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Abstract. In this paper, we introduce a model of engagement dynamics
in spelling learning. The model relates input behavior to learning, and
explains the dynamics of engagement states. By systematically incorpo-
rating domain knowledge in the preprocessing of the extracted input be-
havior, the predictive power of the features is significantly increased. The
model structure is the dynamic Bayesian network inferred from student
input data: an extensive dataset with more than 150000 complete in-
puts recorded through a training software for spelling. By quantitatively
relating input behavior and learning, our model enables a prediction of
focused and receptive states, as well as of forgetting.
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1 Introduction

Due to its recognized relevance in learning, affective modeling is receiving in-
creasing attention. There are two reasons why modeling affective dynamics is
considered a particularly challenging task. First, ground truth is invariably ap-
proximated. Second, experimental readouts and state emissions often exhibit
partial observability and significant noise levels. This paper entertains the idea
that intelligent tutoring systems can adapt the training to individual students
based on data-driven identification of engagement states from student inputs.

Problem Definition The goal of this study consists of modeling engagement
dynamics in spelling learning with software tutoring. In our scenario, student
input data and controller-induced interventions are recorded by the training
software. Input behavior is assumed to be time- and subject-dependent.

Related Work Affective models can be inferred from several sources: sensor
data [1,2] and input data [3, 4, 6]. These sources differ in quality and quantity. On
the one hand, sensor measurements tend to be more direct and comprehensive.
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They have the potential to directly measure larger numbers of affective features.
On the other hand, input measurements are not limited to laboratory experi-
mentation. The measurement of student interaction with a software tutoring
system offers a unique opportunity: large and well-organized sample sets can be
obtained from a variety of experimental conditions. Recorded inputs have the
potential to characterize the affective state of the student in a learning scenario.
It has been shown that highly informative features, such as seconds per prob-
lem, hints per problem, and time between attempts, can be extracted from log
files [6]. The identification of informative features and the incorporation of do-
main knowledge, either as implicit or as explicit assumptions, can substantially
increment the predictive power of the inferred models [5]. Median splitting [6],
thresholding [4], and input averaging [3] are conventional preprocessing tech-
niques in affective modeling.

Contributions We introduce a model which relates input behavior to learning,
and explains the dynamics of engagement states in spelling training. We show
how domain knowledge about dynamics of engagement can be incorporated sys-
tematically in the preprocessing of extracted input behavior to significantly in-
crease their predictive power. The dynamic Bayesian network (DBN) is inferred
from user input data recorded through a training software for spelling. Focused
and receptive states are identified on the basis of input and error behaviors alone.

2 Methods

Our approach is articulated in four steps: (1) description of training process;
(2) specification of extracted features; (3) feature processing based on domain
knowledge; (4) feature selection and model building.

Learning Environment The tutoring system consists of Dybuster, a multi-
modal spelling software for children with dyslexia [8]. During training, words
are prompted orally and have to be typed in via keyboard by the student. As
soon as incorrect letters are typed, an acoustic signal notifies the error. The
system allows prompt corrections, which prevent the user from memorizing the
erroneous input. Every user interaction is time-stamped and stored in log files.

Our analysis is based on the input data of a large-scale study in 2006 [9].
The log files span a time interval of several months, which permits the analysis
of multiple time scales: from seconds to months. The German-speaking partici-
pants, aged 9-to-11, trained for a period of three months and with a frequency
of four times a week, during sessions of 15-to-20 minutes. On average, each
user performed approximately 950 minutes of interactive training. The training
predominantly took place at home, except once per week, when the children
attended a supervised session at our laboratory to ensure the correct use of the
system. Due to technical challenges, a subset of 54 log files were completely and
correctly recorded (28 dyslexic and 26 control). This dataset records 159 699
entered words, together with inputs, errors, and respective timestamps.
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Feature Extraction We identified a set of recorded features which are consis-
tent with previous work [3,4,6]. Table 1 lists the features, which are evaluated
for each word entered by the learner. The set contains measures of input and
error behavior, timing, and variations of the learning setting induced by the
system controller.

Engagement states are inferred from the repetition behavior of committed
errors and without external direct assessments. We subscribe to the validated
hypothesis of interplay between human learning and affective dynamics [7]. Com-
mitted errors and the knowledge state at subsequent spelling requests of the same
word are jointly analyzed. Error repetition acts as a noisy indicator for learning
and forgetting. We restrict the analysis on phoneme-grapheme matching (PGM)
errors [12], which is an error category representing missing knowledge in spelling,
in contrast to, e.g., typos. We extracted 14 892 observations of PGM errors with
recorded word repetitions from the log files.

