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Abstract

This paper presents a real-time processing platform for high-definition stereo video. The system is capable to
process stereo video streams at resolutions up to 1, 920 × 1, 080 at 30 frames per second (1080p30). In the hybrid
FPGA-GPU-CPU system, a high-density FPGA is used not only to perform the low-level image processing tasks such
as color interpolation and cross-image color correction, but also to carry out radial undistortion, image rectification,
and disparity estimation. We show how the corresponding algorithms can be implemented very efficiently in
programmable hardware, relieving the GPU from the burden of these tasks. Our FPGA implementation results are
compared with corresponding GPU implementations and with other implementations reported in the literature.
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1 Introduction
Multi-view camera systems are becoming ubiquitous in
today’s camera landscape. This trend has been driven by
the advent of affordable high-quality imaging sensors on
one hand and by novel multi-view applications on the
other hand. Prominent examples of such new applica-
tions are 360° vision panoptic cameras [1] that provide
immersive video experiences and vision systems for auto-
matic vehicle/robot control or for augmented reality [2].
A particularly interesting and commercially most rele-

vant real-time application is stereoscopic 3D (S3D)
movie and broadcast production [3]. Corresponding
video capture systems often employ two spatially offset
cameras; however, imperfections of such systems require
real-time processing of the video streams that reach
beyond the processing routinely done today in mono-
scopic camera systems. In particular, different cameras
usually exhibit different sensor responses that can lead
to unpleasant viewer experiences. Also, the physical
alignment is often not sufficiently accurate and the
resulting videos can lead to eyestrain [3]. To correct for
non-idealities in the camera system, the raw video
streams need careful color correction to achieve similar
color responses across all views. In addition, an image
warping process must remove distortions and correct

potential mis-alignments of the hardware. Most recent
camera systems furthermore rely on real-time analysis
of the captured images for guiding the camera operator
[4,5] and for automatic camera control [4]. A vital ele-
ment of such systems is the analysis of the physical lay-
out of a captured scene by analyzing screen space
disparities. Disparities are the resulting displacements of
a scene point across both camera views, which in turn
directly relate to the actual geometry of the scene.
Unfortunately, such processing of high-definition video

streams for real-time applications is a challenging task
since computationally demanding algorithms need to be
applied to high-resolution images. In addition, image pro-
cessing tasks require a considerable amount of memory
bandwidth. Current CPUs and GPUs are therefore often
completely occupied when performing the full low-level
processing and analysis pipeline including disparity analy-
sis in real-time. FPGA platforms on the other hand offer
great potential for streaming-based tasks. Video pipelines
can be implemented in parallel for low latency and high
performance. Furthermore, optimal speed-precision-area
tradeoffs can be accomplished using fixed-point arith-
metic, and custom-tailored caching architectures can be
employed to alleviate bandwidth bottlenecks.

Related work
Although some work using FPGA pipelines has been
published recently, all existing real-time hardware
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systems for video processing and disparity analysis
focused on lower-resolution video streams [6-12]. No
work has been successfully extended for high-definition
video due to the super-linear increase in processing
complexity. The corresponding increased memory band-
width bottlenecks furthermore impose additional hard-
ware constraints for higher video resolutions.

Contributions
In this work, a processing platform for high-definition
stereo video is presented. The platform employs FPGAs
to perform low-level image processing, image warping,
and disparity estimation in real-time and in full HD
resolution. We describe the corresponding hardware-
efficient algorithms, the essential components of the
associated hardware architecture, and the required cach-
ing mechanisms that enable the processing of high-defi-
nition video streams. The FPGA is integrated into a
heterogeneous PC platform that also comprises a GPU
and a CPU for further processing. We argue that this
mapping of the stream processing onto the FPGA is
advantageous since the CPU and GPU resources can in
turn be spent on higher-level operations. Such opera-
tions can include control algorithms for system settings
[4] or memory intensive algorithms with a more global
scope such as segmentation, which often are not well
suited for FPGA processing. To this end, we provide
reference numbers to illustrate the GPU resources freed
for other tasks by the FPGA implementation. Finally, we
provide a comparison of our hardware implementation
to other state-of-the-art implementations of the core
algorithms and the corresponding limitations.

2 Stereo processing pipeline overview
Figure 1 shows a high-level overview of the processing
pipeline. Two or more synchronized cameras stream
directly to the FPGA board. The incoming video

streams are first synchronized in case of slight timing
differences. Then, low-level image pre-processing tasks
are performed. The corresponding low-level processing
unit will be discussed in more detail in Section 3.
The color-corrected video streams then undergo a

geometry transformation in the image warping unit.
This unit performs radial undistortion and performs
almost arbitrary projective transformations of the image.
The transformation uses a backward mapping with
bilinear interpolation. The most critical issue in the
implementation of this unit are the memory require-
ments and the considerable memory bandwidth. These
issues are addressed by a novel block-caching mechan-
ism that alleviates the bottleneck to the off-chip mem-
ory with low on-chip memory overhead. This unit will
be discussed in more detail in Section 4.
After geometry correction in the image warping unit,

