
Computational Stereo Camera System with Programmable Control Loop

Simon Heinzle1 Pierre Greisen1,2 David Gallup3 Christine Chen1 Daniel Saner2

Aljoscha Smolic1 Andreas Burg2 Wojciech Matusik1 Markus Gross1,2

1Disney Research Zurich 2ETH Zurich 3University of North Carolina

Figure 1: Our custom beam-splitter stereo-camera design is comprised of motorized lenses, interaxial distance and convergence. A pro-
grammable high performance computational unit controls the motors. User input is performed using a stereoscopic touch screen.

Abstract

Stereoscopic 3D has gained significant importance in the entertain-
ment industry. However, production of high quality stereoscopic
content is still a challenging art that requires mastering the complex
interplay of human perception, 3D display properties, and artistic
intent. In this paper, we present a computational stereo camera
system that closes the control loop from capture and analysis to
automatic adjustment of physical parameters. Intuitive interaction
metaphors are developed that replace cumbersome handling of rig
parameters using a touch screen interface with 3D visualization.
Our system is designed to make stereoscopic 3D production as easy,
intuitive, flexible, and reliable as possible. Captured signals are
processed and analyzed in real-time on a stream processor. Stere-
oscopy and user settings define programmable control functionali-
ties, which are executed in real-time on a control processor. Com-
putational power and flexibility is enabled by a dedicated software
and hardware architecture. We show that even traditionally difficult
shots can be easily captured using our system.

CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Digital Cameras

Keywords: stereoscopy, camera system, programmable

1 Introduction

The entertainment industry is steadily moving towards stereoscopic
3D (S3D) movie production, and the number of movie titles re-
leased in S3D is continuously increasing. The production of
stereoscopic movies, however, is more demanding than traditional
movies, as S3D relies on a sensitive illusion created by project-
ing two different images to the viewer’s eyes. It therefore requires
proper attention to achieve a pleasant depth experience. Any imper-
fections, especially when accumulated over time, can cause wrong
depth perception and adverse effects such as eye strain, fatigue, or
even motion sickness. The main difficulty of S3D is the complex
interplay of human perception, 3D display properties, and content
composition. The last one of these especially represents the artistic
intent to use depth as element of storytelling, which often stands in
contrast to problems that can arise due to inconsistent depth cues.
From a production perspective, this forms a highly complex and
non-trivial problem for content creation, which has to satisfy all
these technical, perceptual, and artistic aspects.

Unfortunately, shooting high-quality stereoscopic live video con-
tent remains an art that has been mastered only by a small group of
individuals. More specifically, the difficulty arises from the fact that
in addition to setting traditional camera parameters (such as zoom,
shutter speed, aperture, and focus), camera interaxial distance and
convergence have to be set correctly to create the intended depth
effect. Adjusting all these parameters for complex dynamically
changing scenes poses additional challenges. Furthermore, scene
cuts and shot framing have to be handled appropriately in order
to provide a perceptually pleasing experience. These problems
become even more pronounced for live broadcast of stereo con-
tent, such as in sports applications. Capturing high-quality stereo
3D footage therefore requires very sophisticated equipment along
with the craftsmanship of an experienced stereographer all of which
makes the S3D production inherently difficult and expensive. The
cost for S3D movie productions is estimated 10%-25% higher than
for traditional productions [Mendiburu 2008].

We propose a computational stereo camera system that features a

closed control loop from analysis to automatic adjustments of the
physical camera and rig properties. Our freely programmable ar-
chitecture comprises a high-performance computational unit that
analyzes the scene in real-time (e.g., by computing 3D structure or
by tracking scene elements) and that implements knowledge from
stereography to capture quality S3D video in our control loop al-
gorithms. Since stereography is still a widely open field with a
continuously evolving conception of S3D cinematography, we de-
signed our camera architecture as a freely reprogrammable set of
processing units. This enables us to utilize different algorithms
for different scenes, shots, or artistic intentions. In addition, we
support scripting of complex operations to develop and optimize
shots within the actual movie production. Thus, some of the post-
production is shifted back into the production cycle. In a live broad-
cast scenario scripts may be predefined and executed on demand.

For efficient camera operation, we devise a set of interaction
metaphors that abstract the actual camera rig operations into in-
tuitive gestures. The operator controls the camera using a multi-
touch stereoscopic user interface. In addition, the interface enables
monitoring the S3D content as well as the related stereo parameters
instantly. In order to achieve real-time performance, we imple-
mented our custom computational architecture combining FPGA,
GPU, and CPU processing close to the sensor to achieve a low la-
tency control loop. To summarize, the contributions of our paper
are as follows:

• A computational stereo camera system for stereography and
video analysis with a closed control loop model for automatic
adjustment of the stereo and camera parameters,

• A programming environment for the computational unit of our
stereoscopic camera rig for scripting of complex shots,

• A re-programmable control unit for adapting rig parameters to
different shots, scenes, and user preferences,

• A multi-touch stereoscopic user interface including scene pre-
view and intuitive interaction metaphors,

• An advanced system architecture combining FPGA, GPU, and
CPU processing to provide a high-performance platform for full
HD (1920x1080) video processing in real-time.

2 Related Work

Stereography. Production of high-quality S3D is a difficult art
that has to consider and satisfy technical, perceptual, and artistic
aspects at the same time [Mendiburu 2008]. In general, the dis-
played action should remain in a so called stereoscopic comfort
zone related to the display [Howard and Rogers 2002; Hoffman
et al. 2008; Jones et al. 2001; Sun and Holliman 2009]. Given a
certain 3D scene, a stereographer adjusts the interaxial distance and
convergence of the cameras to achieve this goal. There are software
calculators [Maier 2010] that can compute parameters for a stereo
camera-display combination off-line. Our system implements a re-
programmable computational model for these stereographic rules
that can be automatically executed and adjusted in real-time.

