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Abstract—We propose a data-driven, multi-view body pose
estimation algorithm for video. It can operate in uncontrolled
environments with loosely calibrated and low resolution cam-
eras and without restricting assumptions on the family of
possible poses or motions.

Our algorithm first estimates a rough pose estimation using
a spatial and temporal silhouette based search in a database of
known poses. The estimated pose is improved in a novel pose
consistency step acting locally on single frames and globally
over the entire sequence. Finally, the resulting pose estimation
is refined in a spatial and temporal pose optimization consisting
of novel constraints to obtain an accurate pose. Our method
proved to perform well on low resolution video footage from
real broadcast of soccer games.

Keywords-body pose estimation; uncontrolled environments

I. INTRODUCTION

Pose estimation or motion capture is a fundamental
problem in computer vision and graphics [13], [14] with
many applications such as character animation in games
and movies, controller free interfaces for games [12] and
surveillance. Due to the complexity of the problem, there
still does not exist a universal solution to all the applications.
The solutions strongly depend on the conditions and on
the constraints imposed on the setup. In general, the more
constraints are opposed to the setup, the more accurately
the pose estimation can be computed. In real world scenar-
ios it is often very difficult to impose constraints on the
setup. However, many practical applications are based on
these scenarios. For instance, Germann et al [11] showed
how accurate pose estimation can be used for high quality
rendering of players from an arbitrary view-point during
a sports game using only video footage already available
in TV broadcasts. In addition to applications in rendering,
accurate pose estimation of players during a game can also
be used for bio-mechanical analysis and synthesis as well as
for game statistics or even the porting of a real game play
into a computer game.

In this paper, we focus on pose estimation based on un-
constrained football broadcast footage. This implies several
challenges to camera positions, object size and temporal
coherence. Although, the pose estimation can be computed
based on a multi-camera setup, there are only few cameras
available, which additionally feature wide baselines. More-
over, the cameras are typically placed only on one side

of the field providing limited coverage of the scene. The
cameras provide high resolution images, but are usually set
to be wide-angle for editorial reasons. Therefore, players
typically cover only a height between 50 and 200 pixels.
Furthermore, the motion of the players can be very complex
and, especially in contact sports like football, there is a lot
of occlusion.

We propose a data-driven pose estimation algorithm that
can operate in an uncontrolled environment with loosely
calibrated cameras, low resolution players and in presence
of occlusions. Our algorithm can use as little as only two
cameras to estimate the pose. No restricting assumption is
made on the family of possible poses or motions. By using
temporal coherence for the initial pose estimation as well as
pose refinement the user interaction is limited to few clicks
inverting arms and legs in failure cases.

Many of the state of the art algorithms in pose estima-
tion rely on tracking or segmenting the image in 2D and
using calibration information to extrapolate the skeleton to
3D [4], [20]. These approaches work well for high resolution
footage, but due to lack of information, they often fail on
low resolution images and are sensitive to external lighting
conditions. Our algorithm works in completely uncontrolled
outdoor setups with low resolutions, since it only relies on
coarse silhouettes and coarse calibrations.

Similar to Germann et al. we use a database of poses
and silhouette comparison to extract pose candidates in
2D and use camera calibration information to compute the
corresponding 3D skeleton. In contrast to their method, we
first perform a novel time consistent silhouette based search
in the database to extract the closest database candidate
with temporal coherence. An additionally applied novel time
consistency step is leading to the initial pose estimaton.
Because the exact real pose is generally not in the database,
this will only result in a closest match, but not in an accurate
pose. Therefore, we developed a novel space-time optimiza-
tion technique that leverages the temporal information to
automatically compute the accurate 3D pose.

The main contributions of our paper are:
• A time consistent silhouette based database pose look-

up providing an initial pose estimation
• Local and global consistency check to improve initial

pose estimation



Figure 1. Estimated poses in a soccer game. The image shows a projection of the 3D skeletons into a source camera.

• A space-time pose optimization based on novel con-
straints

Instead of learning a statistical model for the skeleton,
our algorithm directly uses a database of poses. This has
two advantages. Firstly, such a data-driven method allows
to easily add new pose sequences to adapt to new setups or
previously unknown poses. Secondly, there is less statistical
bias to more common poses, since the method simply
searches for the closest pose in the database. Using a
database with anthropometrically correct data will always
result in a plausible pose for the initial estimation.