the disparity estimation unit searches for matching fea-
tures along horizontal lines. More specifically, a local,
window-based disparity matching [13] using a ZSAD
(zero mean sum of absolute differences) cost function is
employed. Similar to the GPU implementation of Zach
et al. [14], the video streams are downsampled multiple
times into a multi-resolution pyramid structure. Dispar-
ity estimation is first performed on the lowest resolution
using a reduced disparity range. Then, the coarse dispar-
ity estimates are subsequently propagated to higher
levels for refinement. Using the pyramid structure, fine-
grained details can be traded off for higher noise resili-
ence and reduced computational complexity. A more
detailed discussion is provided in Section 5.
The FPGA processing pipeline described above is

implemented on a PCI Express FPGA board that is
equipped with external memory banks. A DMA control-
ler and local bus controller communicate with the PC
subsystem for data transfer and configuration. The PCI
Express transfers are fast enough to send the data to the

Figure 1 Data flow of the presented stereo camera pipeline. Two video streams are synchronized on the FPGA, before low-level functions
(pattern noise correction, color interpolation, and color correction) are performed. Then, the streams can be undistorted and rectified arbitrarily
using the geometric transformation unit. Disparity estimation is performed on the well-aligned video streams. The FPGA board features external
DDR2 DRAM banks and communicates to the PC subsystem using PCI Express transfers.
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GPU and the CPU for further processing, e.g., to imple-
ment further post-processing or control algorithms and
to store the video sequence on a solid-state disk.

3 Low-level stereo processing
An overview of the low-level stereo processing pipeline
is provided in Figure 2. Our system receives two video
streams that can be acquired using gray-level or color
filter array (CFA) image sensors. Depending on the sen-
sor features, the incoming video sequences need to
undergo different pixel-level pre-processing steps before
being processed further. Depending on the camera and
the system requirements, all steps explained in the fol-
lowing can be bypassed or enabled.
The architecture first removes sensor noise (fixed pat-

tern noise (FPN)) and performs an equalization of the
individual pixel responses (pixel response non-uniformity
(PRNU)). Then, the Bayer CFA intensities are converted
to full color values using color interpolation (Bayer
demosaicing). When employing two or more sensors,
pixel intensities and colors are often slightly different
among the different sensors; also, beam-splitter-based
stereo rigs, often employed in S3D production, intro-
duce additional shifts in color and intensity. Therefore,
the streams are corrected in two color correction stages:
a linear color correction transforms each stream indivi-
dually to a rendered color space (e.g., sRGB) and a non-
linear color correction matches the two streams. The
survey by Ramanath et al. [15] provides more details on
the general color image processing pipeline.
The above-described pre-processing techniques can be

implemented very efficiently on FPGAs since only
streaming pixel operations and operations on small win-
dows are performed, which require small-line buffers
only. To sustain the input data rate, all operations are
pipelined. Furthermore, all of the following blocks can
be enabled or disabled during run-time. All operations
are accurately performed in fixed-point arithmetic.

Frame synchronization
The FPGA triggers the cameras at an adjustable frame
rate to synchronize the two incoming video streams.
However, corresponding pixels from the different cam-
eras do not necessarily arrive at exactly the same time
in general, mainly due to slight mismatches of the two
camera clocks. To fully synchronize the video streams at
pixel level, the incoming video streams are temporarily
stored in small line FIFOs to compensate for the time
offsets.

FPN and PRNU correction
Fixed pattern noise is inherent to CMOS/CCD sensors
and describes the accumulated charges in the pixel sen-
sors that are not due to incoming photons. This noise
can be characterized by measuring a black image with
no light incidence, for a given exposure period. This
reference image can then simply be subtracted in the
following camera operation. To eliminate temporal
noise, multiple black reference images can be averaged
for better characterization during the initial calibration
phase.
The individual CMOS pixels usually exhibit different

response characteristics. This response characteristic can
be measured by imaging a homogeneously lit white sur-
face (white image). Then, during camera operation, the
incoming images can be normalized to the measured
intensities from the white level measurement, after FPN
correction has been applied. This measurement impli-
citly includes the white balance.
The black and white reference images are of the same

size as the incoming video frames. Due to the significant
amount of data, these images are stored in an external
DRAM connected to the FPGA. Because both video
streams are synchronized at the pixel level, external
memory accesses can be structured to reduce the mem-
ory bandwidth requirements. To this end, the reference
images for both cameras are stored in interleaved order,
such that random accesses are avoided: one value for
one pixel of each left and right black image and one
value for each left and right white image can be read
together in a single access cycle.

Color filter array demosaicing
Most CMOS sensors apply a color filter similar to the
Bayer pattern to capture color images with a single sen-
sor only. In order to reconstruct a full-resolution color
image, interpolation filters have to be applied. In this
architecture, a linear filter based on the Wiener filter
with window size of 5 × 5 pixels is used [16].
The FPGA implementation stores 5 lines for each

video in a temporary line cache to perform the interpo-
lation. The arithmetics of the interpolation [16] can be
efficiently implemented using adders and bit shifts only,

Figure 2 FPGA pipeline of low-level image processing. Only the
fixed pattern noise removal and pixel response non-uniformity
equalization need access to external memory.
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due to the ‘hardware friendly’ choice of the interpolation
coefficients.