Commercial stereo rigs. Despite the importance of S3D pro-
ductions, academic research on related camera systems is limited.
However, industrial development in this area has recently gained
significant momentum resulting in a variety of sophisticated so-
lutions. Among those, the products developed by 3ality Digi-
tal [2011] are closest to our approach. 3ality provides fully mo-
torized beam-splitter rigs, which allow accurate interactive control
over all physical parameters including interaxial, convergence, and

zoom. Very recently, 3ality presented a closed loop solution for
automated camera control: their system is able to automatically
adjust convergence and interaxial based on disparity analysis. To
our knowledge, the system does not provide time-varying control
algorithms, the possibility to script shots, and to extend the un-
derlying control framework. Furthermore, no intuitive touch-based
interaction metaphors are provided.

Stereoscopic scene analysis. A second group of products for
stereo 3D production are software systems that analyze stereo-
scopic properties of the video stream in order to correct mis-
matches (color, key-stoning, vertical disparity). These systems
often also include disparity estimation for visualization and mon-
itoring. Sony [2011] provides a broadcasting box with basic video
analysis and automatic correction functionality; however, their sys-
tem requires the physical rig parameters to be tuned manually based
on computed recommendations. Masaoka and colleagues [2006]
present a research prototype of a stereoscopic system that computes
depth of scene elements. The system can predict the quality of
the S3D video based on scene layout and desired display parame-
ters. The STereoscopic ANalyzer (STAN) is another similar system
that computes disparities automatically to estimate misalignments
and scene properties. Based on visual feedback, the user then ad-
justs the camera parameters manually [Zilly et al. 2009; Zilly et al.
2010a; Zilly et al. 2010b]. Mueller et al. [2008] describe an in-
teractive WYSIWYG stereoscopic editing system that additionally
uses visual markers as depth references for pre-planning live action
3D shots. Finally, Koppal and colleagues [2011] build a viewer-
centric system that performs scene analysis and provides tools for
shot planning. Although these systems allow for some basic cor-
rection and optimization of the stereo content, they only operate on
the output of the camera system and therefore do not close the loop
to control the rig directly.

Post-production. Some systems allow changing depth composi-
tion of S3D content after capture. Kawai et al. [2002] present an
editing system that allows basic alignment and checks. Wang and
Sawchuk [2008] describe a framework to warp and remap dispar-
ities to manipulate stereoscopic image pairs. Ocula [The Foundry
2010], an off-line post-production plug-in for Nuke, computes dis-
parity maps to virtually change the interaxial distance. The non-
linear disparity mapping algorithms described by Lang et al. [2010]
can operate in real-time on the captured signal to correct errors and
adjust depth composition. These systems are complementary to our
system and can be used in sequence.

Multi-view cameras. The vast amount of research papers on
multi-view or multi-lens camera systems mainly focus on the op-
timal capturing of data to perform operations like view synthesis
or 3D reconstruction. None of these papers are focused on optimal
stereo 3D production directly, implementing stereography in a com-
putational model, and providing a corresponding programmable
hardware-software solution. In that sense our work is unique, but
shares a lot of basic vision components with these other systems
such as color correction, rectification, or disparity estimation.

Programmable cameras. While there is a clear need for auto-
mated solutions, the full understanding on how to shoot the best
S3D content is still evolving and not yet fully established. Fur-
thermore, stereoscopy remains an art and therefore requires art
directability. One fundamental property of our camera is its pro-
grammability. The most recent programmable framework for pho-
tographic cameras has been presented by Adams et al. [2010].
However, the platform does not ensure a constant flow of video
data and is not able to process high-definition video in real-time.
Furthermore, it is not designed for stereoscopic video streams.

Right camera

Control processor

Image sensor
Exposure time

Lens system

Aperture

Focus

Zoom

Left camera

Motors
Interaxial

Convergence

Stereo control

Stereo rig Stream processor

Camera/Stereo
con�guration

Video streams

Video, depth,...

Plugin Plugin Plugin

PluginPlugin

Control unit 1

Control unit 2

Control unit 3

Stream
con�guration

User input interfaces Display, storage

Figure 2: The camera processing architecture is comprised of two
cameras with motorized lens systems. The stereo parameters, in-
teraxial distance and convergence, are motorized as well. Video
data is sent to the stream processor, a modular plug-in-architecture.
Multiple programmable sequential control programs then perform
camera reconfiguration based on the incoming streams.

3 Architecture Overview

Our architecture is composed of a motorized stereo camera set-
up that is accompanied by a powerful processing architecture, as
shown in Figure 2. The processing architecture is conceptually di-
vided into stream processing and control processing. The stream
processor receives the video streams from the cameras and per-
forms the image processing and analysis for each frame. The
control processor analyzes these results and evaluates control al-
gorithms to re-adjust the camera parameters. To account for artistic
control or changing requirements, both processors can be repro-
grammed easily. In the following paragraphs we will describe all of
the components in detail.

Motorized camera set-up. The system is designed for two cam-
eras aligned along a common baseline. The convergence angle as
well as the interaxial distance between the cameras are motorized.
Furthermore, the optics of the system (aperture, focus, and zoom)
are motorized as well. An illustration of the camera set-up is given
in Figure 1. Changes to the camera parameters can be issued by the
control processor in a precisely timed manner. This event system is
described in more detail in Section 6.3.

Stream processor. The stream processor receives the stereo
video and processes it to generate additional streams of data such
as depth maps. More specifically, the video streams are distributed
to a collection of virtual processing units that can be connected and
configured arbitrarily. Dynamic reconfiguration is achieved by pro-
viding a modular plug-in architecture: all units share a common in-
terface and any output stream can be connected to any input stream
provided that the respective formats match. Furthermore, new vir-
tual units can be easily created and added to extend the system.
One example of a stream processor configuration contains Bayer-
demosaicing, color correction, and disparity calculations. More
details on the stream processor can be found in Section 6.1.

