disney Enterprises Inc.
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Whited, Noris, Simmons, Sumner, Gross, Rossignac / BetweenIT: An Interactive Tool for Tight Inbetweening

© Disney
Figure 5: Speaker: Frames (a) and (d) are the given key
frames and (b-c) are generated inbetweens.

independent visibility toggle. By default, the substrokes tog-
gle visibility at each intersection, which works well in the
common simple case, such as in Figure 10. When more con-
trol is necessary, the user may select specific substrokes to
manually toggle the visibility. The visibility status is trans-
ferred automatically to subsequent corresponding substrokes
through time. For even further flexibility, the produced inbe-
tween substrokes may also be toggled individually with a tap
of the pen on the stroke.
Breakdown Insertion: When two key frames or subsets of
key frames are too dissimilar to be classified as “tight," the
user has the option of inserting an additional “breakdown”
key frame for either the entire frame, or just the subset that is
not tight. The user simply draws the strokes of the inbetween
and then treats them as key strokes. In this way our system
allows the user to produce manual stroke-level breakdowns
only where needed.

The goal of BetweenIT is to automate the production of
inbetweens where possible. As the level of complexity in
the drawings increases, we support intuitive and direct input
from the artist to guide the automation. We expect the level
of interaction or “touch time” [Cat78] to reflect the complex-
ity of the drawing problems presented by the keys. The fol-
lowing examples are sample results of utilizing BetweenIT
on real production data. A timeline noting the relative posi-
tion of the frame is shown beneath each example. Keys are
denoted with an asterisk, all other frames were generated by
BetweenIT. In each example, the previous frame(s) in the se-
quence are indicated as a “shadow” to show the progression
of the interpolation.

In the following, we present results for the purpose of
evaluating the usability of BetweenIT and the quality of the
inbetweens it produces. First, we show a collection of inbe-
tweens generated by BetweenIT given archival key frames.
We compare the automatically generated results visually to
the hand-drawn inbetweens from the original artwork. We
also present sample results from an artist evaluation of Be-
tweenIT by the effects department.

Quantitatively we measure performance in terms of stroke
count as well as time, where possible. All of the examples
shown produced automated results in roughly 1 second on
average. In cases where the user desires, or is required, to
guide the system, he/she draws a series of “guide strokes”
and/or indicates edits with mouse clicks, as described in Sec-
tion 4. In the following we use interaction count (the sum of
the guide strokes and input mouse clicks) versus the total

© Disney
Figure 6: Hand – User interaction: A trajectory is speci-
fied for the finger tip. The arc and resulting salient points
are shown in green. The original automatically generated
salient points are shown in red.

© Disney
Figure 7: Glove: Frames (a) and (e) are the given key frames
and (b-d) are generated inbetweens. The rightmost figure su-
perimposes the frames and visualizes the trajectories.

strokes in the frame as a rough measure of efficiency gain.
For example, if each of a pair of keys has n strokes and there
are k inbetweened frames, then the artist would have to hand
draw kn strokes to create the inbetweens. If the system pro-
duces fully automated results that are acceptable, that is a
100% gain in efficiency. If the user needs to perform i in-
teractions to guide the system, the gain is kn−i

kn . Also note
that even when this measure reports 0% gain, the use of Be-
tweenIT may still save time, since the guide strokes need
not be precise and may be drawn faster than the strokes that
make up the final frame. Table 1 summarizes the results.

5. Results
Archival examples: Figure 5 illustrates an example of pure
rigid body motion. In this case, the results shown were pro-
duced fully automatically.

In Figure 6 we illustrate a next possible level of interac-
tion. Here the automatic technique has produced a reason-
able solution, but the user has chosen to slightly alter the tra-
jectory of the tip of the finger with a single drawn arc. The
inbetween is automatically updated after the arc is drawn,
giving the user interactive feedback. In addition to specify-
ing the arc, this interaction transparently produces additional
salient points at the tip of the finger.

The glove example in Figure 7 presents a more challeng-
ing topological problem. For example, folds appear in the
glove as the hand closes. These changes in topology are han-
dled with a few salient point insertions, stroke-merge oper-
ations, and correspondence edits. Figure 9 shows the initial
interpolation and the final results after the user has manu-
ally specified 3 additional correspondences. The rightmost

c© Disney Enterprises Inc.
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Whited, Noris, Simmons, Sumner, Gross, Rossignac / BetweenIT: An Interactive Tool for Tight Inbetweening

© Disney
Figure 8: Duck: Frames (a), (e), and (h) are the given key frames and (b-d) and (f-g) are generated inbetweens.

