
To appear in ACM TOG 30(6).

Mixed-Order Compositing for 3D Paintings

Ilya Baran1 Johannes Schmid1,2 Thomas Siegrist1,2 Markus Gross1,2 Robert W. Sumner1

1Disney Research Zurich 2ETH Zurich

Abstract

We present a method for rendering 3D paintings by compositing
brush strokes embedded in space. The challenge in compositing
3D brush strokes is reconciling conflicts between their z-order in
3D and the order in which the strokes were painted, while maintain-
ing temporal and spatial coherence. Our algorithm smoothly tran-
sitions between compositing closer strokes over those farther away
and compositing strokes painted later over those painted earlier. It
is efficient, running in O(n logn) time, and simple to implement.
We demonstrate its effectiveness on a variety of 3D paintings.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

Keywords: compositing, nonphotorealistic rendering

1 Introduction

Traditional 2D painting techniques and digital 2D painting systems
provide an artist with a lot of expressive freedom in the creation of
a painting, allowing a wide range of styles. Translating this free-
dom into 3D so that paintings can be viewed from multiple an-
gles has been a research challenge for many years. Meier [1996]
first proposed generating brush strokes attached to 3D objects.
Other systems rely more on the artist. For example, Disney’s
Deep Canvas [Katanics and Lappas 2003] and, most recently, Over-
Coat [Schmid et al. 2011], present the artist with a 3D canvas that
allows him or her to place stylized paint strokes in space based on
3D proxy geometry. In this paper, we refer to a collection of brush
strokes embedded in space as a 3D painting (Figure 1).

A 3D painting system renders the scene by projecting each brush
stroke onto the current view plane and rasterizing it as one or more
fragments for every pixel that the stroke overlaps. This rendering
method exposes a technical dilemma about the order in which the
fragments should be composited. In the 2D painting metaphor,
when the artist places a new paint stroke, it obscures all previous
paint strokes that it overlaps. Such behavior is achieved by com-
positing in stroke order. From a 3D point of view, however, strokes
that are closer to the viewer should obscure those that are farther
away, which amounts to compositing in depth order. Compositing
purely in stroke order negates much of the benefit of 3D painting,
as the sense of tangible objects is lost when the view is changed.
Compositing purely in depth order, on the other hand, leads to Z-
fighting, precluding the artist from painting over existing strokes,
and thus ignores an important part of the 2D painting metaphor.
This problem dates back to Meier’s work [1996] and is illustrated
in Figure 2.

Katanics and Lappas [2003] articulated the desire for mixed-order
compositing: fragments that, in the artist’s mind, belong on the
same surface should be composited in stroke order, while those that
belong on different surfaces should be composited in depth order.
Unfortunately, assigning each fragment to a specific surface is often
impossible: the stroke that generated the fragment may span several
surfaces, may self-occlude, or may not even conform to a surface
at all. The guideline Deep Canvas adopts is therefore to choose

Figure 1: A 3D painting, consisting of brush strokes embedded in
space, composited using our method. c©Disney Enterprises, Inc.

the appropriate ordering based on a depth tolerance d: fragments
whose depths are within d of each other are assumed to lie on the
same surface and composited in stroke order, but fragments that are
farther apart are composited in depth order.

In this work, we formalize this idea for the first time. We state the
requirements for compositing order and temporal coherence as four
properties, which a mixed-order compositing function must satisfy
(Section 3.2). We discuss the ways in which existing solutions fail
to satisfy one or more of these properties (Section 3.3) and describe
the resulting artifacts. We design a function that does satisfy all
four properties (Section 3.4) and show how to compute it efficiently
(Section 3.5). We present renderings produced by this method and
discuss limitations and future extensions (Section 4).

2 Related Work

One of the first uses of paint strokes as rendering primitives was
seen in Haeberli’s “Paint By Numbers” [1990], which augments
brush strokes indicated by the user with additional information,
such as color or direction, from underlying photographs or rendered
images. This concept was later extended to arrange and render
brush strokes automatically based on photographs or video, and has
lead to excellent results [Litwinowicz 1997; Hertzmann 1998; Lu
et al. 2010]. Because such methods work entirely in image space,
they do not suffer from visibility ambiguities during rendering.