Control processor for real-time camera control. The video and
additional data streams are then analyzed using control algorithms,
presented in Section 4. Our controller changes camera parameters
based on the current disparities and issues new events to the respec-
tive camera motors and the stream processing configuration. Users
can tune and extend our controller or write completely different

b
xR

xL

zL

zR

α

z

c

convergence
plane

dx

Figure 3: Computation of screen space disparities.

controllers to fit particular applications. Our implemented control
algorithms are covered in Sections 4 and 5, the control processor is
described in Section 6.2.

User interface and display. We propose to use a stereoscopic
multi-touch interface that allows to toggle between both stereo-
scopic views and monoscopic previews, to control the camera pa-
rameters, and to adjust control algorithms using simple, intuitive
interaction metaphors. More details on the user interface are pre-
sented in Section 5.

System performance. Dual, high resolution video streams at
movie frame rates demand high data bandwidth as well as com-
putational power. To process the video streams in real-time, we
implement the architecture on a high-performance heterogeneous
system composed of FPGA, GPU, and CPU components. High-
level control algorithms are mainly computed on the CPU, while
stream processing tasks are carried out on the FPGA and GPU.
In addition to the high computational power, the interconnections
between cameras and computational system are designed for low
latency feedback. Our software and hardware implementation is
described in more detail in Section 7.

4 Closing the Loop: Real-Time Camera Control

Satisfying the S3D comfort zone constraints in addition to setting
traditional camera parameters requires a lot of manual tuning from
the rig operator. To alleviate the currently cumbersome S3D ac-
quisition process, we provide an approach that relieves the operator
from manually setting all parameters. Our system provides a real-
time controller capable of setting all (or a subset) of the camera
parameters for each scene. Closing the loop between the camera
output and the camera settings enables more automated acquisi-
tion and considerably simplifies the movie production process –
the effort spent on time-consuming on-set adjustments and post-
processing steps is minimized. Moreover, shots that are difficult to
capture with traditional rigs can be handled much more easily. For
instance, dynamic scenes that require simultaneous focus and con-
vergence adjustments, typically very hard to achieve with a system
without the control loop, can be captured using our setup.

We show the control loop in Figure 2: the stream processor extracts
information from the scene, the control processor deduces appro-
priate actions from the gathered information and feeds it back to
the camera system. The control variables are the stereo settings and
the traditional camera settings. The feedback variables include, for
example, screen disparities or object positions. Since most of the
stereo limitations can be deduced from disparity values, we confine
our discussion to disparity based control. Other control structures
are easily realizable, as discussed later in Section 6.

4.1 Camera Parameters and Screen Disparities

The screen disparity of a given point in the scene refers to the dis-
tance between the two corresponding points in the images recorded

by the left and the right camera. The disparity is often the most im-
portant parameter for S3D depth perception and it is related to most
comfort-zone constraints. We therefore consider it as the central
parameter in the control loop. In the following we will show how
to compute screen disparities with camera configuration parameters
and scene depth information.

Our formulation of screen disparities assumes rectified and radi-
ally undistorted images as input. More specifically, we assume that
both cameras have the same intrinsic parameters, the optical axes
are coplanar, and the angles between the two optical axes to the
baseline are equal up to orientation. For focal length f , the screen
disparity d of an object can be described as:

d = − f
(

xL

zL
− xR

zR

)
, (1)

where zL, zR are the depths of the object in left and right camera co-
ordinates, and xL, xR are the signed distances from the two principal
axes to the object (see Figure 3). For small convergence rotation an-
gles α, the depths of the object can be approximated as zL ≈ zR ≈ z,
where z is the distance from the object to the baseline. With the
approximation xL − xR ≈ dx, the disparity can be expressed as

d ≈ − f
dx

z
= − f

(
b
z
− 2 tan α

)
= − f

(
b
z
− b

c

)
, (2)

where b denotes the interaxial distance, α the convergence rotation
angle, and c the depth of the convergence plane

c =
b

2 tan α
(3)

at which all objects yield a disparity of 0 pixels. Given the current
camera parameters and the screen disparity d, the depth z of an
object can be computed according to

z =
b f

−d + 2 f tan α
=

b f
−d + f b/c

. (4)

4.2 Disparity-based Camera Control

In order to control the parameters of the camera system to shoot
visually pleasing 3D videos, we relate the disparities d for a given
camera setting f , b, and α to the new disparities obtained with a
modified setting f ′, b′, and α

′:

d′ = − f ′
(

b′(−d + f b/c)
b f

− b′

c′

)
. (5)

Using the convergence depth c as a more intuitive parameter in-
stead of α, the following adjustment strategies follow directly from
Equation 5.

Adjusting interaxial distance. In the simplest case we would
like to respect the comfort zone constraints by adjusting the inter-
axial distance b while keeping the convergence plane fixed. More
specifically, we would like to find the maximum interaxial distance
b′ (given fixed f and c) for which the screen space disparities do
not exceed user-defined comfort zone limits [d′min, d′max]. If the cur-
rent screen disparities lie in the range of [dmin, dmax], the maximum
allowed interaxial distance b′ can be computed as

b′ = max
(

min
(

d′min

dmin
,

d′max

dmax

)
b, 0

)
. (6)

Control processor

Interaxial
Convergence

Controller

Temporal
median �lter

Lowpass
�lter

Stereo rig

Requested
disparities Current disparities

Convergence &
interaxial distance

Stereo
images

Current convergence
& interaxial distance

Stream processor

Outlier removal

Pre-processing

Disparity
estimation

0

Disparity velocity

Filter gain
1

.75

.50

.25

Figure 4: Disparity based control loop. The controllers provide the
next stereo settings based on the current settings and user defined
inputs. A median filter reduces random, erroneous disparity jumps.
A low-pass filter allows to tune the interaxial distance and conver-
gence changes between very inert or very responsive. Controller
and filters can be replaced to suit the application requirements.