Linear color correction
Depending on the lighting conditions and sensor char-
acteristics, a color correction is applied to transform the
image to a standardized color space. The 3 × 3 transfor-
mation matrix can be obtained from a least-squares esti-
mation between defined values on a color rendition
chart and the measured values of the corresponding pix-
els [15]. The FPGA implementation allows to update the
transformation matrix in real-time from the PC system.

Non-linear color correction
To account for non-linear color or intensity shifts
between the two sensor outputs, an additional correc-
tion step allows for realizing non-linear mappings. The
FPGA architecture provides separate lookup tables for
all three color channels in RGB or HSV space to be able
to apply any kind of component-wise non-linear trans-
formation. If the HSV color space is used, the RGB
values are converted to HSV first, color correction is
applied, and the values are then converted back to the
RGB color space. The lookup tables can, for instance,
realize a Gamma correction on the intensity or they can
realize color equalization mappings as described in
[17,18], for instance.
The necessary FPGA resources for the pre-processing

pipeline are listed in Section 6. The pre-processing
block consumes approximately 2% of the total logic
resources of the target FPGA (see Table 1) and runs at
more than 130 MHz, corresponding to a throughput of
more than 130 × 106 stereo pixels per second.

4 Image warping
Alignment mismatches between two cameras in a stereo
camera systems degrade the visual 3D effect [3] and
make proper disparity estimation difficult [19]. Perfect
alignment is obtained when the two cameras are posi-
tioned along a common baseline, and the optical axes of
the cameras are parallel to each other and perpendicular
to the baseline. In this perfect alignment case, the

correspondence of a pixel in one camera image is found
on a horizontal (epipolar) line in the other camera
image. Matching pixel correspondences therefore
reduces to a search along horizontal lines only.
The most prominent alignment mismatches occur

from non-linear lens effects (radial distortion) and from
relative positioning offsets of the cameras. To correct
for these effects digitally, the incoming images are first
warped to remove any radial and tangential distortion
(undistortion). Then, the images are projected to a com-
mon image plane (rectification) to correct for a potential
displacement from the common baseline or for a mis-
match of the orientation of the optical axes. Figure 3
illustrates the two corresponding correction steps which
we are collectively referring to as digital image warping.

4.1 Undistortion and rectification
A broad body of work has been published on modeling
both distortion and rectification algorithms and on the
estimation of the corresponding system parameters. The
implemented image warping procedure presented in the
following is based on the distortion model of Brown
[20] and a homography that corrects for camera misa-
lignment. The corresponding parameters are estimated
offline or in regular intervals on the CPU using state-of-
the-art calibration procedures.
4.1.1 Radial and tangential distortion
Radial and tangential distortion is caused by imperfec-
tions of physical lens systems. In our system, we use the
model of Brown [20] that describes the distortion pro-
cess as follows. First, an undistorted integer pixel coor-
dinate xi is normalized with the intrinsic camera
parameters: x = diag(fc)

-1(xi - cc), where fc is the 2D
focal length vector in pixels and cc the principal point

Table 1 FPGA resources on an ALTERA Stratix III
EP3SL340.

Unit Comb. LUTs Registers Mem. [kB] DSP

Pre-proc. 5, 794 (2%) 4, 690 (2%) 26 (1%) 50 (9%)

Warping 29, 283 (11%) 16, 723 (6%) 431 (32%) 187 (32%)

Disp. Estim. 54, 275 (20%) 26, 378 (10%) 140 (7%) 0 (0)

Infrastructure 11, 564 (4%) 14, 577 (5%) 78 (4%) 0 (0)

Total 100, 916 (37%) 62, 368 (23%) 892 (44%) 237 (41%)

The memory column indicates the total amount of block memory used
(ALTERA-specific SRAM blocks, M9K/M144K), and the DSP column are ALTERA
18-bit DSP slice elements.

Figure 3 Radial undistortion and rectification. The captured
image (top row) is transformed to an undistorted and rectified
image (bottom row). For each pixel in the rectified image, the
respective pixels in the captured image are bilinearly interpolated.
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(the geometric center of the image) [19,21]. Next, this
normalized and still undistorted image point x = (x1, x2)
T is projected to a distorted image point xd according to

xd = (1 + κ1r2 + κ2r4 + κ3r6)x + xt, (1)

where

r2 = x1
2 + x2

2 (2)

represents the squared distance to the principal point
and where

xt =
[

2ξ1x1x2 + ξ2(r2 + 2x1
2)