II. RELATED WORK

Many current commercially available motion capture sys-
tems [22] typically use optical markers placed all over the
body to track the motion over time. These systems are
very accurate and can capture all kinds of body poses as
well as facial expressions. However, they are invasive and
work under controlled environment. Therefore, they are only
suitable for a specific range of applications.

Markerless motion capture methods have received a lot
of attention in the last decade [13], [14]. Based on the
type of footage used, the markerless pose reconstruction (or
motion capture) problem can be roughly categorized into
two groups [24]: using video sequences from one camera
or using footage from multiple calibrated cameras. Pose
estimation from monocular video sequences [2], [3], [24],
[17], [1], [18] can be more convenient for some applications
as it imposes less restrictions to the user, but it has an in-
herent depth ambiguity. This ambiguity can be solved using
structure from motion approaches, a very difficult problem in
vision [13], [14]. Structure from motion algorithms typically
rely on high-resolution scenes containing a lot of detail
which we typically do not have in our scenario. Efros et
al. [9] also process soccer footage. Even though their work

focuses more on action detection, they showed that even on
low resolution data a rough 2D pose can be estimated.

Another major challenge in pose estimation are occlu-
sions. If the footage comes from a single camera it is very
difficult to resolve them. Using multiple cameras increases
the probability to have an unoccluded view of the same
subject. The higher the spatial coverage by cameras is,
the fewer ambiguities remain. Moreover, sport broadcasts
already use multiple cameras on the field. Therefore, we
can leverage this information to compute a more accurate
3D pose estimation.

Most methods for multiple views 3D pose estimation use
tracking algorithms to reconstruct the pose at time t from the
pose at time t−1 [4]. The tracking can be done either using
optical flow [4] or stereo matching [6]. These methods can
provide very accurate pose estimation, but they generally
work in a controlled environment, require larger number
of high-resolution cameras (usually at least four) and good
spatial coverage of the scene (usually circular coverage) to
resolve ambiguities due to occlusions.

Other methods [21], [8], [23] construct a proxy geometry
either using multi-view silhouettes or multi-view stereo. The
skeleton is then fitted into this geometry. These methods
provide very good results, but impose restrictions on the
setup. They require a carefully built studio setup, many high
resolution cameras and very good spatial coverage.

Another class of algorithms is based on image analysis
and segmentation [15], [10]. These algorithms use machine
learning methods to discriminate between body parts. This
analysis generally requires high resolution footage, which is
not available in our setup.

Our setup is more flexible, but entails a more restrictive
quality: we are constraint to only two to three cameras that
are generally placed only on one side of the field, have very
large baselines and weak calibrations. Also, since the image
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Figure 2. Algorithm overview.

generally covers a large part of the field, each individual
player has a very low resolution. The closest to our approach
is the method by Germann et al [11]. This method also
uses a silhouette based database search to retrieve the 3D
pose. However, it is based on a single frame only, without
any consistency check. Furthermore, the result only consists
of poses already available in the database, which is often
not the case. Therefore, the poses will be incorrect and
manual correction is required for all poses in all views
and all frames making this very tedious and unfeasible for
sequences. Our algorithm matches sequences instead of a
single frame, insures consistency for the initial guess and
employs a novel energy term to compute the final 3D pose.

III. OVERVIEW

Our algorithm consists of two steps as illustrated in
figure 2. In the first step, the algorithm extracts 2D poses
for each individual camera view using a spatial-temporal sil-
houette matching technique, yielding a triangulated 3D pose
guess. This pose detection is inherently prone to ambiguities,
namely left right flips of symmetrical parts. Although the
skeleton matches the silhouettes quite well, the arms or legs
of the player can still be flipped. Due to occlusions and low
resolution, these ambiguities are sometimes very difficult
to spot even for the human eye. Therefore, we employ an
optical flow based technique to detect the cases where flips
occur, and correct them to obtain a consistent sequence. It
is important to note that optical flow is in such setups not
reliable enough for tracking the entire motion of a players
body parts over an entire sequence, but it can be used for
local comparisons as shown by Efros et al. [9].

However, in general, no pose from the database will match
the actual pose exactly. As a consequence, in the second
part of the algorithm, this initial 3D pose is refined by an
optimization procedure, which is based on spatio-temporal
constraints. The resulting optimized 3D skeleton matches the
silhouettes from all views and features temporal consistency
over consecutive frames.