Adjusting interaxial distance and convergence plane. To fully
utilize the target disparity range [d′min, d′max] for a current disparity
range [dmin, dmax] we need to adjust both the interaxial distance and
the convergence plane according to

b′ =
(d′max − d′min)

dmax − dmin
b , (7)

c′ =
(d′max − d′min)bc f

(d′mindmax − d′maxdmin)c + (d′max − d′min)b f
. (8)

4.3 Time-varying Changes and Control

So far we have discussed a controller that adapts interaxial distance
and convergence for one specific moment in time. Now we consider
how to extend this controller to time-varying scenes.

Median and low-pass filtering. Equations 7 and 8 can be used
to directly control the interaxial distance and convergence plane.
However, the controllers then immediately react to changes in dis-
parities which makes them highly sensitive to errors in the disparity
estimation. Moreover, to get smooth transitions, often slower re-
action times are desired. We employ two filters to avoid sudden
changes and to make our controllers tunable: first, a temporal me-
dian filter removes outliers in the controller output; then, a low-pass
filter removes the remaining high-frequency components. A high
median filter value makes the controller more robust against erro-
neous jumps in the disparities, but also increases the latency. The
cut-off frequency of the low-pass filter determines the response time
of the controller: a low cut-off frequency results in a very inert sys-
tem, a high value results in a very responsive system. This approach
enables to choose a tradeoff between disparity errors and transition
errors: fast transitions may quickly compensate for spatial incon-
sistencies such as comfort zone violations, but also induce rapid
temporal depth transitions which often lead to unpleasant viewer
experiences. On the other hand, smooth transitions alleviate tem-
poral depth jumps but fast appearing spatial errors remain visible
for a longer time.

Alternative controllers and filters. In contrast to our filtered di-
rect controller, classical feedback controllers such as proportional-
integral-derivative (PID) controllers have no actual knowledge of
the relation between feedback value and control signal. Although
very robust against noise and model inaccuracies, PID controllers
lack the ability to react fast, especially when the sampling rate is
limited. In applications where the controller should anticipate the
scene depth variations, a prediction filter could be plugged-in, such
as extended Kalman filters or particle filters. A classical Kalman

filter is not suitable because the disparity noise is not necessarily
Gaussian distributed (sporadic high outliers) and the model equa-
tions are non-linear.

Programmable control. Stereoscopic content creation has no
unique solution due to varying scenes, applications, and user pref-
erences. Moreover, for certain applications, it is useful to couple
the stereo parameters to the lens and camera settings. Thus, the
actual control behavior is dependent on the application. To combine
flexibility with ease of use, we provide a programmable control
framework that allows for defining arbitrary control functions as
described in Section 6. We can specify a look-up table or a function
that relates control parameters. In particular, we could define filter
parameters versus time or as a function of disparities or disparity
velocities. Also, instead of fixed disparity range requirements, we
could define a function of user requirements and current scene in-
formation (e.g., depth histogram). Figure 4 provides an example of
our controller together with programmable extensions.

4.4 Beyond Interaxial and Convergence Control

In the following, we discuss potential extensions to the disparity-
based automatic interaxial distance and convergence plane con-
trollers, and show how they would easily fit into our setup.

Depth of field. A different approach for handling disparities out-
side the comfort zone is to blur the image in the regions that have
too large disparities. The blurring is obtained by narrowing the
depth of field and focusing on the object or region within the com-
fort zone. Therefore, the controller sets aperture to achieve the
desired depth of field, and then sets interaxial distance and conver-
gence plane accordingly. The targeted disparity range could for in-
stance be defined as a function of depth-of-field in a programmable
controller.

Frame violations. Frame violations occur when an object with
negative disparity (in front of the screen) intersects with the left or
right image boundary. The so-called framing effect causes unpleas-
ant stereoscopy due to two conflicting depth cues. Framing can be
relieved by removing one of the two views in the vicinity of the left
and right image boundaries (floating windows [Mendiburu 2008]).
Frame violations could be analyzed by detecting large patches with
negative disparities at the image boundaries and could be compen-
sated by our system for e.g. live broadcasting applications.

Viewer-centric approaches. Viewer-centric approaches for
stereoscopy such as [Masaoka et al. 2006] [Koppal et al. 2011]
usually consider more variables in addition to the disparities
captured and camera parameters used during filming. While
screen size, distance to the viewer, or the human inter-ocular
distance affect the possible comfort zone greatly, all related control
parameters directly result from the measured disparities and
camera parameters. Our framework could be directly extended to
take viewer-centric variables into account as well.

5 Interactive Control

While the control algorithms presented in the previous section can
be used to limit the disparity range automatically, the user often
wants to be kept in the loop to account for artistic control. In addi-
tion to letting the user ’turn several knobs’, we employ a control
metaphor that is based on direct selection: using a multi-touch
interface, the user can select points on the screen to set various
parameters directly tied to scene content.

Step 1: Press

Step 2: Slide on screen

Finger 1: Press and hold

Finger 2: Select

Figure 5: Interactive control examples using our multi-touch UI.

This selection metaphor then allows for intuitive parameter changes
by selecting the objects of interest. We implemented several inter-
active controls using this scheme: refocusing, convergence based
on touch, object tracking for follow focus and convergence, and
intuitive depth of field selection.

5.1 Interactive control applications

Touch-based refocusing and convergence. Instead of calculat-
ing distances, the user can set focus and convergence plane onto a
selected object. For the point of interest, window based matching in
a region around the selected point is performed. The matching then
returns the best reliable disparity patch which is used to calculate
the depth of the object. With the depth of the object, the respective
convergence plane and focus distance according to Equation 4 can
be evaluated.

Tracking. Follow focus and follow convergence are tradition-
ally hard problems that usually require highly trained opera-
tors to be performed well. In addition to touch-based refo-
cusing/convergence, we therefore incorporate a template tracker
[Babenko et al. 2009] into our framework. Using the same strategy
to calculate the disparities as mentioned in the previous paragraph,
our system can perform follow-focus and/or follow-convergence of
a tracked object, an automatic operation that would not be possible
without the computational control loop.