ξ1(r2 + 2x2
2) + 2ξ2x1x2

]
(3)

represents the tangential distortion.
The system-specific camera intrinsics fc, cc, radial dis-

tortion parameters � = [�1, �2, �3]
T, and tangential dis-

tortion parameters ξ = [ξ1, ξ2]
T are determined offline,

using camera calibration methods such as the one in
[21].
4.1.2 Rectification using homographies
The rectification process performs a 3 × 3 projective
transformation on the coordinates. These matrices are
often referred to as homography matrices and are in
general invertible transformations. The rectifying homo-
graphies can be estimated with feature correspondences
and epipolar geometry properties as described in [22,23].
To perform a projective transformation with eight

degrees of freedom on a 2D image point x Î ℝ2, the image
point needs to be extended to homogenous coordinates xh
= [x, 1]T Î ℝ3. The point xh is mapped to its rectified posi-
tion x’h using the homography matrix M Î ℝ3 × 3

x’h =

⎡
⎣ x′

1
x′

2
x′

3

⎤
⎦ = M

[
x
1

]
. (4)

Then, the rectified position can be obtained by pro-
jecting the homogeneous coordinates back to ℝ2 accord-
ing to

xr =
[

x′
1

/
x′

3
x′

2

/
x′

3

]
. (5)

In order to be compatible with the Brown distortion
model described in the preceding section, the rectifica-
tion needs to be performed inversely which is done by
inverting M. Conversely, the inversion of the distortion
would be more elaborate since there is no closed-form
expression for an undistortion model (inverse Brown
model).
4.1.3 Image warping using inverse pixel lookups
The distortion and (inverse) projectivity described by (1)
and (5) can be combined into a single coordinate

transform. Using the resulting relationship, our imple-
mentation performs the image warping using inverse
pixel lookups. That is, for each pixel position xr Î ℝ2 in
the rectified target image, the corresponding distorted
coordinate xd in the original image is computed accord-
ing to (1), which is then used to look up the respective
color value (see Figure 3).
The rectification and distortion process usually does

not map integer positions to integer positions. A desti-
nation pixel position will often be projected in-between
multiple source pixels. In this work, we use bilinear
interpolation of the neighboring pixels to determine the
final pixel-color value. Figure 3 illustrates this process in
detail. Note that this scheme can produce aliasing, in
cases where the images are shrunk heavily. However,
such extreme distortions do not occur in practice when
using at least approximately aligned cameras in a stereo
rig.

4.2 FPGA implementation
The rectification process performs pixel re-ordering that
requires a partially random or unstructured and a-priori
unknown access sequence to the large off-chip frame-
buffer memory that is needed to store the high-resolu-
tion images. The resulting memory-access bottleneck is
the main challenge for the implementation of the real-
time image warping unit. Our proposed architecture is
divided into two units: the warping arithmetic performs
backward coordinate transformation and the bilinear
interpolation. A dedicated, problem-specific caching and
memory interface is employed to provide sufficient
memory-accesses bandwidth. Figure 4 shows an archi-
tectural overview of our warping core.
4.2.1 Warping arithmetic
The warping arithmetic unit performs the image trans-
formation described in Section 4.1.3. The corresponding
hardware is illustrated in Figure 5. Destination pixel
coordinates are generated by a 2D counter stepping
through the target image. These coordinates are used as
input for the inverse radial undistortion block before the
coordinates are transformed using the inverse homogra-
phy block. The necessary divisions (see (5)) are realized
with a fully pipelined CORDIC implementation with 16
iterations. The transformed coordinates are used to gen-
erate coordinates of the four nearest neighboring pixels
and to request the respective color values from the
‘cache + prefetch’ unit. When the corresponding data
are available, bilinear interpolation is used to compute
the color for the pixel in the target image. Most of the
operations are integer operations or require only limited
precision. Hence, custom fixed-point arithmetic has
been found to be superior to standard floating-point
cores in terms of hardware resource usage.
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4.2.2 Memory bandwidth and access patterns
The warping arithmetic unit requests four pixel values
at each clock cycle to perform the bilinear interpolation.
Due to the large amount of data of 1080p videos, the
incoming high-resolution frames are first stored in an
off-chip DRAM before being warped. Without any cach-
ing, every pixel will be accessed four times on average.
Therefore, the image warping unit will require an exter-
nal DRAM bandwidth of

B = Bwrite + Bread = 3W H f + 4 · 3W H f ,

bytes per second for a color image (24 bits per pixel)
of size 3W H bytes at frame rate f, when no caching is
applied. For 1080p30 stereo video, the required memory
bandwidth therefore amounts to approximately 1.8 GB/
s. Since the access pattern is strongly dependent on the
distortion parameters and homography matrices and
therefore not incremental in general, the effective avail-
able bandwidth of DRAM components is severely

degraded and clearly insufficient to support the desired
frame rates.
4.2.3 Caching architecture
Our caching architecture is designed to reduce the
DRAM read access bandwidth to approximately Bread/4
(by reading each pixel only once) and, more importantly,
to increase the access efficiency by reading and writing
in longer coherent bursts. To this end, we exploit the
fact that the image warping reads pixels that lie approxi-
mately along lines, and the lines never intersect. For the
cache replacement strategy, we exploit that access pat-
terns remain deterministic for a set of distortion para-
meters and a given homography. The basic idea is to
subdivide the image into sub-blocks, which are pre-
loaded and cached in the order of occurrence during
the transformation. As long as the cache is large enough
to store a couple of lines, cache misses can be effectively
avoided and no pixel is loaded more than once from
memory due to the regularity of the transformation.
Moreover, by dimensioning the sub-block size properly,
only burst-reads in the size of several pixels are per-
formed and the controller efficiency is increased by an
order of magnitude compared to random accesses. Fig-
ure 6 illustrates the caching principle.
Figure 4 provides an overview of the caching architec-