© Disney

Figure 9: Glove – User interaction: The correspondence
stage mismatched portions of the hand, producing the inter-
polation on the left. The right image shows the results after
3 additional matches are provided manually.

© Disney
Figure 10: Duck – User interaction: The first two images
show an expanded region in each of the keys, a and e, where
the finger is initially occluded and then moved from behind
the duck. The user input occlusion stroke is shown on the
right. Resulting inbetweens are shown in Figure 8.

image in Figure 7 visualizes the automatically generated tra-
jectories, illustrating the smooth arcs generated by the inter-
polation algorithm.

The duck sequence in Figure 8 shows two successive
frame ranges. Note that unlike the previous examples the
specified timing is not linear. Figure 10 illustrates an occlu-
sion fix for this example, where a single stroke drawn by the
user indicates the desired shape of the occluded region.

Figure 1 presents a step higher in the complexity range.
Here there are many topological as well as occlusion chal-
lenges. The rotating right hand is the most notable drawing
problem and can not be handled automatically. In this case
a breakdown drawing for only the hand has been inserted
for frames b− d, and the remaining portions of the frames
were produced by the algorithm. Our framework allows the
user to select desired areas and do the drawing themselves

Example # Inb. Strk Interactions % Eff. Gain
Speaker 48 0 100
Glove 84 13 85
Duck 770 12 98
Tinker Bell 456 24 95
Tone 145 24 83

Table 1: Number of interactions required to generate the in-
betweens vs. total number of hand-drawn inbetween strokes.

[K
or

t 2
00

2]
Be

tw
ee

nI
T

Figure 11: Comparison of results from [Kor02] (Image
c© 2002 ACM, Inc.) to our results.

seamlessly within the automated context. This is important
because there will always be components of the drawings
that the artist will want to do themselves.

Finally, we compare our results to two existing ap-
proaches, one stroke-based and the other image-based.
Kort’s stroke-based technique [Kor02] attempts to solve oc-
clusion issues algorithmically, but is only successful in sim-
ple cases, and therefore for the example shown in Figure 11,
the ears present a failure case. In contrast, our system re-
quires user interaction for correspondence, feature identifi-
cation, and occlusion (totaling 29 interactions) but is able
to successfully generate coherent inbetweens. In Figure 12,
we compare the results of recent work by Sýkora and col-
leagues [SDC09] on the keyframes from Figure 7. Due to
the non-rigid nature of the animation and sliding occlusion
boundaries, it is difficult to achieve clean inbetweens without
artifacts using an image-based technique. In addition, we fa-
vor a stroke-based approach because it enables preservation
of line quality, and fine grain, intuitive editing.

For the purposes of evaluating our system, in addition to
looking at potential efficiency gain, we can compare the re-
sults of the algorithm to hand-drawn inbetweens. We do not

c© Disney Enterprises Inc.
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Whited, Noris, Simmons, Sumner, Gross, Rossignac / BetweenIT: An Interactive Tool for Tight Inbetweening

© Disney

BetweenIT[Sykora et al. ‘09]´BetweenIT[Sykora et al. ‘09]´

Figure 12: A comparison of 2 inbetweens generated
by [SDC09] and BetweenIT from the keyframes in Figure 7.

© Disney
Figure 13: Duck: An example frame comparing the results
shown in Figure 8 by overlaying a hand-drawn frame in red.

expect in general an exact match, as even between artists,
different drawings are produced, but such a comparison can
give some indication of the success of our approach. Fig-
ures 1 and 13 compare the BetweenIT-generated results to
the original hand-drawn inbetweens by overlaying the two.

All of the above results were presented to a lead clean up
artist to judge quality – as she would evaluate any of the in-
betweens produced in her department. For the duck example
and the glove example there was one note each regarding the
shape of a single inbetweened stroke. To produce the desired
shape for the duck it was sufficient to add one additional
user-defined salient point. The note for the glove requested
a change of the location of the knuckle bend (Figure 14). To
implement this fix, a stroke was drawn as a breakdown to the
middle inbetween frame to produce the final results shown
in the bottom row of Figure 14.
Trial Evaluation: In addition to comparing the generated in-
betweens to existing hand-drawn examples, BetweenIT was
evaluated by the effects department who used the tool to in-
between tone shapes. Tones, highlights, and shadows repre-
sent only a portion of the types of inbetweening performed
in effects, but a time-consuming portion, and one well-suited
to automation. Figure 15 shows an example tone. The frog
character was loaded in as a reference background on which
to draw the tone shown on the right side of her face.