5.2 User Interface

Our multi-touch user interface (UI) displays the real time video
stream in different viewing modes (red-cyan, disparity map, and
shutter glass S3D) as well as associated scene information and
camera parameters. Multiple menus allow for setting parameters
or entering different operation modes. We propose the following
gestures to enhance human-camera interaction: traditional clicks,
virtual sliders, and shift-button modes. Users can perform standard
interface operations with one finger clicks to toggle control buttons,
open or close sub-menus, and drag slider thumbs.

Slider control can be tedious and inaccurate when using multi-touch
displays, unless huge sliders are used. To support efficient con-
trol of smaller sliders more accurately we introduce virtual sliders.
Users can click on a slider with one finger and subsequently use the
whole screen space as invisible slider bar using a second finger. The
user interface scales the finger movement and transfers it to relative
shifts of the slider thumb. In this way users can operate in a larger
and more comfortable space to control the slider value in a much
finer scale.

In addition, we allow multi-finger touches to be used in a shift-
button mode. This mode resembles the function of a shift key on a
normal keyboard. While keeping the first finger pressed on a shift
button, the second finger can be used to select screen objects e.g.,
to compute the convergence plane. Furthermore, the second finger
can be used to perform consecutive actions as long as the first finger
rests on the modifier button. We illustrate the user interface and our
input gestures in Figure 5.

6 Programmable Control Implementation

Stereoscopic video production often employs a wide variety of dif-
ferent styles depending on the specific artistic intent. While some
control algorithms, such as maintaining the comfort zone, play an
important role in any S3D production, artistic control algorithms
might change depending on the current shot. To accommodate this
need for extensibility, we propose a programmable control archi-
tecture that allows implementing new control loop algorithms in
addition to the algorithms presented in the previous two sections.

The control algorithms are conceptually decoupled from stream
processing: while the control processor closes the loop by recon-
figuring the cameras, the stream processor is responsible for gener-
ating the data needed to compute the control results. Furthermore,
the control processor can issue events to the camera and motor con-
trollers.

6.1 Stream Processor

The stream processor assembles available stream plug-ins to form a
virtual device rack. The plug-ins are based on a simple interface to
interchange video frame data and each plug-in is able to perform a
specific processing step. Then, multiple plug-ins can be connected
at run-time to form different types of processing pipelines. In order
to facilitate these tasks, each plug-in defines its own set of input
and output connectors. These connectors are associated with an
image buffer which is annotated with dimensions and format. Fur-
thermore, each plug-in is able to report its description and its list of
functions (e.g., by invoking a run-time help() function). Any re-
ported function can be called using the runCommand("...") func-
tion, without knowing the exact signatures at compile-time. Plug-in
parameters can be set and retrieved using similar commands.

A central stream manager creates, configures, and executes the pro-
cessing pipelines; it represents the virtual device rack and manages
the assembly of virtual devices. The stream manager searches
predefined locations for available plug-ins, creates a plug-in cat-
alog and a list of associated methods for each plug-in. Based
on the available plug-in catalog, a user program can define a de-
sired pipeline by instantiating plug-ins and by specifying their in-
terconnections. The central stream manager then ’compiles’ the
pipeline: in a first step a directed graph of all connected plug-ins
is constructed to derive a processing order. Furthermore, illegal
connections such as multiple sources connected to one single input
connector as well as cyclic dependencies are detected and reported.
In the next step, buffer formats for all interface connections are
propagated to ensure that all data formats are correct.

At run-time, the stream manager issues processing requests in the
correct order and manages data movement between individual plug-
ins. This is especially important when using device-dependent lan-
guages such as OpenCL or CUDA, in order to avoid unnecessary
transfers.

Using this concept, the base application does not depend on the
available plug-ins, and it can be easily reconfigured during run-time
to accommodate a specific scene being shot. Furthermore, this pro-
gramming model facilitates an easy creation of arbitrary pipelines.
More importantly, third party developers can adhere to this simple
interface and provide additional plug-ins to extend the functionality
of the current camera system.

6.2 Control Processor

Conceptually, the stream processor employs a uni-directional data
flow model – it is only allowed to process the incoming stream.

Stream

processor
FPN

correction

Image
statistics

PRNU
correction

Bayer
demosaic

Linear color
correction

Radial
undistortion

Stereo video

Vertical
disparity

elimination

Disparity
estimation

Pattern
tracking

Statistics PositionsDisparities Stereo video

Figure 6: Implemented stream processor configuration. After basic
color processing, the stream is radially undistorted and vertical dis-
parities are eliminated. Disparity estimation and pattern tracking
are performed for subsequent control algorithms.

The control processor is more general: it is able to reconfigure all
camera settings as well as the stream processor.

The control units adhere to a simple interface that is very similar to
the interface of the stream processing plug-ins. Control units can
request buffer handles and parameter settings from the stream man-
ager. Based on the available buffer information, a control unit eval-
uates its algorithms and can decide how to reconfigure the stream
processing and the camera. The stream reconfiguration is directly
performed using the stream manager. Camera reconfiguration is
performed using events sent to an event queue. These events are
described in the next section.

6.3 Event Scripting

The control processor issues events to set camera, lens, and stereo
parameters in a precise and scriptable way. All events can be set
either to a point relative to the current clock or relative to a future
exposure starting time. In addition to the start time stamp, the con-
trol program can also prescribe a certain duration for the event to
e.g. increase the interaxial very slowly. An example timed event
that controls the camera aperture can be written as follows:

ApertureEvent *ae = new ApertureEvent();
ae->setAperture(1.4); // set aperture to f/1.4
ae->setStartTime(0.03); // start in 0.03s
ae->setDuration(0); // as fast as possible
EventQueue::addEvent(ae);

The absolute-timed events can be helpful for immediate actions or
to execute a pre-scripted sequence of commands. Alternatively,
events can be timed relatively to an exposure event. Such events
are useful to keep the cameras still during the exposure time and to
change the parameters only during the read-out phase, if the physi-
cal changes are fast enough.