ture. First, the image is logically subdivided into sub-
blocks. The cache and prefetch unit generates the order
of first occurrence of each memory block for a given set
of image warping parameters online. This order is
stored locally and subsequently used to fill the cache
blocks optimally. Additionally, the total number of pixel
accesses for each block is generated whenever a new set
of parameters is loaded and stored in a lookup table.
During operation, the current number of pixel accesses
is counted for each of the currently used cache blocks.
If the number of current pixel accesses matches the pre-
determined total number of accesses, this cache block
can be updated with a new memory block. If the cache
memory is configured to hold enough lines, no memory

Figure 4 Image warping architecture overview. The cache and
prefetch sub-block ensures optimal caching, where every pixel is
read only once from external memory. The warping sub-unit
computes the necessary coordinate transformations.

Figure 5 Image warping data path implementation. The design is fully pipelined for maximum throughput. The division in the inverse
homography block is realized using a pipelined CORDIC algorithm.
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block needs to be read more than once using this cach-
ing strategy. To be able to read four values from cache
in parallel, we subdivide the cache into four parallel
cache blocks and store values column and row inter-
leaved, since the bilinear interpolation always requires
2-by-2 blocks.
For stereo rectification, two instances of the warping

unit are needed resulting in two independent reads and
write ports to external DRAM; an arbiter handles these
four separate requests. The arbiter is designed to ensure
that read and writes to subsequent addresses are sent in
bursts, which increases controller efficiency.

4.3 Performance summary
The cache size is configurable at compile-time and is
dimensioned to match the type of occurring transforma-
tions. For our reference implementation (resource usage
provided in Table 1), we use a cache size of approxi-
mately 24 1080p lines, which supports even extreme
transformations (e.g., rotations by π/4). It can therefore
be considered as worst case value, while in practice
smaller cache sizes can be used. The design runs at 130
MHz and the RAM interface provide the required band-
width of 1080p30 stereo video.

5 Disparity estimation
In a stereo camera setup, an object within the scene is
projected to different pixel locations in the two camera
views. The displacement (called disparity) between the
corresponding points in the two images is inversely pro-
portional to the distance of the object from the cameras.
In particular, the depth z of the object in the scene is
obtained from the disparity d, the interaxial distance
between the two cameras b, and the focal length f
according to z = fb/d. Disparity estimation is therefore
an indispensable tool in stereography to extract three-
dimensional scene information from the two images
acquired by the two horizontally displaced cameras of a
stereo rig.
A wide variety of disparity estimation techniques have

been proposed and can be classified into global and
local methods (see [13] for a classification scheme for

disparity estimation). While global methods usually
result in better estimation quality, they require consider-
able computational complexity and memory bandwidth
and are therefore impractical for real-time applications,
especially for high-resolution images. The real-time sys-
tem presented in this paper therefore uses a local
method that is able to run at high frame rates and high
resolution but still delivers a disparity estimation quality,
which is acceptable for camera control [4] and scene
analysis.

5.1 Algorithm
The implemented algorithm relies on local, window-
based disparity estimation. For each pixel position in
one view, the best matching pixel in the other view is
found. Matches are computed using a cost function,
evaluated on a small window around the pixel positions.
Disparities are evaluated for each pixel individually and
independently (i.e., local), as opposed to the global
methods that optimize the disparities across the full
image or a larger neighborhood.
As a result from the rectification step, the correspond-

ing pixel position of a scene object will lie on a horizon-
tal line. The disparity estimation can therefore be
limited to a horizontal one-dimensional search with a
predefined disparity range. In our implementation, the
cost function chosen to determine the best match is the
zero mean sum of absolute differences (ZSAD). The
algorithm is summarized in Algorithm 1.

Data: reference image Ir, scan image Is, window size
(w, h), disparity search range [0, dmax]
Result: disparity map d(x, y)
foreach pixel position (x, y) of reference image do

Fetch the (centered) reference window br of size
(w, h);
Fetch the scan window bs of size (w + dmax, h);
foreach horizontal offset d Î [0, dmax] do

Fetch window bs, d from bs with size (w, h)
around (x + d, y);
Compute ZSAD cost c(x, y, d) between br
and bs, d:

Figure 6 Proposed caching principle. The left subfigure illustrates an example access pattern. The right subfigure illustrates the cache load and
discard sequence.
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c(x, y, d) =
∑
(x,y)

|br(x, y) − b̄r − bs,d(x, y) + b̄s,d|

where b̄r and b̄s,d denote the mean pixel

values.
end
d(x, y) = argmind(c(x, y, d))

end

Algorithm 1: ZSAD-based local disparity matching.
For an image size of (W, H), i.e., image width W and

image height H, and frame rate f images per second, the
number of cost functions to be computed per second
for a window size (w, h) and disparity range dmax is

ops = W H f whdmax.