Instead of images, 3D scenes can also be used as the basis to gen-
erate brush strokes. In Meier’s painterly rendering system [1996],
brush strokes are seeded by particles that are placed on 3D mod-
els. Color, direction, and size of the brush strokes are determined

1

To appear in ACM TOG 30(6).

by separate reference images that are obtained by rendering the 3D
models using specialized shaders. To obtain a painterly appear-
ance, the brush strokes are rendered in image space after projection
to the screen plane. This rendering concept was refined by Disney’s
Deep Canvas 3D painting system [Daniels et al. 2001; Katanics and
Lappas 2003], in which brush strokes were manually applied in dif-
ferent views of a scene and immediately projected onto the under-
lying 3D geometry in a parametric form. Recently, the concept of
stroke projection has been generalized to a more flexible method of
embedding paint strokes in space that does not restrict the stroke
placement to 3D surfaces [Schmid et al. 2011]. All of these meth-
ods share the need for mixed-order compositing, as described in
the introduction, but they use different ad-hoc solutions, which we
discuss in Section 3.3.

The “WYSIWYG NPR“ system presented by Kalnins and col-
leagues [2002] also allows the user to project paint strokes onto 3D
models, but they use discrete visibility testing instead of depth or-
dering, which can lead to popping and is restricted to strokes which
adhere strictly to 3D surfaces. Keefe and colleagues [2001] used a
virtual-reality environment to let the artist paint directly in space.
In their system, paint strokes are represented by standard 3D prim-
itives, which can be composited in strict depth order, but cannot
easily accomodate a more painterly aesthetic.

Digital compositing with the alpha channel was invented by Cat-
mull and Smith [Smith 1995]. Wallace [1981] wrote down the
equation for the over operator, while Porter and Duff [1984] intro-
duced premultiplied alpha and described the algebra of composit-
ing. Because the over operator is not commutative, the order in
which fragments are composited matters, leading to sorting algo-
rithms for real-time rendering [Mammen 1989] and techniques for
allowing the user explicit control over the order [McCann and Pol-
lard 2009].

Conflicting orders of compositing have recently been considered by
Bruckner et al. [2010] for illustrating 3D layers. Their goal is, in
some sense, a transpose of ours: we aim to composite fragments
close together in stroke order and fragments far apart in depth or-
der, while they composite user-specified adjacent layers in depth
order and the results in layer order. Their method works well for il-
lustrative rendering and shares some technical similarity with ours.
The problem they are solving is more restricted than ours: in their
setting, the user specifies which layers are composited in which or-
der and this order cannot change continuously, while our method
needs to smoothly transition between compositing in depth order
and in stroke order. Furthermore, their solution requires worst-case
quadratic time in the number of layers (which roughly correspond
to our fragments), while ours runs in O(n logn). For 3D paint-
ings with hundreds or even thousands of fragments per pixel, a
quadratic-time method is prohibitively expensive.

3 Method

We start by defining what properties a mixed-order compositing
function needs to satisfy for pleasing animation results. We then de-
scribe such a function and an algorithm that computes it efficiently.
In the supplemental material, we prove that our compositing func-
tion satisfies the desired properties.

3.1 Compositing Background

In the presence of a well-defined ordering, fragments or layers
are typically composited using the over operator. The formula
for the over operator depends on how color and transparency are
represented. Given two fragments whose colors and opacities are

(a) (b)

(c) (d)

Figure 2: Compositing order conflict: (a) shows the spatial ar-
rangement of the paint strokes; (b) is the desired compositing re-
sult; (c) was composited in strict depth order; and, (d) was com-
posited in strict stroke order. Each stroke is rendered as a collec-
tion of individual splats. The surfaces in (a) are only included for
visualization—strokes are embedded in space.

(h1, α1) and (h2, α2), the over operator (denoted by ⊕) is:

(h1, α1)⊕ (h2, α2) =

=

(
h1α1 + h2(1− α1)α2

α1 + (1− α1)α2
, α1 + (1− α1)α2

)
.

It is common to use the premultiplied-alpha representation, storing
c = hα instead of h. This simplifies the over operator to

(c1, α1)⊕ (c2, α2) = (c1 + (1− α1)c2, α1 + (1− α1)α2) .