After a new event has been configured it is entered into the event
queue. The event queue manages the timing and delegation of
events to the appropriate hardware controllers, prohibiting direct
control by the control programs. Events can be attributed with a
priority, and the event queue resolves potential conflicts according
to the assigned priorities. If the priority of a new event is smaller or
equal to the priority of the currently executing event, the prior event
will be canceled and replaced by the new one. We currently support
event settings for focus, aperture, interaxial distance, convergence,
zoom, exposure, and frame rate. However, other events can be im-
plemented if the appropriate hardware controllers are present. Note
that this concept is very similar to the Device Action mechanism
of the FrankenCamera framework [Adams et al. 2010], but targeted
for streaming video. Using events, camera settings for whole scenes
can be pre-scripted and executed on demand.

6.4 Configuration Example

We discuss an example of a basic software configuration that em-
ploys both stream and control processor in the following. To real-
ize the control algorithms from Section 4.2, we implemented the
stream processing configuration as depicted in Figure 6. In the
stream processing step, fixed pattern noise (FPN) reduction, pixel
response non-uniformity (PRNU) correction, Bayer demosaicing,
linear and non-linear color correction, and radial undistortion are
performed as low-level image manipulation algorithms. Further-
more, the two images are rectified to avoid vertical disparities. An-
other plug-in estimates stereo disparities. Furthermore, template
matching to estimate local screen disparities and perform object
tracking is executed. Finally, the parameter controller analyzes the
information computed by stream processing, evaluates the control
algorithms presented in Section 4.2, and reconfigures the cameras
on the fly.

7 Implementation

The proposed computational system is heterogeneous. It is imple-
mented using FPGAs, a GPU, and a CPU. The stream processing
plug-ins are distributed among different hardware units; the control
algorithms mostly run on the CPU. This section presents details on
the lower and higher level stream processing plug-ins, the imple-
mentation of the system as well as the specific hardware architec-
ture.

7.1 Low-level Stream Processing Plug-ins

Image pre-processing. Low-level processing mainly encom-
passes the pre-processing steps from traditional image processing
[Ramanath et al. 2005]. The synchronization of the two cameras
is handled by simultaneously releasing a trigger pulse from the
FPGA to both camera sensors with a configurable frame rate. As
the employed camera does not correct for fixed pattern noise (FPN)
and pixel response non-uniformity (PRNU), our framework lets
us capture so-called black images for different exposure times and
white images for the PRNU correction. Then, the correction is
performed in a single plug-in on the FPGA. We employ a linear
algorithm to extract the color image from the color filter array
image. More specifically, we chose a linear 5x5 interpolation
filter that is based on the Wiener filter [Malvar et al. 2004].
Next, the RGB values captured by the camera sensor need to be
transformed to a well-defined colorimetric space such as sRGB. In
order to accomplish this step, a linear transformation 3x3 matrix is
estimated using a color checker chart. In addition, white balancing
is performed in the same step. The color correction plug-in that
executes on the FPGA applies this matrix transformation to the
RGB values. Moreover, a gain correction plug-in can be added to
enhance contrast.

Color matching and rectification. In addition to transforming
the colors of the two cameras separately into calibrated color
spaces, non-linear color shifts between the two cameras must be
taken into account. Color matching is particularly important in
mirror-rigs due to the dispersive behavior of the beam-splitter mir-
rors. We include programmable look-up tables (LUTs) on the
FPGA that can realize arbitrary non-linear transformations on the
individual color components in the RGB space or in the HSV space.
One example for determining the LUTs is to separately equalize
the histograms of the HSV channels of the two images. A more
advanced method is described by Pitie et al. [2007]. Radial and
tangential distortion correction is performed on the GPU according
to Brown’s distortion model [1966]. Next, a projective transfor-

mation is applied to both video streams on the GPU to rectify the
images. Section 7.3 provides details on how to determine the pro-
jective transformations.

7.2 Disparity Estimation Plug-in

Our control algorithms rely heavily on robust disparity informa-
tion. In order to achieve real-time performance using our FPGA-
GPU-CPU architecture, we employ a local window method, similar
to [Zach et al. 2004] with modifications to reduce the amount of
outliers. First, the incoming images are progressively downscaled
into an image pyramid. Then, starting on the lowest resolution, the
algorithm returns the best match for each pixel in the first image
along a line in the second image. The resulting disparity of the best
match is propagated to the next higher resolution where it serves
as offset to refine the match. As matching kernel we chose the
normalized cross correlation (NCC) kernel in order to account for
possible changes in offset and gain of the pixel intensities.

Local window based methods offer the best degree of paralleliza-
tion and only require modest computational resources compared to
more advanced disparity matching. However, these methods typ-
ically overextend object boundaries when using large kernel win-
dows or low resolution images. Conversely, reducing the kernel ra-
dius or the amount of downscaling increases the amount of disparity
estimation errors. For our automatic control architecture, we do not
need dense per-pixel disparity values, but rather a robust histogram
distribution of the disparities of a scene. Hence, we optimize our
disparity estimation to yield minimal amount of outliers: the lowest
resolution image in our pyramid architecture is downscaled 4 to 5
times, and matching is performed using large kernel sizes (15 to 20
pixels). These settings reduce the amount of noise greatly, but also
reduce the ability to detect fine features. The disparity matching
is performed from left-to-right and right-to-left, and a final con-
sistency check ensures that the same disparities are found in both
directions for additional outlier reduction. Moreover, we use a 5x5
spatial median filter and thresholding of the NCC matching costs
to remove remaining outliers. The disparity estimation is imple-
mented as a CUDA kernel. The resulting disparity maps are mostly
free of outliers, see Figure 8 for obtained results.

7.3 Calibration

While eliminating vertical disparities is necessary for proper human
stereopsis, it is also crucial for computational stereo algorithms to
work. In order to successfully work with a stereo camera rig with
motorized lenses and camera positions, high-quality calibration is
indispensable. That is, the relative camera positions should differ
only by a horizontal offset (interaxial distance) and the camera in-
trinsics must be known, in particular for varying focus and zoom
settings.