Unfortunately, increasing the resolution not only
increases WH, but also typically requires a larger search
range dmax. In order to achieve real-time performance
for high-resolution video streams, we chose a hierarchi-
cal approach to depth estimation. The video streams are
downsampled Ns times into a hierarchical pyramid
structure, similar to a GPU implementation for disparity
estimation described in [14]. The algorithm is illustrated
in Figure 7. First, disparity estimation is performed on
the lowest resolution image; on the next higher resolu-
tion, a search refinement around the upsampled dispar-
ity from the previous stage is performed. The
refinement range does not need to be larger than +/- 1
pixels, due to the upsampling of two. With the hierarch-
ical architecture, the number of required cost-function
computations per second reduces to

opshier = W H f wh

((
Ns−1∑
n=0

3
22n

)
+

dmax

23Ns

)
. (6)

In (6), the sum collects the complexity contributions
from the higher resolutions, while the term that is pro-
portional to dmax corresponds to the operations from
the first (i.e., lowest resolution) stage. The behavior of
the complexity savings, visible from the ratio opshier/ops
for an increasing number of stages, is illustrated in Fig-
ure 8 together with the increase in the associated mem-
ory requirements.
Algorithmically, using a hierarchical depth estimation

has two different effects. On the positive side, depth
estimation gets more robust against spatial high-fre-
quency noise and remaining vertical offsets due to
imperfect rectification. However, high-frequency struc-
tures are lost in lower-resolution images and cannot be
recovered in higher-resolution stages. Hence, the best
number of stages to use depends on the spatial frequen-
cies to be detected.

5.2 FPGA implementation
Figure 9 provides a high-level view on the hardware
architecture of the disparity estimation.
5.2.1 Lowest resolution block
The lowest resolution unit, depicted on the right side of
Figure 9, resembles a full disparity estimation unit: for a
given reference window br, the ZSAD costs are com-
puted for all blocks in a scan window bs. This task is
carried out by parallel ZSAD units that evaluate the
ZSAD cost function for one candidate disparity value in
one clock cycle. Due to the small effective pixel rate
fpixel = 2−2Ns W H f , achieved by the downsampling,
time-sharing can be employed to reduce the number of
ZSAD units that need to be instantiated to scan the
2−Ns dmax candidates in the subsampled image, which
corresponds to a disparity range of dmax in the original
image, within the time available for each pixel. Two

Figure 7 Illustration of hierarchical, local, window-based disparity estimation. The left subfigure depicts the image pyramid. The image is
iteratively downsampled by a factor of 2 on each stage. The right subfigure illustrates the search: the initial search is performed on the lowest
resolution (stage 2 in this example). The determined disparity is subsequently refined in a very small search window on all higher resolutions.
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detailed example implementations with fully parallel
ZSAD units and time-shared ZSAD units are shown in
Figure 10.
The lowest resolution unit needs to buffer h - 1 lines

from the scan- and the reference-images only. One
reference window and one block in the scan window
need to be accessed in parallel from the buffer by each
ZSAD unit. Due to the scan line processing order, the

buffer can be efficiently implemented with FPGA SRAM
macros in conjunction with a shift register structure.
The ZSAD matching is performed twice, once using

the left image as reference and once using the right
image as reference window. Although this doubles the
necessary hardware resources for ZSAD units and for
searching the best match, it allows for a consistency
crosscheck performed in the highest resolution stage.
The buffer size remains largely identical since on-chip
line buffers are implemented for both images in any
case.
5.2.2 Higher-resolution stages
The disparities found at the lowest stage are subse-
quently upsampled and used as offset to perform the
matching in the higher-resolution stages. Instead of
evaluating the ZSAD matching costs in the full scan
area, only three matching windows in a range of +/- 1
pixels from the disparity value found in the previous
stage are used. Therefore, only three ZSAD matching
units are needed to perform the estimation in one clock
cycle.
In addition to the disparity upsampling, the incoming

pixel stream is downsampled and forwarded to the next
lower stage. A synchronization buffer between incoming
pixel values and the corresponding incoming offsets is
needed. This buffer temporarily stores the incoming
lines until the respective disparities from the lower-reso-
lution stage are available.
In terms of resource usage, the upsampling, downsam-

pling, and synchronization require line buffers and

Figure 9 FPGA architecture of the disparity estimation. The higher stages keep the incoming lines in a synchronization buffer, until
disparities are propagated from the lowest stages.

Figure 8 Relative resources of hierarchical depth estimation to
standard window-based depth estimation. The lower curve (blue)
indicates the ratio of necessary window operations, and the upper
curve (red) indicates the ratio of memory words needed for
synchronizing the downsampling.
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hence on-chip SRAM memory resources. This is well
suited for FPGAs, which are typically equipped with
abundant SRAM memory blocks. However, the size of
the synchronization buffer grows exponentially with the
number of stages, which renders architectures with a
high number of stages still too complex even for large
FPGAs, unless external memory resources can be used.