IV. INITIAL POSE ESTIMATION

The initial pose estimation is computed by first retrieving
the 2D pose from each player and each camera view using a

novel space-time data-driven silhouette based search. Once
we find the 2D poses for every player in every camera, we
can use the calibration information from the cameras to lift
the 2D joints to 3D. We compute the 3D location of each
joint by intersecting the rays corresponding to each 2D joint
in each camera view. The rays will not intersect exactly,
therefore we choose the closest point to these rays in least-
squares sense. From this we get a triangulation error Et and
an initial camera shift as described by Germann et al. [11].

We represent the 3D skeleton of a pose S in angle space.
Every bone i is represented relative to its parent bone using
two angles αi and βi as well as the length li of the bone. The
root bone is defined by its orientation given by three angles
α0, β0, γ0 and by a global position p0. The joint positions
ji in the 3D Euclidian space can easily be computed from
this representation and vice-versa.

A. Pose Database Construction

A large database that samples the entire range of human
motion is important for our algorithm and is very difficult to
create manually. Therefore, we use the CMU motion capture
database [7]. A template mesh rigged with the same skeleton
is deformed using linear blend skinning to match the pose of
the database pose. From this virtual snapshots are taken and
the silhouette is extracted. This way we created a database
of around 20000 silhouettes.

Unfortunately, the CMU database has only a limited
number of types of poses, mostly from running and walking
sequences. Therefore, we manually added a set of 900
silhouettes from several soccer scenes. This is significantly
fewer than the ones generated automatically, but enough to
enlarge the span of example poses to obtain good results.
It is important to note, that the added example poses were
not taken from the same sequences as we used to fit the
poses. The database could continuously be enlarged by new
generated poses, resulting in a better initial pose estimation.

B. 2D Pose Estimation

Similar to Germann et al. [11] we assume as an input
a coarse binary silhouette mask for each player as well as
coarse camera calibrations. We compare these silhouettes
against the silhouettes from the database using the technique



presented by Germann et al., that computes the quality of a
match between the input silhouette and a database silhouette
on a fix raster size (grid with height=40 and width=32) that
is fitted to the segmentation.

The silhouette extraction extends the algorithm presented
by Germann et al. by leveraging temporal information.
Instead of relying on a single frame matching, our approach
considers a weighted sum of differences over a sequence.
The resulting pixel error Eq(s) of the binary input silhouette
image I with index t based on the silhouette image I ′s with
index s from the database is evaluated as follows:

Eq(s) =
∑

i∈{−n
2 ,..,n2 }

θs(i)
1

|P |
∑
p∈P
|It+i(p)− I ′s+i(p)|. (1)

n is the filter window size, and P is the set of all raster
positions where the corresponding pixel is in both images
not possibly occluded, i.e., part of another players silhouette.
The weights θs(i) describe a normalized Gaussian function
with the center around s. For I ′s+i(p) not included in the
database, θs(i) is set to 0 before the normalization. Com-
paring sequences instead of single images, does not only
add temporal coherence resulting in smooth motions, but
also improves pose estimation. Even image parts occluded
over few frames can be fitted more robustly. In general,
this approach helps to prevent matching a silhouette that is
similar but originated from a completely different pose. This
is depicted in figure 3, which also shows a direct comparison
of our initial pose estimation to the pose estimation in the
work of Germann et al.

Using this energy function, we search for each camera
view for the best two pose hypotheses and select the
best combination of those by choosing the lowest resulting
triangulation error Et.

C. Pose Consistency

The 2D pose detection step relies on silhouette matching,
and therefore, is prone to ambiguities. Given a silhouette
and an initial 2D pose for it taken from the database, we
can not decide if the labellings of left/right in arms and legs
are correct. Figure 4(a) shows an example silhouette with
two possible labellings for the legs. The possible position of
the right knee is marked by a blue diamond. This view is
from the left camera in the schema in figure 4(b). The same
subject in the same frame but in the other camera shows the
silhouette in 4(c), again with the two possible labellings of
the legs. Therefore we have four possible positions in 3D
for the right knee after lifting into 3D. They are shown in
figure 4(b). If the right knee falls on one of the positions
marked with a star, the left knee will fall on the other star.
If the right knee falls on one of the positions marked with a
circle, then the left knee will fall onto the other circle. Let
the circles be the correct positions of the knees, then we can
have two different failures: either the knees are just wrongly

(a) (b) (c)

(d)

Figure 3. (a) Estimated 2D pose by comparing just the current frame to
the database as in Germann et al. [11]. (b) The found database item for the
single frame comparison. (c) Estimated 2D pose by comparing sequences of
silhouettes. (d) The found database sequence with the corresponding pose
in the middle.