Camera intrinsics. Our disparity calculation uses the camera fo-
cal length as input. Instead of relying on the lens markings, we
perform an initial calibration [Bouguet 2010] for each camera-lens
combination to compute its focal length, distortion coefficients, and
principal points. For zoom lenses, we perform the calibration for a
set of different focal lengths. Similarly to Fraser et al. [2006], we
interpolate these results depending on the current motor positions.

Camera extrinsics. The relative positions of the two cameras are
first coarsely aligned by manually changing the camera orientations
on the rig. In practice, looking at the red-cyan stereo image quickly
reveals coarse vertical disparities. The fine-tuning is done digi-
tally in the rectification step: we estimate rectifying homographies
from the epipolar geometry in real-time using feature matching and

FPGA

CPU

Storage

GPU
Multitouch
3D display

Figure 7: Hardware implementation: The FPGA acquires the video
stream and performs pre-processing. The CPU and GPU are used
to implement high-level processing and control. The system in-
cludes a storage array as well as a multi-touch user interface.

outlier removal tools. We use the approaches from Mallon et al.
[Mallon and Whelan 2005] and Zilly et al. [Zilly et al. 2010a] that
work well for feature-rich scenes with non-zero interaxial distance
and radially undistorted image pairs.

7.4 Software Highlights

Plug-ins and scripting. The system uses shared library mecha-
nisms to load plug-ins. A central stream manager performs the
configuration and execution of plug-ins. LUA scripting is used for
easy reconfigurability and extensibility, LUAbind is used to expose
C++ classes to LUA. The UI can be reconfigured easily using this
scripting language. Moreover, the UI can be connected to different
stream and control processing plug-ins presented in Section 6.

Multi-threading. We employ multi-threading to optimize the
overall system performance. The most important threads include
a DMA thread for FPGA-to-host video transfer, a thread for video
storage, a thread for stream processing, a control thread, and the
event scheduler thread. Furthermore, all interfaces to external mo-
tors are started in separate threads in order to quickly react to events
and to communicate efficiently with hardware controller boxes.

7.5 Hardware Components

We evaluate our proposed camera architecture using an experimen-
tal beam-splitter rig which allows for fine camera and mirror tilt
adjustements. The system uses two Silicon Imaging SI-4000F color
cameras with a resolution of 2048x2048. A Birger EF mount for
Canon EF lenses is used to control focus and aperture electroni-
cally. Both cameras are mounted on high-precision rotary stages
from Newport. Moreover, the right eye camera is mounted on a
high-precision linear stage from Newport to control interaxial dis-
tance. The computational system uses a six-core CPU paired with
an NVIDIA GTX480 GPU. We employ a PCI-Express board with
ALTERA Stratix III FPGAs as a frame grabber to pre-process video
streams. A hardware RAID array of eight solid-state hard drives is
integrated in order to store the final video stream. A multi-touch
overlay from PQLabs is attached on top of a 120Hz monitor for the
user interface, and NVIDIA 3D vision shutter glasses can be used
for live S3D preview. Figure 7 illustrates the system.

8 Prototype Performance and Limitations

Video preprocessing and storage. The FPGA is able to pre-
process two 1080p60 video streams. However, the camera supports
30 frames per second only, and our storage system was designed
for this data rate as well. The latency from camera to the display
is approximately 3 frames, which is more than acceptable for the
camera operator. The PCIe express throughput of the FPGA board
is limited to 35 frames per second.

Disparity Estimation and Tracking. Disparity estimation and
tracking are hard computer vision problems, and we employed
rather simplistic approaches in favor of fast execution times. Ro-
bust feature detectors are a possible alternative approach to dense
disparity estimation, but were not tested either in terms of execution
speed or outlier performance.

System delay. Compared to the video pre-processing, the con-
trol loops require more complex processing to analyze the scene.
Hence, the control loops are designed to operate independently of
video display and recording and are performed at a lower frame rate
and/or at a lower resolution. The dense disparity estimation oper-
ates on a 16x downsampled image for the coarsest level, and propa-
gates the disparities up to a 2x downsampled image. Tracking uses
a 4x downsampled image. When both algorithms are combined, the
frame rate of the control loop in the current implementation reduces
to 10Hz, while the frame rate of the recorded video stream is not
affected.

Impact of system delay on control rate. The delay of the system
dictates the update rate of the control parameters and hence should
be small compared to temporal scene changes. While the current
implementation does not allow fast changes, the overall perfor-
mance could be significantly improved without a major redesign of
the system, e.g., by implementing disparity estimation and tracking
on the FPGA. However, in some situations, such as sports broad-
casting using long zoom lenses, the images might change com-
pletely from frame to frame. The disparities will therefore also
change completely and the automatic control algorithms will not
be able to produce meaningful parameter changes. As a possible
solution, additional cameras with wide angle lenses could be used
to analyze the scene and subsequently to control the main cameras.

Degree of motorization. In our prototype, the misalignments of
cameras and shift of optical axes during zoom can only be com-
pensated using the digital rectification step. However, when the
misalignments become more severe mechanical adjustments are
necessary. Ideally, all degrees of freedom such as roll, tilt, pitch,
and offset should be motorized to allow for pixel accurate camera
positioning. Commercial camera rigs such as [3ality Digital 2011]
often provide such motorization.

External motor control. The system is furthermore limited by the
motor controls. For our hardware, the latency of any command
for the linear and rotational stages is in the order of 20ms. Any
motion command to the linear and rotational stages has a minimum
execution time of 160ms. As a consequence, the overall execution
time of the control loop is long, especially when combined with
temporal disparity noise filtering.

Prototype rig. A further limitation of our system is the overall
weight. In addition to a traditional camera, a processing box and
multi-touch user interface is required.

8.1 Application Examples

We illustrate the potential of our system by using three examples:
automatic interaxial distance and convergence plane control, touch-
based refocusing and convergence, and subject tracking for follow-
focus and follow-convergence shots. We refer to the accompanying
video for the full results and we provide representative selected
frames in the paper.