In this exposition, we will work with the premultiplied-alpha rep-
resentation, treating c as a 3-vector. In our implementation, we
actually store β = 1− α instead of α, which further simplifies the
over operator to:

(c1, β1)⊕ (c2, β2) = (c1 + β1c2, β1β2) .

From the above expression, it is easy to see that ⊕ is associative,
but not commutative.

3.2 Desired Properties

Just like regular compositing, mixed-order compositing should
work independently on each pixel. In our exposition, we will there-
fore consider a single pixel. Suppose that n fragments were raster-
ized at the pixel. Each fragment has a color ci, opacity αi, depth
zi, and stroke number si, and we write f i to denote the entire frag-
ment (ci, αi, zi, si). The fragments are given in depth order, start-
ing with the closest to the viewer, so zi ≤ zi+1. We also assume
that the stroke numbers si range between 1 and n and that no two
fragments in a pixel have the same stroke number.

We now describe the properties a function C(f1, f2, . . . , fn) needs
to satisfy to be a good compositing function for our application.
These properties express our high-level goals: fragments close in
depth should be composited in stroke order while fragments further
apart should be composited in depth order, and spatial and tem-
poral coherence should be maintained. In expressing them mathe-
matically, we strove to balance generality and the ease with which

2

To appear in ACM TOG 30(6).

we can reason about them, but we did not attempt to formulate an
exhaustive set of properties for the problem.

Because we treat fragments at the same depth as being on the same
surface, we would like to composite fragments at the same depth in
stroke order:
Property 1. If two fragments i and i + 1 have the same depth
and are adjacent in stroke order, i.e., zi = zi+1 and si = si+1 +
1, replacing them with their composite in stroke order should not
change the final output for the pixel:

C(f1, f2, . . . , fn) = C(f1, . . . , fi−1, fi ⊕ fi+1, fi+2, . . . , fn)

We treat fragments separated in depth as being on different surfaces
and would like to composite them in depth order. Suppose that the
user specifies a distance d such that fragments farther than d apart in
depth are considered to be on different surfaces. Then, compositing
them in depth order should not change the result:
Property 2. If for some i, zi+1 ≥ zi + d, then:

C(f1, f2, . . . , fn) = C(f1, . . . , fi)⊕ C(fi+1, . . . , fn)

A stroke whose alpha smoothly fades to zero towards its borders
can nevertheless cause sharp visible edges when composited with
other strokes (see e.g., Figure 6, bottom left). To avoid these edges,
we require that a fully transparent fragment have no effect:
Property 3. If for some i, αi = 0, then:

C(f1, f2, . . . , fn) = C(f1, . . . , fi−1, fi+1, . . . , fn)

So far, we can construct a function that satisfies all of the above
properties simply by sorting the fragments in lexicographical order
by depth and then by stroke number. However, during animation,
α’s, depths, and colors may change, and popping should be avoided
to obtain a nice rendering:
Property 4. The mixed-order compositing functionC must be con-
tinuous in all of the ci’s, αi’s, and zi’s.

3.3 Existing Techniques

Not every function C that satisfies these properties is necessarily a
good compositing function. For instance, C may exhibit undesir-
able behavior when all zi − zi−1 approach d/2 because this con-
figuration is sufficiently far from the premises of Properties 1 and
2. Nevertheless, we have found in our experiments that in natural
candidates for C, artifacts can be explained in terms of violations
of these properties.

Meier [1996] simply composites the strokes in depth order, which
violates Properties 1 and 4. The rendering in OverCoat [Schmid
et al. 2011] offsets the fragments’ zi by a function of stroke order
before compositing them in depth order. This method does not sat-
isfy Properties 2 and 4, as offset surfaces may poke through closer
surfaces, and popping can occur when the offset fragments switch
depths. It also fails to satisfy Property 1 because two strokes at the
same depth with adjacent stroke numbers may “sandwich” a third
stroke after the offsets are computed.