(a) (b) (c)

Figure 4. Example for pose ambiguities. (a) Possible labellings in first
camera. (b) Schematic view from the top to illustrate the two possible
positions of the knees. (c) Possible labellings in the second camera.

labeled in 3D but at the correct positions or the knees are
at wrong positions (the stars).

Without additional information we cannot decide in such
a situation which positions are correct, i.e., select the only
one correct out of the four possibilities – especially when
only two cameras are available. A possible approach to
disambiguate the flipped cases would consist of checking
all possible combinations and keep the anatomically possible
ones. However, it is possible that several configurations of
flips yield anatomically correct poses.

To correctly solve these ambiguities, we propose a two
step approach: first, the local consistency between each pair
of consecutive 2D frames is resolved, resulting in an entire
sequence of temporally consistent 2D poses. Second, the
entire sequence is resolved globally.

1) Local Consistency: The goal of this step is to make
sure that the 2D pose recovered from a camera at frames k
(figure 5(a) and 5(b)) and k+1 (figure 5(c)) are consistent,
i.e., there are no flips of arms or legs between consecutive
frames. In other words, if a pixel at frame k belongs to the
right leg, it should belong to the same leg in the frame k+1



(a) (b) (c) (d) (e) (f)

Figure 5. Local consistency: (a) Previous frame and (b) fitted mesh.
(c) Wrongly assigned legs in current frame. (d) Optical flow. (e) Fitted
mesh in current frame with correct and wrong matches labelled as green
and red, respectively. (f) Error of the flipped (correct) legs in the current
frame.

as well. To assure this assumption, we assign to each pixel
in both color images ICk

and ICk+1
a corresponding bone,

and we compute the optical flow [5] (figure 5(d)) between
the frames. The underlying idea is that a pixel in frame k
and its corresponding pixel in frame k+1, computed using
optical flow, should be assigned to the same bone. Otherwise
there could be a flip as shown in figure 5(c). Therefore, we
compute this association for all combinations of possible
labellings, compute the consistency of the pixels, and select
the most consistent label configuration for the second frame.
To make the approach more robust in respect to optical flow
errors, we only consider pixels with good optical flow and
where the corresponding pixel labels in both frames are of
the same bone type, i.e., either both arms or both legs. For
instance, if a pixel p belongs to the left arm in frame k
and to the torso in frame k + 1, it is most likely due to an
inaccurate optical flow based on occlusion and we can thus
omit this pixel. If the pixel belongs to a different bone of
the same type it is a strong indication of a flip. We employ
a voting strategy to select the optimal flip configuration.

To do this, each pixel has to be assigned to its corre-
sponding bone. A naive assignment based on the distance
to the bone is incorrect, since it does not take into account
occlusions. Therefore, we construct the 3D pose using the
information from all the cameras as described in section IV.
Again, we use a template mesh deformed and rendered
for all possible flips in all cameras using color coding
for all the bones. Thus, the pixel assignment is a simple
lookup providing an accurate assignment despite of self
occlusion. Figure 5(e) shows an initial wrong labeling with
the found correct (green) and wrong (red) pixel assignments.
Figure 5(f) shows the correct labeling.

This resolves most of the flips of arms or legs. For failure
cases, the user can change the flipping for all subsequent
frames of a sequence with one mouse-click. This is the only
user interaction in our system and for a view of a player
takes only about 1 click per 10 frames.

2) Global Consistency: After the local consistency step,
all consecutive frames should not have flips between them
which means that the entire sequence is consistent. There

Figure 6. Comparisons of the pose before (left) and after (right) the pose
optimization.

is still the possibility that the entire sequence is flipped the
wrong way. However, this is a simple problem as we only
have a binary predicate to apply for the entire sequence.
Therefore, the global consistency is checked for the possible
global labelings of the arms and the possible global labelings
of the legs. The final labeling is selected by choosing the
labeling combination that minimizes the following error
term:

Eg = λDBEDB + λtEt (2)

This is a weighted sum with constant parameters λDB and
λt. EDB ensures that the selected labeling/flipping results
in plausible poses along the sequence. It penalties for the
distance to the closest pose P in the database:

EDB = min
P

1

2|J |

|J|∑
i=0

(α′i − αi)
2 + (β′i − βi)2 (3)

where α and β are the joint angles of the triangulated joint
positions J . α′ and β′ are the ones of the database pose P .
Since the database contains only anthropometrically correct
poses, this penalties for non-plausible poses.