5.3 Performance summary
The hierarchical architecture provides considerable com-
plexity savings, and it increases colorimetric and geo-
metric noise resilience. Unfortunately, it also destroys
fine-grained details and, for a streaming-based architec-
ture, the exponentially growing amount of synchroniza-
tion memory limits the number of usable hierarchical
stages. The corresponding tradeoff between memory
increase and complexity reduction is illustrated in Figure
8 for dmax = 256. A good tradeoff is to use Ns = 2, which
we employed for our reference implementation.
The depth estimation unit can run at up to 130 MHz,

which is sufficient for a throughput of 60 frames per
second (fps) for full HD resolution with dmax = 256.
The performance bottleneck of the complete design is

currently the path through the adder tree in the ZSAD
blocks. The corresponding FPGA resources and perfor-
mance figures are summarized in Table 1.

6 Results and comparison
The proposed camera architecture has been evaluated
using an experimental beam-splitter rig with two syn-
chronized cameras, with a maximum resolution of 2,
048 × 2, 048 pixels at 30 fps. The host platform uses a
six-core CPU paired with an NVIDIA GTX480 GPU.
The FPGA design is deployed on a PCI Express board
fitted with one ALTERA Stratix III with two DDR2
RAMs and a PCIe 8× interface. The design is imple-
mented in VHDL, and a fixed-point golden model
(implemented in MATLAB) is used as functional refer-
ence. The stereo video stream is captured on two
Camera Link interfaces, processed in the FPGA, and
finally transferred to the main memory of the PC using
DMA. Figure 11 shows our system, and Figure 12
shows different output images from the camera pipe-
line. For discussions on the quality of results achieved
by the hierarchical disparity estimation, we refer to
[14].

Figure 10 Data path details of one matching stage. For illustration purposes, a simplified example with a matching window size of 3 × 3
pixels and a disparity search range of 4 pixels is shown. Furthermore, only one matching direction is shown (e.g., only left-right match). The
illustration on the left side shows a high-level overview of one matching level. Note that the downsampling operation reduces the data rate to
1
4. A fully parallel implementation (top-right illustration) would therefore be un-utilized for many cycles. We employ time-sharing (lower-right
illustration) using one single matching unit only, which is fully utilized for every cycle without reducing the throughput. Note that the design is
parameterized, and the amount of time-sharing is configurable at compile-time.

Greisen et al. EURASIP Journal on Image and Video Processing 2011, 2011:18
http://jivp.eurasipjournals.com/content/2011/1/18

Page 10 of 13



6.1 Resource utilization and throughput
The FPGA resource utilization on the ALTERA Stratix
III (EP3SL340) FPGA is detailed in Table 1. The entire
stereo pipeline fits easily into the device. For the refer-
ence implementation, we used a depth estimation with
two hierarchical stages and search window sizes of [7 ×
7, 7 × 7, 5 × 5], where the last window size corresponds
to the lowest resolution stage. Matching is performed in
a disparity range of 256 pixels. The rectification unit
includes 768 cache blocks, where each block consists of

4 × 16 pixels in RGB format. The total amount of cache
memory therefore corresponds approximately to 24
lines of a full-HD image. This generous choice has been
made to cover also worst case scenarios, i.e., arbitrary
transformations, without throughput degradation and
might be reduced by a factor up to five when the neces-
sary image transformations are small.
Our system is running at 130 MHz and is able to process

stereo full-HD at 30 fps (1080p30) video in real-time. The
PCIe interface to the PC and the Camera Link interface
currently limit the system to scale to higher resolutions
and/or frame rates. The FPGA design itself currently sup-
ports stereo full-HD at 60 fps (1080p60); higher numbers
can be reached by using more hardware resources for
depth estimation and further DDR2 controller optimization
for the rectification. The latencies of the pre-processing
and disparity estimation units are only a couple of lines, the
latency of the PCI transfer is one frame (double buffering),
and the latency of the rectification is also one frame. The
rectification latency could be reduced when assuming that
the transformations are small and then start the read-out
when the frame is still being processed; however, the pre-
sent implementation does not support this operation.

6.2 FPGA versus GPU
The main parts from the stereo pipeline, depth estima-
tion and image warping, have also been implemented on

Figure 12 Result images from our stereo pipeline. Top: left (a) and right (b) color processed images. Bottom: disparity image, with
consistency check (tolerance 5) (c) and disparity image with additional median filter (GPU, size 5) (d). Noise in texture-less regions (in particular
the left corner) is unavoidable with local disparity estimation algorithms.

Figure 11 Overview picture of our custom stereo camera
system.
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the GPU for comparison. Due to the massive amount of
caching and memory bandwidth of modern GPUs, recti-
fication does not pose a challenge to the GPU. However,
the hierarchical depth estimation requires approximately
190 ms per frame, which is an order of magnitude
slower than our FPGA implementation. For this com-
parison, the same number of parameters has been cho-
sen as for the FPGA implementation. One of the main
advantages over a GPU implementation is the paralle-
lism of the FPGA architecture: all different stages are
computed in parallel, while the GPU performs all inter-
mediate stages in sequence. Furthermore, memory
transfers constitute a considerable overhead for the
GPU implementation. Note that these data transfers are
not necessary in our stream processing-based FPGA
implementation.