Luft and Deussen [2006] propose a blurred depth test for smooth
compositing. Their goals differ from ours in that they only aim for
improving temporal coherence but do not need to deal with conflict-
ing compositing orders. Property 1 therefore does not apply. They
also do not support user-specified alpha transparency, so Property 2
is trivially satisfied and Property 3 does not apply. The use of depth-
dependent compositing in that method leads to a violation of Prop-
erty 4, resulting in popping artifacts in their animations. For depth

order, the method of Bruckner et al. [2010] satisfies Properties 2–4,
but it also is not designed to take stroke order into account.

Deep Canvas [Daniels et al. 2001] clusters the fragments by z and
composites each cluster separately using a combination of depth
and stroke order. As we understand it, this method satisfies Prop-
erty 2, but the clustering is sensitive to z and can be changed by
a zero-α fragment, violating Properties 3 and 4. We experimented
with other methods that use clustering (including soft clustering to
maintain continuity) to determine distinct surfaces, but we could
not simultaneously satisfy Properties 1, 3, and 4.

3.4 Compositing Function

The main idea of our method is to replace the color of each of
the fragments with the result of compositing nearby fragments in
stroke order, and then composite the fragments with replaced col-
ors in depth order. While this idea is conceptually simple, its imple-
mentation requires careful attention to ensure continuity and good
performance.

The user specifies a global constant, d, so that fragments farther
than d apart only composite in depth order. We therefore define the
function S(z) = (Sc(z), Sα(z)) that is the result of compositing
all fragments with depths strictly between z − d/2 and z + d/2
in stroke order. When there are no fragments between z − d/2
and z + d/2, we define S to be the identity color, (0, 0). S is
a piecewise-constant function with discontinuities at zi + d/2 and
zi−d/2. If we assign a new color to each fragment using S(zi), we
would not have continuity with respect to zi’s. Instead, we smooth
S(z) in depth by convolving it with a box filter of width γd, where
γ, with 0 < γ ≤ 1, specifies how much smoothing is perfomed.
We compute the colors and alphas as:

(c′i, α
′
i) =

1

γd

∫ zi+γd/2

zi−γd/2
S(z) dz.

Note that because the colors are premultiplied with alphas, this inte-
gral is correctly weighted by alpha. We replace the fragment colors,
while keeping their original alpha values, setting c′′i = c′iαi/α

′
i.

Furthermore, because Sα(z) ≥ αi over the range of integra-
tion, we have αi ≤ α′i, and the division is well-behaved for
nearly-transparent fragments. The final output is C(f1, . . . , fn) =
(c′′1 , α1)⊕ · · · ⊕ (c′′n, αn). Although the final output is composited
in depth order, C does not exhibit discontinuities when the depth
order changes because two fragments at the same depth will have
the same replacement color.

In the supplemental material, we prove that this function satisfies
all of our desired properties. Together with our experiments (Sec-
tion 4.1), the proofs confirm the intuitive behavior of mixed-order
compositing.

3.5 Algorithm

We now describe an algorithm to compute the functionC efficiently
in O(n logn) time and using O(n) memory. The high-level pro-
cedure is to explicitly compute S(z) in O(n logn) time and then
define the replacement colors in linear time. Naı̈ve algorithms for
both of these tasks run in quadratic time because each distinct value
of S can depend on all n fragments and each replacement color can
depend on all Ω(n) distinct values of S. Our algorithm instead
sweeps across depth and exploits the problem structure to compute
values of S and replacement colors (c′, α′) incrementally.

We start by using a sort to assign fragments distinct stroke numbers
from 1 to n. As previously noted, S(z) only changes at zi + d/2
and zi − d/2, and therefore it only needs to be computed at these

3

To appear in ACM TOG 30(6).

t1

t2 t3

t4 t5 t6 t7
(0, 0) (c3, α3) (c1, α1) (0, 0)

t5 ⊕ t4 t7 ⊕ t6

t3 ⊕ t2

Figure 3: The binary tree used to compute S(z). The leaves cor-
respond to four fragments in this pixel. At the time instant shown,
fragments 1 and 3 (with s1 = 3 and s3 = 2) are in the window.
Suppose fragment 2 enters the window and s2 = 4. This change
requires an update of the nodes t7, t3, and t1 for the root to have
the correct new S(z).