V. POSE OPTIMIZATION

The best 3D poses computed by the pose estimation are
still limited to fit in each view to a pose of the database. The
database is only a subset of all possible poses, and therefore,
often does not contain the accurate solution. We developed
a new optimization method to retrieve a more accurate pose
as shown in figure 6. To guide our optimization method, we
combine several spatial and temporal energy functions and
minimize them using an optimization method.

A. Energy Function

The energy function is based on our representation of
the skeleton S described in section IV. All the parameters
besides the bone length are variable per frame. The lengths
are also variable but stay the same over the entire sequence
and are initialized as the average of the local lengths of
all frames. This automatically introduces an anthropometric
constraint, since bones should not shrink or grow over time.
Another nice property of the chosen skeleton representation
is that it significantly reduces the number of variables. In
order to cope with calibration errors, we also optimize for
the two dimensional shift vector given per subject, camera
and frame.



We define our energy functional per frame and subject as
the following weighted sum of error terms:

E(S) = ωsEs+ωfEf+ωDBEDB+ωrotErot+ωpEp+ωlEl

(4)
Silhouette matching term Es: The bones of the correct

3D skeleton should project onto the 2D silhouette in all
cameras. The error term Es penalizes the joint positions
whose 2D projections are outside the silhouettes:

Es =
1

|C||J+|
∑
c∈C

∑
j∈J+

EDTc(Pc(j)), (5)

where C is the set of all cameras that cover a silhouette
of this subject. J+ is the union of the set J of all joints
and the points that are exactly in the middle of a bone.
The normalized Euclidean distance transform EDT returns
for every 2D point in the camera image the distance to
the closest point inside the silhouette divided by the larger
side of the silhouettes bounding box. This normalization is
important to make the error independent of the size of the
subject in the camera image which may vary according to
the zoom. Pc(j) is the projection to transform the 3D joint
j into camera space taking into account the camera shift.

Silhouette filling error term Ef : Although the silhou-
ette matching term Es penalizes joints outside the silhouette,
there is no restriction on them for where to be placed
inside the silhouette. The filling error term Ef prevents them
from just shrinking together somewhere inside the torso and
especially makes sure that there are also joints in all the
extremities:

Ef =
1

|C||R|
∑
c∈C

min
j∈J

∑
r∈R

dist(P−1c (r), j), (6)

where R is the set of all grid points from section IV-B that
are inside the silhouette. P−1c (r) transforms such a grid point
from camera space of camera c into a ray in world space
while dist() describes the distance of a ray to a joint.

Distance to database pose EDB: This was already
defined in section IV-C2. It ensures that the final 3D pose
is kinematically possible (e.g., the knee joint bends the
right way) by taking into advantage the database of correct
poses. It implicitely adds anthropometric constraints to our
optimization.

Smoothness error terms Erot and Ep: Human motion is
generally smooth such that the skeletons of adjacent frames
should be similar. This enables us to introduce temporal
coherence to the pose optimization. Therefore, Erot penal-
izes large changes of the internal angles of the skeleton of
consecutive frames and Ep penalizes large motion:

Erot =
1

2|J |

|J|∑
i=0

(α′i − αi)
2 + (β′i − βi)2 (7)

Ep = |p0 − p′0| (8)

Table I
THE PARAMETER VALUES THAT WE USED FOR ALL OUR RESULTS,
COMPUTED USING OUR AUTOMATIC PARAMETER TUNING SYSTEM

Param. ωs ωf ωdb ωrot ωp ωl λDB λt
9 15 0.05 0.1 1 1 0.15 0.3

where α′ and β′ are the corresponding angles of the same
subject in the previous frame and p′0 is the global position
of the root joint in the previous frame. We also constraint
the rotation of the root bone in a similar way, which we
omitted here for simplicity.