6.3 Comparison to related work
The results of this work surpass all related work in
terms of throughput and, more importantly, resolu-
tion. The comparison in this chapter is limited to the
most related work, and earlier related work is covered
in the works cited here. Unless stated differently, all
FPGA implementations employ a similar FPGA
technology.
Morris et al. [6] presented an FPGA implementation

for disparity estimation using dynamic programming.
The architecture is able to achieve 30 frames per second
for 1 million pixel images, but only allows to search a
disparity range of 128 pixels. Kalarot et al. [24] com-
pared this implementation to a GPU implementation
using a CUDA on GTX 280 and showed superior per-
formance of the FPGA implementation.
Longfield et al. [7] presented a parametrizable FPGA

disparity matching core that supports resolutions up to
320 × 240 pixels and computes disparities up to 20 pix-
els at 30 frames per second.
Georgoulas et al. [8] present an SAD-based depth esti-

mation, reaching up to 768 frames per second for reso-
lution of 640 × 480, with a search range of 80 pixels.
The authors claim to be able to reach 251 frames per
second at 1280 × 1024, however, at a search range of 80
pixels only.
Gehrig et al. [9] presented a low-power FPGA imple-

mentation of semi-global disparity matching that is able
to process 640 × 400 resolution at 25 fps with a maxi-
mum of 128 pixel disparity.
Recently, Jin et al. [10] presented an FPGA design and

implementation of a real-time stereo vision system.
Their system rectifies the video stream in real-time and
performs disparity estimation using the census trans-
form on 640 × 480 at 230 fps, with a search range of 64
pixels.

Ohmura et al. [11] implemented 752 × 480 at 60 fps
using orientation code matching, with a disparity of 127
pixels.
Banz et al. [12] presented a stereo vision system that

covers the entire process from noise reduction, rectifica-
tion, and disparity estimation. They implemented semi-
global mapping at 640 × 480 30 fps with 128 pixel dis-
parity range.
Miyajima et al. [25] presented a system that is able to

achieve up to 19 fps for 640 × 480 for a maximum dispar-
ity size of 200 pixels, however, using older FPGA technol-
ogy. Their design should thus yield better results on state-
of-the-art FPGA devices due to technology scaling.
Unfortunately, all of the mentioned designs scale

poorly for videos with higher resolutions, such as 1080p
resolutions. Disparity estimation for high-resolution
video with realistic search ranges of 256 pixels at real-
time frame rates is impossible, due to the non-linear
increase in computational complexity and memory
accesses. Our work combines an advanced caching
scheme for the rectification and hierarchical disparity
search in order to allow for real-time performance on
high-resolution video.

6.4 Scalability
Our architecture is scalable to higher resolutions and
frame rates beyond 1080p60. The most obvious
approach is to insert more pipeline registers in the criti-
cal path in order to increase the system clock. Further-
more, the disparity estimation block has been designed
to be modular, and more calculation units working in
parallel can easily be added to improve throughput. The
warping block can similarly be extended by increasing
the level of parallelization; however, the external mem-
ory interface will become the bottleneck eventually.
In addition, we can also scale the design toward multi-

camera setups with more than two cameras easily. The
resources linearly scale with the number of cameras,
since for each stream a new instance of the pipeline can
be employed.

7 Conclusion
In this work, an FPGA-based processing platform for
high-resolution stereo video is presented. The platform
is integrated into a PC platform with CPU, GPU, and
FPGA processing. The FPGA architecture performs low-
level image processing, color interpolation, and cross-
image color correction. Furthermore, real-time rectifica-
tion and disparity estimation are performed on 1080p
video at 30 frames per second. In order to cope with
the high data rates and computational complexity, an
advanced caching scheme for the rectification and hier-
archical disparity estimation is employed.
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The pipeline is implemented on FPGA using a modest
amount of hardware resources, which frees the CPU
and GPU to concentrate on higher-level tasks. We show
that image pre-processing can be implemented very effi-
ciently with low hardware overhead. Furthermore, we
show that almost arbitrary radial undistortions and
homography transformations can be implemented using
a cache of the size of a couple of lines only, effectively
reducing the amount of off-chip data transfers to a fea-
sible minimum. We show that disparity estimation can
be performed in real-time on 1080p video using modest
hardware resources by employing a hierarchical evalua-
tion scheme.
In favor of execution speed and hardware resources, a

local, window-based disparity estimator is applied.
Other, global methods can yield better results but also
imply higher execution times. Possible future work
could explore hierarchical global methods for hardware
implementations. The rectification unit can produce
aliasing artifacts in case of extreme minification, e.g., if
the pixel distances are reduced by more than a half.
Low-pass pre-filtering of the input video could resolve
the problem. However, most stereo cameras employ the
same lenses and cameras, and therefore, this extreme
case can safely be neglected.

Endnotes
aThe ‘de-normalization’ is implicitly contained in the
homography; bWidth and height are configurable, and
their optimal choice depends on the transformation.
Typically, blocks should be much wider than high, since
the transformation rotation angle is usually small, after
manual coarse rectification; cThe number of necessary
memory words is proportional to 2Ns .
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