z1
z1 − d/2

z2

z

S(z)

z3
z3 + γd/2

I

Figure 4: This figure illustrates the algorithm for determining the
replacement colors. Three fragments are shown with their com-
positing windows (±d) and box filter windows (±γd). The stroke
order is z1, z3, z2. During the integration, the contribution of the
interval I is added to the replacement colors of fragments z2 and
z3. The vertical separation is used only to make the illustration less
cluttered.

locations. At zi−d/2, S is modified to include the new fragment zi,
and at zi + d/2, S changes to no longer include zi. To accomodate
these events, we need a data structure that maintains a subset of
the fragments and can add or remove a fragment from the subset
efficiently. It also needs to be able to report the composite of this
subset in stroke order. We use a complete binary tree with n leaves,
each node of which stores a color and alpha, initially (0, 0). Leaf
si of the tree stores either (0, 0) or (ci, αi), and each internal node
stores the composite of its children in reverse order (because later
strokes go on top). The root therefore stores the composite of all
of the leaves of the tree in stroke order. Inserting or deleting a
fragment can be achieved by changing the appropriate leaf from
(0, 0) to (ci, αi) or vice versa and updating all of the nodes on the
path to the root (Figure 3). These updates therefore run inO(logn)
time.

Now that S(z) is known, we compute its integral over a window of
size γd around each fragment (Figure 4). Consider the union of the
set of discontinuities of S and the points zi±γd/2. This union par-
titions the interval [z1−γd/2, zn+γd/2] into at most 4n subinter-
vals. Within such a subinterval I , S(z) is constant by construction.
The set of fragments within γd/2 of z is also constant and contigu-
ous, consisting of all fragments from zj to zj+k, for some j and
k. The contribution of I to each fragment in this set is S(I)/γd
times the length of I . Because k may be as large as n, adding
this contribution to all fragments is too expensive. However, if we
maintain the integrals as differences between adjacent fragments,

Figure 5: Several 3D paintings rendered using mixed-order com-
positing. c©Disney Enterprises, Inc.

(∆c′i,∆α
′
i) = (c′i − c′i−1, α

′
i − α′i−1), we can add the contribu-

tion to (∆c′j ,∆α
′
j) and subtract it from (∆c′j+k+1,∆α

′
j+k+1) in

O(1) time. We process all 4n subintervals by sweeping over the
discontinuities of S and the points zi ± γd/2 and incrementally
maintaining j and k. Before doing the final composite, we compute
(c′i, α

′
i) from the deltas by computing the prefix sum.

4 Discussion

4.1 Implementation and Results

We have tested mixed-order compositing on a variety of 3D paint-
ings drawn in OverCoat [Schmid et al. 2011]. OverCoat generates
splats by projecting stroke centerlines onto the 2D display and uni-
formly sampling them in 2D, placing a splat centered at each sam-
ple. These splats are then rasterized into fragments that are used as
input by mixed-order compositing. The depth of each fragment is
simply the depth of the center point of its splat.

Figure 5 shows some of our results. As demonstrated in our video,
there are no popping or other noticeable artifacts in any of the
scenes. Even scenes designed for the original OverCoat renderer
look improved with mixed-order compositing. Figure 6 illustrates
some of the artifacts that can be seen when depth offsetting or clus-
tering is used to resolve the ordering conflict.

The scene statistics and timings for our implementations are given
in Table 1. We have written two implementations of mixed-order
compositing: a single-threaded C++ implementation (running on
one core of a Core i7 2.8 GHz with 12GB of RAM) and a GPU
implementation in GLSL (running on an NVIDIA GTX 480). The
CPU implementation relies on a software rasterizer to produce the
fragments. On the GPU, fragment generation takes less than 10%
of the compositing time. Neither of the timing columns in Table 1
includes the fragment generation time.

4

To appear in ACM TOG 30(6).

Scene Strokes Splats Fragments Max Fragments/Pixel Time (CPU) Time (GPU)

Portrait 14k 256k 20M 783 5.5s 0.87s
Dog 29k 345k 65M 1301 20s 3.2s
Tree 21k 166k 33M 715 10s 1.4s
Cat 6.5k 158k 61M 1473 19s 3.2s
Captain 1.8k 23k 31M 645 9s 1.3s
Bee 20k 362k 121M 5077 46s 9.5s

Table 1: Scene statistics and timings for our CPU and GPU implementations of mixed-order compositing with an output of 960x720 pixels.