Length error term El: The initialization of the bone
lengths is already a good approximation, when handling a
sequence of frames. Therefore, we try to keep the optimized
pose close to these lengths:

El =
1

|J |

|J|∑
i=0

(li − l̂i)2 (9)

where li is the final bone length and l̂i is the initial bone
length.

B. The Optimization Procedure

To minimize the energy term in equation 4, we employ
a local optimization strategy where we iteratively optimize
the variables one by one by performing line search along
randomly picked directions [19]. For each variable we select
10 random directions for optimization and we perform 20
global iterations. Due to the inherent non-smooth nature
of our objective functions, this method performed better in
practice than Levenberg-Marquardt [16].

Figure 6 illustrates the effect of the optimization pro-
cedure. The leftmost example shows the influence of the
silhouette filling error term: The arm of the player can
be brought up or down to reduce the silhouette matching
error term, but the silhouette filling error term is only
reduced when moving the arm up. Figure 6 shows a clear
improvement over the method by Germann et al. [11] which
did not include a pose optimization at all and where each
pose had to be corrected manually.

VI. RESULTS

We evaluated our system on four sequences of TV-footage
from real soccer games with two or three cameras, yielding
roughly 1500 poses to process. A subset of the results are
shown in figures 1 and 8. In addition, the accompanying
video shows also renderings from arbitrary view-points
using articulated billboard rendering [11] based on the pose
estimations of our algorithm.

Each row in figure 8 shows a set of consecutive poses
and each item shows the image of the respective player in
all the available cameras. Even with only two cameras and
very low resolution images, our algorithm can retrieve good
poses in most cases.



(a) (b)

Figure 7. Failure cases. (a) The arms are too close to the body and could
not be positioned correctly. (b) A pose that is too far from the database
and could not be estimated correctly.

For the optimization functions in equations (4) and (2) we
used the parameters shown in table I for all our results. They
were found by the following parameter tuning procedure.
We annotated manually the 2D poses in two scenes. Then
the algorithm was run and the results were automatically
compared with the manual annotations. Using this as an
error function and the parameters as variables allows for
an automatic parameter optimization.

Our pose estimation algorithm takes about 40 seconds per
player per frame in a two camera setup and about 60 seconds
for a three camera setup. We implemented a parallel version
that runs a thread for every player. On an 8 core system this
gave a speedup of roughly a factor of 8.

Note that the initial pose estimation does not depend on
the pose estimation of the previous frame. Thus, there is no
drift and the process can recover from bad pose guesses.

Limitations and Future Work.: Although our current
approach leads to good results in many cases, it can fail due
to the lack of information provided by a binary silhouette
only, particularly when the arms are too close to the body
as illustrated in figure 7(a). I.e., several poses can have
very similar binary silhouettes. Thus, only using silhouette
information is not sufficient to disambiguate the poses.
Incorporating optical flow into the optimization procedure
could resolve such ambiguities in the future.

Furthermore, the results of our algorithm greatly depend
on the pose database. A good database will have a wide
range of motions as well as a wide range of views such
that the initial guess is close to the correct pose. Figure 7(b)
shows an example where there is no similar pose in the
database and thus the pose estimation fails. In the future,
we would like to find an automatic criterion to quantify a
good match of a pose. Good poses could then automatically
be added to the database enlarging the space of possible
poses.

Another important prior that can be leveraged further
is the kinematic information of the human skeleton. Our
method already uses some implicit anthropometric con-
straints, but specific constraints on joint angles could im-
prove this even more.

VII. CONCLUSIONS

This paper addresses the problem of multi-view pose
estimation of entire sequences in uncontrolled environments.
More specifically, we aimed at pose reconstruction using
video footage from TV-broadcasts of soccer games. A typ-
ical setup can have as few as two or three cameras, which
are placed on one side of the field only, with wide baselines
and inaccurate camera calibrations as a consequence. Fur-
thermore, the usual wide angle shots result in low resolutions
of the players.

To compute accurate 3D poses in such an uncontrolled
environment, we rely on a rich database of poses and use
the temporal coherence of human motion as a strong prior.
In this work, we proposed a data-driven pose estimation
algorithm that works in two stages. First, we introduced a
novel spatio-temporal search to retrieve a good initial pose
based on silhouette matching. A mesh based consistency
check resolves for unwanted flips of the limbs, avoiding
local minima in the optimization step. The initial estima-
tion is improved using a novel optimization technique that
combines spatial and temporal constraints to yield the final
pose.
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