Another example showing the outline of a tone of a char-
acter’s face and shoulder is shown in Figure 16. A hand-
drawn version of the 29 inbetween frames in this shot took
approximately an entire day to complete, while the ver-
sion produced by BetweenIT was completed end-to-end in
roughly 30 minutes. These numbers are just a indication of
efficiency: the artist completed this example after just a sin-
gle afternoon to get familiar with BetweenIT. We expect the

© Disney
Figure 14: Glove: The left figure shows an artist’s desired fix
(in red) to Figure 7. The remaining figures show the results
after inserting a breakdown stroke, with.a comparison to the
stroke before the fix (blue).

© Disney
Figure 15: Frog Tone: This example contains 9 key frames
and 22 inbetweens. The leftmost figure shows the tone shape
on top of a background reference image, the middle figure
shows the composited frame, and the rightmost figure shows
all 31 tone frames superimposed and color-coded by key.

efficiency gain to increase with more exposure to the tool.
Our stroke efficiency measure for this example is 83% (20
salient points and 4 trajectories drawn), which maps to the
task being completed 16 times faster than by hand.

6. Conclusion
We have presented the BetweenIT system for the user-
guided automation of tight inbetweening. For cases where
the user is not satisfied with the automated results, Be-
tweenIT provides a context in which the user can guide the
system in a natural way to produce quality results efficiently.
The inbetweening is driven by a novel solution for stroke in-
terpolation along natural arcs from only two keys.

We demonstrate workflow and results using BetweenIT
on a collection of real production examples of varying com-
plexity. The results generated are comparable to hand-drawn
examples in many of our test frames. Where user interven-
tion was necessary, the required input was small relative
to the resulting reduction in the number of overall drawn
strokes. After a single introductory session with the tool,
an effects artist was able to efficiently produce inbetweened
tones on multiple shots that were included in the final film.

There are many avenues for improvement in our current
system. We have primarily focused on the interpolation algo-
rithms: the correspondence and feature identification mod-
ules could benefit from further exploration. High-quality
vectorization is also an open area.

Acknowledgements
We would like to acknowledge the artists and production
crew of the Walt Disney Animation Studios for their valu-

c© Disney Enterprises Inc.
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Whited, Noris, Simmons, Sumner, Gross, Rossignac / BetweenIT: An Interactive Tool for Tight Inbetweening

© Disney
Figure 16: Face Tone: Frames (a) and (q) are two key frames
for the tone shape and (e,i,m) are a subset of the 15 gen-
erated inbetweens (b-p). The rightmost figure superimposes
tone shapes for all 34 frames, with (a-q) shown in green.

able input and inspiration, with special thanks to Rachel
Bibb. Gene Lee engineered the prototype into a production
tool, and Felipe Cerdan headed the testing in effects. We
thank Joe Marks for initiating and supporting this project.
Thanks to Daniel Sýkora for providing the example in Fig-
ure 12.

References
[ACOL00] ALEXA M., COHEN-OR D., LEVIN D.: As-rigid-as-

possible shape interpolation. In Proc. of ACM SIGGRAPH 2000
(2000), Computer Graphics Proceedings, Annual Conference Se-
ries, pp. 157–164.

[BBiA09a] BAXTER W., BARLA P., ICHI ANJYO K.: Compat-
ible embedding for 2d shape animation. IEEE Transactions on
Visualization and Computer Graphics 15, 5 (2009), 867–879.

[BBiA09b] BAXTER W., BARLA P., ICHI ANJYO K.: N-way
morphing for 2d animation. Comput. Animat. Virtual Worlds 20,
2 (2009), 79–87.

[BiA06] BAXTER W., ICHI ANJYO K.: Latent doodle space.
Computer Graphics Forum 25, 3 (2006), 477–486.

[BLCD02] BREGLER C., LOEB L., CHUANG E., DESHPANDE
H.: Turning to the masters: Motion capturing cartoons. ACM
Transactions on Graphics 21, 3 (2002), 399–407.

[BW71] BURTNYK N., WEIN M.: Computer generated key
frame animation. Journal of the SMPTE 80 (1971), 149–153.

[BW76] BURTNYK N., WEIN M.: Interactive skeleton tech-
niques for enhancing motion dynamics in key frame animation.
CACM (1976).

[Cat78] CATMULL E.: The problems of computer-assisted anima-
tion. In Proc. of SIGGRAPH 1978 (1978), Computer Graphics
Proceedings, Annual Conference Series, pp. 348–353.

[dJB05] DE JUAN C. N., BODENHEIMER B.: Re-using tradi-
tional animation: Methods for semi-automatic segmentation and
inbetweening. In Proceedings of Symposium on Computer Ani-
mation 2006 (2005), pp. 100–102.