Depth offset [Schmid et al. 2011] Mixed-order compositing

Clustering [Daniels et al. 2001] Mixed-order compositing

Figure 6: A comparison between existing methods and mixed-order
compositing. The optimal parameters have been manually chosen
for each algorithm. The left column shows artifacts on the bee’s
limbs and abdomen and on the captain’s neck, mouth, and nose
regions. These images are best viewed zoomed in. As our video
demonstrates, all of these artifacts are time-varying.

4.2 Parameters and Temporal Coherence

We found it easy to choose the two parameters, d and γ. We used
the following criterion to choose d: it should be large enough to en-
sure that strokes on a single surface are composited in stroke order,
but no larger. We used γ = 0.5 for most of our examples. We show
the effect of d in Figure 7 and of γ in Figure 8.

Mixed-order compositing achieves temporal coherence by blending
different compositing orders. While this blending eliminates pop-
ping artifacts, it is not always artistically desirable. Our examples
are painted in a style that works well with blending, but one can
imagine 3D paintings whose artistic style would be compromised
by it. The parameter γ allows the user to trade temporal coher-
ence for reduced intermediate blending: a lower γ can minimize the
frames with undesirable blending, while preventing hard “pops.”

In some cases it may be useful to vary d with depth. For example,
wide brush strokes may need to be composited in stroke order over
a larger window than thin brush strokes. Our method could be ex-
tended to support a variable window size d(z) as long as it satisfies
the Lipschitz condition |d(z1)−d(z2)| ≤ |z1−z2|. This condition

d = 0.3 d = 2 d = 3

Figure 7: Comparison of different values for the stroke order win-
dow size d. If the window is too small (left), the compositing algo-
rithm is unable to resolve the stroke order on a surface properly. If
the windows is too large (right), surfaces which are close in depth
start to become blended in stroke order.

guarantees that no window completely contains another and allows
the efficient computation of replacement colors.

4.3 Extensions, Limitations, and Future Work

For large scenes, where d is much smaller than the depth range, the
running time can be improved to O(n logm) (assuming fragments
are given in depth order), wherem is the maximum number of frag-
ments in an interval of length d. The bottleneck is the computation
of S(z), which can be sped up by maintaining the fragments to be
composited in stroke order in a dynamic binary tree, such as a red-
black tree or a splay tree instead of our static binary tree. We did
not implement this version of the algorithm because we expect that,
for our scenes, the higher hidden constants of the dynamic binary
tree would eclipse the potential improvement. In terms of memory,
all of our steps stream over depth, so by interleaving the stages of
our algorithm, memory usage can be improved to O(m). Practical
avenues for further optimization include compositing nearby frag-
ments in stroke order (with bounds on the maximum incurred error)
and discarding fragments obscured by other fragments closer to the
viewer.

Our method assumes that fragments close together in depth are on
the same surface and should thus be composited in stroke order.
This works well the vast majority of the time, but it may lead to
unintuitive results in cases where the artist has interleaved drawing
on different surfaces and if the surfaces pass through each other.
Although surfaces cannot be reliably identified in general, an in-
teresting extension of our work would be to smoothly incorporate
information about distinct surfaces when it is available.

For some applications, the stroke order is irrelevant and only a
temporally-coherent depth-order compositing that satisfies Proper-
ties 2–4 is needed. For such a case, we can redefine

S(z) =
∑

{i|z−d/2<zi<z+d/2}

(ci, αi)

and leave the rest of the algorithm unchanged. Together with the
box filter, the effect is that the replacement color is the average of

5

To appear in ACM TOG 30(6).

Po
si

tio
ns

γ
=

1
γ

=
0
.5

γ
=

0
.2

Figure 8: Comparison of different values for the smoothing width
parameter γ. A smaller value decreases the amount of blending in
the image by increasing the speed of transitions between different
visibility configurations.

the original fragment colors weighted by a trapezoid. This method
is similar to the soft depth compositing of Bruckner et al [2010], but
can be computed inO(n) time (because the tree is not necessary for
sums) if the fragments are given in depth order.