Feature Processing The processing of continuous features is based upon
the following central assumptions: emotional and motivational states come in
spurts [4], and they affect the observed features on a short-to-medium time
scale. Time scale separation enables a distinction between sustainable progress
in the observed input behavior (f(7)) and other local effects (p(x;)), such as the

Table 1. Extracted features and abbreviations (bold) used in the following.

Feature Description

Timing

Input Rate Number of keystrokes per second.

Input Rate Variance  Variance of seconds per keystroke.

Think Time Time from dictation of word to first input letter of student.

Time for Error Time from last correct input letter to erroneous input letter.

Time to Notice Error Time from error input letter to first corrective action.

Off Time Longest time period between two subsequent letter inputs.

Input & Error Behavior

Help Calls Number of help calls (repeating the dictation).

Finished Correctly True if all errors are corrected when enter key is pressed.

Same Position Error True if multiple errors occur at one letter position of a word.

Repetition Error State of previous input of the same word (three states: Correct
/ Erroneous / Not Observed).

Error Frequency Relative entropy [10] from observed to expected error distri-

bution (given by the student model [12]) over last five inputs.
Positive values are obtained from larger errors numbers, neg-
ative values from smaller ones.

Controller Induced

Time to Repetition Time from erroneous input to respective word repetition.

Letters to Repetition = Number of entered letters from erroneous input to respective
word repetition.
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influence of engagement states. The terms are separated as

t(wi) = f(i) + plai), (1)

with independent additive normal p(x;) ~ N(0,02). The transformation ¢(-) of
the original feature z; consists of scaling and outlier detection. The separation
of long-term variation f(i) depends on the temporal input position ¢ in the stu-
dent input history. The finally obtained additive terms p(z;) are referred to as
processed feature. Table 2 lists the employed processor modules. Whereas scal-
ing and outlier detection operate point-wise on the individual words, regression
subtraction is time- and user-dependent. The selection of processing steps and
corresponding coefficients for each feature are the result of a downhill simplex
optimization of the differential entropy (with fixed variance) [13,11], resulting
in a distribution of p(z;) with maximal normality. Figure 1 illustrates the pro-
cessing of the Time for Error (TfE) feature. The low-pass and variance filters,
listed in Table 2, allow for a separation of low frequency components from rapid
fluctuations of the processed features and are tested in the feature selection step.

Feature Selection and Model Building The relation between processed fea-
tures p(x;) and error repetition 7, is estimated via LASSO logistic regression [11]
with 10-fold cross-validation for different filter and filter parameters. The regres-
sion parameters are denoted by b;. Figure 2 illustrates the comparison between
Error Repetition Probability (ERP) predictions obtained from unprocessed and
processed features. The model based on processed features exhibits a better BIC
score (—6369) compared to unprocessed regression (—6742). In the selected fea-
tures (see Table 3), we identified three main effects influencing the knowledge
state at the next repetition:

Table 2. Employed feature processing modules and abbreviations (bold).

Module Operation on feature z Parameters
Scaling

Logarithmic log(s + z) s
Exponential exp(—%£%) a,b
Splitting Ioss s
Outlier detection

Deviation Cut min(p + o,max(u — o,x)) p=mean(z) o
Regression subtraction

Learning Curve xi — f(i)  f(i) = aexp(—bi)+ ¢ a,b,c
Filtering

Low-Pass zi =30 o xi—;G(j,n) ! n
Variance x; = var([Ti—n, ..., Ti]) n

L' G(j,n) corresponds to the sampled Gaussian kernel G(j,n) =
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Fig. 1. Top line exemplifies the processing pipeline for the TfE feature. On the second
row, the signal of the processing steps is plotted for the data recorded from two learners:
extracted feature (left), transformation (center), and separation (right). The third row
shows the respective histogram plots for the data of all 54 students.

Focused state indicates focused or distracted state of the student. In non-
focused state more non-serious errors due to lapse of concentration occur, which
are less likely to be committed again at the next repetition (lower ERP).

Receptive state indicates the receptiveness of the student (receptive state
or beyond attention span). Non-receptive state inhibits learning and causes a
higher ERP.

Forgetting: the time (decay) and number of inputs (interference) between
error and repetition induce forgetting of learned spelling and increase the ERP.

The parameters of the logistic regression indicate how features are related to
the ERP. We inferred the affiliation of features to engagement states based on
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Fig. 2. ERP prediction (10-fold cross-validation) from unprocessed (left) and processed
features (right). Predictions are plotted as blue curve and accompanied by mean (red
stroke), 68% (box), and 95% confidence intervals (whisker) of the observed repetitions
for bins containing at least 10 observations.