[Dur91] DURAND C.: The toon project: Requirements for a com-
puterized 2d animation system. Computers & Graphics 15,2
(1991), 285–293.

[FBC∗95] FEKETE J., BIZOUARN E., COURNAIRE E., GALAS
T., TAILLEFER F.: Tictactoon: A paperless system for profes-
sional 2d animation. In Proc. of SIGGRAPH 1995 (1995), Com-
puter Graphics Proceedings, Annual Conference Series, pp. 79–
90.

[FTA05] FU H., TAI C.-L., AU O. K.-C.: Morphing with lapla-
cian coordinates and spatial-temporal texture. In Proceedings of
Pacific Graphics 2005 (2005), pp. 100–102.

[JT95] JOHNSTON O., THOMAS F.: The Illusion of Life. Disney
Press, 1995.

[KBB82] KOCHANEK D., BARTELS R., BOOTH K.: A Computer
System for Smooth Key Frame Animation. Tech. Rep. CS-82-42,
University of Waterloo, 1982.

[Kor02] KORT A.: Computer aided inbetweening. In NPAR
’02: Proceedings of the 2nd international symposium on Non-
photorealistic animation and rendering (2002), pp. 125–132,
http://doi.acm.org/10.1145/508530.508552.

[Lev77] LEVOY M.: A color animation system: based on the mul-
tiplane technique. In Proc. of SIGGRAPH 1977 (1977), Com-
puter Graphics Proc., Annual Conference Series, pp. 65–71.

[LKG∗03] LLAMAS I., KIM B., GARGUS J., ROSSIGNAC J.,
SHAW C. D.: Twister: a space-warp operator for the two-
handed editing of 3d shapes. In Proc. of ACM SIGGRAPH 2003
(2003), Computer Graphics Proceedings, Annual Conference Se-
ries, pp. 663–668.

[MHM∗09] MAHAJAN D., HUANG F.-C., MATUSIK W., RA-
MAMOORTHI R., BELHUMEUR P.: Moving gradients: a path-
based method for plausible image interpolation. In Proc. of SIG-
GRAPH 2009 (2009), Computer Graphics Proceedings, Annual
Conference Series, pp. 1–11.

[MIT67] MIURA T., IWATA J., TSUDA J.: An application of hy-
brid curve generation: cartoon animation by electronic comput-
ers. In AFIPS ’67 (Spring): Proceedings of the April 18-20, 1967,
spring joint computer conference (1967), pp. 141–148.

[MTS∗04] MELIKHOV K., TIAN F., SEAH H. S., CHEN Q., QIU
J.: Frame skeleton based auto-inbetweening in computer assisted
cel animation. In CW ’04: Proceedings of the 2004 Intl. Confer-
ence on Cyberworlds (2004), IEEE Computer Society, pp. 216–
223.

[Ree81] REEVES W.: Inbetweening for computer animation uti-
lizing moving point constraints. In Proc. of SIGGRAPH 1981
(1981), Computer Graphics Proceedings, Annual Conference Se-
ries, pp. 263–270.

[SDC09] SÝKORA D., DINGLIANA J., COLLINS S.: As-rigid-as-
possible image registration for hand-drawn cartoon animations.
In NPAR ’09: Proceedings of the 7th Intl. Symposium on Non-
Photorealistic Animation and Rendering (2009), pp. 25–33.

[SE02] SURAZHSKY T., ELBER G.: Metamorphosis of planar
parametric curves via curvature interpolation. Intl. J. of Shape
Modeling 8(2) (2002), 201–216.

[SGWM93] SEDERBERG T. W., GAO P., WANG G., MU H.: 2-d
shape blending: an intrinsic solution to the vertex path problem.
In Proc. of SIGGRAPH 1993 (1993), Computer Graphics Pro-
ceedings, Annual Conference Series, pp. 15–18.

[SKK03] SEBASTIAN T. B., KLEIN P. N., KIMIA B. B.: On
aligning curves. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1
(2003), 116–125.

[SZGP05] SUMNER R. W., ZWICKER M., GOTSMAN C.,
POPOVIĆ J.: Mesh-based inverse kinematics. ACM Transactions
on Graphics 24, 3 (2005), 488–495.

[Tho92] THOMPSON D. W.: On Growth and Form. Cambridge
University Press, 1992.

[Vel01] VELTKAMP R.: Shape matching: similarity measures and
algorithms. In Shape Modeling and Applications, SMI 2001 Intl.
Conference on. (May 2001), pp. 188–197.

c© Disney Enterprises Inc.
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