5 Conclusion

3D paintings hold great potential as an expressive medium that al-
lows an artist to make use of 3D structure without being bound by
limitations of the traditional 3D pipeline. A sound rendering and
compositing method is necessary for 3D paintings, especially ani-
mated scenes, to gain wider use and realize this potential. We have
presented such a method and proved that it has several desirable
properties. We have also presented an efficient algorithm to com-
pute it, and demonstrated its effectiveness on both synthetic and real
examples.

Acknowledgements

We thank Peter Kaufmann for feedback on the proofs, and Mau-
rizio Nitti, Martin Sebastian Senn, and Alessia Marra for the 3D
paintings.

References

BRUCKNER, S., RAUTEK, P., VIOLA, I., ROBERTS, M., SOUSA,
M. C., AND GRLLER, M. E. 2010. Hybrid visibility com-
positing and masking for illustrative rendering. Computers and
Graphics 34, 4, 361 – 369.

DANIELS, E., LAPPAS, A., AND KATANICS, G. T. 2001.
Method and apparatus for three-dimensional painting. US
Patent 6268865.

HAEBERLI, P. E. 1990. Paint by numbers: Abstract image repre-
sentations. In Computer Graphics (Proceedings of SIGGRAPH
90), 207–214.

HERTZMANN, A. 1998. Painterly rendering with curved brush
strokes of multiple sizes. In Proceedings of SIGGRAPH 98,
Computer Graphics Proceedings, Annual Conference Series,
453–460.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI,
M. A., LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES,
J. F., AND FINKELSTEIN, A. 2002. WYSIWYG NPR: Drawing
strokes directly on 3D models. ACM Transactions on Graphics
21, 3 (July), 755–762.

KATANICS, G. T., AND LAPPAS, A. 2003. Deep Canvas: In-
tegrating 3D Painting and Painterly Rendering. In Theory and
Practice of Non-Photorealistic Graphics: Algorithms, Methods,
and Production Systems, ACM SIGGRAPH 2003 Course Notes.

KEEFE, D. F., FELIZ, D. A., MOSCOVICH, T., LAIDLAW, D. H.,
AND LAVIOLA, JR., J. J. 2001. CavePainting: a fully immersive
3D artistic medium and interactive experience. In Proceedings of
the 2001 symposium on Interactive 3D graphics, ACM, 85–93.

LITWINOWICZ, P. 1997. Processing images and video for an im-
pressionist effect. In Proceedings of SIGGRAPH 97, Computer
Graphics Proceedings, Annual Conference Series, 407–414.

LU, J., SANDER, P. V., AND FINKELSTEIN, A. 2010. Interactive
painterly stylization of images, videos and 3D animations. In
Proceedings of I3D 2010.

LUFT, T., AND DEUSSEN, O. 2006. Real-time watercolor illustra-
tions of plants using a blurred depth test. In NPAR 2006: Fourth
International Symposium on Non Photorealistic Animation and
Rendering, 11–20.

MAMMEN, A. 1989. Transparency and antialiasing algorithms
implemented with the virtual pixel maps technique. IEEE Com-
puter Graphics & Applications 9, 4 (July), 43–55.

MCCANN, J., AND POLLARD, N. 2009. Local layering. ACM
Transactions on Graphics 28, 3 (July), 84:1–84:7.

MEIER, B. J. 1996. Painterly rendering for animation. In Proceed-
ings of SIGGRAPH 96, Computer Graphics Proceedings, Annual
Conference Series, 477–484.

PORTER, T., AND DUFF, T. 1984. Compositing digital images. In
Computer Graphics (Proceedings of SIGGRAPH 84), 253–259.

SCHMID, J., SENN, M. S., GROSS, M., AND SUMNER, R. 2011.
Overcoat: An implicit canvas for 3D painting. ACM Transac-
tions on Graphics 30, 4 (July), 28:1–28:10.

SMITH, A. R. 1995. Alpha and the history of digital compositing.
In Microsoft Technical Memo #7.

WALLACE, B. A. 1981. Merging and transformation of raster im-
ages for cartoon animation. In Computer Graphics (Proceedings
of SIGGRAPH 81), 253–262.

6