6 G.M. Baschera, A.G. Busetto, S. Klingler, J.M. Buhmann, M. Gross

the relations extracted from the regression analysis and expert knowledge about
desired input behavior. For example, the parameter b = 0.06 of EF demonstrates
that a higher than expected error frequency is related to a lower ERP. This
indicates that a student is non-focused and commits more but rather non-serious
errors. On contrary, if a student does not finish an input correctly (FC = 0),
the ERP increases (b = —0.49). This indicates that students, which are not
correcting their spelling errors, are less likely to pick up the correct spelling.

In the following we investigate the mutual dependence of the two engagement
states, which are considered as dynamic nodes. We compared three models: (1)
based on a mutual independence assumption (F + R); (2) with dependence of
focused state on receptivity (F < R); (3) with dependence of receptivity on
focused state (F — R). The parameters of the DBN are estimated based on the
expectation maximization (EM) algorithm implemented in Murphy’s Bayes net
toolbox [9]. The mutual dependence of the engagement states is inferred based
on the estimated model evidence (BIC).

3 Results

Figure 3 presents the graphical model (F — R) best representing the data with
a BIC of —718577, compared to —724 111 (F «» R) and —718654 (F < R). The
relation between the Focused and Receptive state is illustrated by their joint
probability distribution in Figure 4 (left). In a fully focused state, students are

Table 3. Optimal processing pipeline, estimated parameter b and significance for fea-
tures selected by the LASSO logistic regression. Note that the exponential scaling
inverts the orientation of a feature. The last two columns show the influence of the en-
gagement states on the features modeled in the DBN: for binary nodes the probability
p1 of being true; for Gaussian nodes the estimated mean m of the distribution.

Feature  Processing Pipeline b  sig. p1[%]/m
Focused State focused non-f.
EF Exp 0.06 2e-4 0.16 -0.34
IR Log - DevC - LearnC - Var -0.12  4e-6 -0.41 0.87
IRV Log - DevC - LearnC -0.22  2e-11 -0.36 0.78
REc -0.28 8e-8 45% 32%
TfE Log - DevC - LearnC - LowP -0.50  1le-9 -0.13 0.28
Receptive State receptive non-r.
FC -0.49  le-7 95% 88%
HC Split(zero/non-zero) 0.29  2e4 4% 28%
oT Log - DevC - LearnC - LowP 0.27 le-9 -0.35 1.20
REe LowP 0.20 le-9 0.07 -0.24
TtNE Exp - DevC - LearnC -0.18 le-5 0.11  -0.36
Forgetting

TtR Exp -0.29  2e-8

LtR Log 0.34 le-9
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Fig. 3. The selected dynamic Bayesian net representation. Rectangle nodes denote
dynamic states. Shaded nodes are observed.

never found completely non-receptive. In contrast, students can be distracted
(non-focused) despite being in a receptive state.

The ERP conditioned on the two states is presented in Figure 4 (right). One
can observe that the offset between top plane (forgetting) and bottom plane
(no forgetting) is greater in the focused compared to the non-focused state.
This underpins the assumption that in the non-focused state more non-serious
errors are committed, of which the correct spelling is actually already known
by the student. Therefore, the forgetting has a lower impact on their ERP. As
expected, the non-receptive state generally causes a higher ERP. Again, this
effect on learning is reduced for non-serious errors in the non-focused state. The
estimated parameters of the conditional probability distributions for all the other
observed nodes are presented in Table 3 (right).

The investigation of the age-dependence of engagement states shows that
students below the median of 10.34 years exhibit a significantly (p < 0.001)
higher probability of being classified as non-receptive (24.2%) and non-focused
(32.5%) compared to those above the median (20.0% and 27.0%, respectively).
This indicates that younger students tend to fall significantly more frequently
into non-focused and non-receptive states.

Joint Probability Distribution of Focused and Receptive States ERP conditioned on Focused and Receptive States

log(p(F.R))

Fig. 4. Left: joint probability distribution of Focused and Receptive states. Right: ERP
conditioned on engagement states for forgetting (top) and no forgetting (bottom plane).
The ERP is plotted for all observed combinations of engagement states only.
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4 Conclusion

We presented a model of engagement dynamics in spelling learning. We showed
that domain knowledge can be systematically incorporated into data preprocess-
ing to increase predictive power. In particular, the regression analysis demon-
strates the advantages of feature processing for engagement modeling. Our ap-
proach enables the identification of the dynamic Bayesian network model directly
from spelling software logs. The model jointly represents the influences of focused
and receptive states on learning, as well as the decay of spelling knowledge due to
forgetting. This core model can be extended with assessments of engagement of a
different nature, such as sensor, camera or questionnaire data. This would allow
to relate the identified states to the underlying fundamental affective dimensions
(e.g., boredom, flow, confusion and frustration) of a student.
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