Automatic interaxial distance and convergence plane control is
performed using data from the disparity estimation. Figure 8 shows
results of the automatic controller. In the present implementation,
the disparity estimation limits the frame rate and, in combination
with the median filter to increase outlier robustness, leads to the

Depth map

-60 px +30 px

Disparity bracket
Convergence

plane

Depth histogramDepth map

-60 px +30 px

Disparity bracket
Convergence

plane

Depth histogram Depth map

-60 px +30 px

Disparity bracket
Convergence

plane

Depth histogram

Interaxial distance: 70mm Convergence distance: inf Interaxial distance: 22.6mm Convergence distance: inf Interaxial distance: 125.2mm Convergence distance: 2.8m

Figure 8: Effect of different interaxial and convergence settings. The left image shows a close-up scene shot using a wide interaxial and
parallel cameras, and produces huge disparities that violate the stereoscopic comfort zone. After applying the interaxial controller, the
interaxial distance is reduced drastically to map the disparities into the comfort zone as shown in the center image. However, the overall
depth range is not utilized fully. The image on the right shows the result after applying the interaxial distance and convergence plane
controller, resulting in a more homogeneous disparity distribution due to the wide interaxial distance and near convergence setting.

Figure 9: Two examples of automatic control based on template tracking. Manual interaction is only required in the first frame (left column)
to initialize the subject of interest. In the top row, the controller follows the convergence plane at the depth of the subject. In the bottom row,
both convergence and focus are following the subject.

latency visible in the video. For relatively static scenes or for higher
frame rates the additional low-pass filter can be used to smooth out
the camera-parameter adjustments.

Touch-based refocusing and convergence uses simple template
matching similar to the disparity estimation to determine the dis-
tance to a selected object. To improve stability and accuracy of
the object-based estimate, a larger matching radius is used. The
operator can specify the duration of the transition using the event
scripting to create smooth effects.

Subject tracking for follow-focus and follow-convergence works
very well in practice, despite the slow update rate of the employed
tracker algorithm. While the tracker can lose an object when the
background is similar to the subject, it performed well for our ap-
plications. Figure 9 shows representative frames for two different
sequences.

9 Conclusion

In order to address today’s challenges in S3D production, we
present a novel design of a computational stereo camera system,
which closes the control loop from capture and analysis to auto-
matic adjustment of physical parameters, such as interaxial and
convergence. We develop intuitive interaction metaphors that au-
tomatically abstract and replace cumbersome handling of rig pa-
rameters. The main driving goal behind the design is to make S3D

production for artists as intuitive and flexible as possible. In princi-
ple, the system can be combined with any motorized stereo camera
rig. The architecture further is comprised of a configurable stream
processor that efficiently performs video processing and analysis
operations, a programmable control processor that implements con-
trol functionalities derived e.g. from best-practice rules of stereog-
raphy or user input, and a user interface and display for intuitive in-
teraction. Real-time performance and computational flexibility are
enabled by the combination of FPGA, GPU, and CPU processing.
Only such a design enables real-time closed loop control of physical
camera parameters. The core of the control loop is a disparity-
based implementation of knowledge from stereography combined
with user settings, e.g. to allow for artistic depth composition of
a scene. Intuitive interaction is enabled through metaphors via a
touch screen with stereoscopic visualization. It allows monitoring
and controlling all basic characteristics of the signals and function-
alities of the system. Programmable control allows event scripting,
e.g. for complex shots or for user preferences.

Our prototype system implements all basic functionalities of the
concept and we demonstrate a number of compelling applications,
including automatic disparity range adjustment via interaxial dis-
tance and convergence, touch-based refocusing and convergence,
follow focus and convergence tracking. Such results are impossible
or difficult to achieve with current systems. Our concept of a com-
putational approach for a S3D camera system with the presented
architecture and components is proven useful by these applications.

Future work will include optimization and extension of all compo-
nents, including usage of other rigs and cameras, improvement of
low-level image processing algorithms, optimization of the control
loop implementation and parameters, design of further intuitive in-
teraction metaphors, improvements to the user interface, as well as
general improvements of the software (e.g., partitioning) and hard-
ware. While our system automatically adjusts stereo parameters to
limit disparities to a comfortable range, other more sophisticated
concepts from stereography (e.g., framing violations, disparity gra-
dients, flatness) still require manual interaction with the provided
plug-ins. Such additional plug-ins are left for future work in order
to achieve a fully automated stereographer. We also plan to test our
prototype in professional productions and to incorporate feedback
from S3D production professionals. The basic paradigm of our de-
sign, being an efficient computational vision system incorporating
advanced image analysis and high-level concepts into a real-time
closed control loop, easily extends to other application scenarios as
well.

References

3ALITY DIGITAL, 2011. Beam splitter rigs and stereoscopic image
processors. http://www.3alitydigital.com/.

ADAMS, A., TALVALA, E.-V., PARK, S. H., JACOBS, D. E.,
AJDIN, B., GELFAND, N., DOLSON, J., VAQUERO, D., BAEK,
J., TICO, M., LENSCH, H. P. A., MATUSIK, W., PULLI, K.,
HOROWITZ, M., AND LEVOY, M. 2010. The Frankencamera:
an experimental platform for computational photography. ACM
Transactions of Graphics 29, 29:1–29:12.

BABENKO, B., YANG, M., AND BELONGIE, S. 2009. Visual
tracking with online multiple instance learning. In Conference
on Computer Vision and Pattern Recognition, IEEE, 983–990.

BOUGUET, J.-Y., 2010. Camera calibration toolbox for Matlab.
http://www.vision.caltech.edu/bouguetj/calib_doc/.

BROWN, D. C. 1966. Decentering distortion of lenses. Photogram-
matric Engineering 32, 444–462.

FRASER, C. S., AND AL-AJLOUNI, S. 2006. Zoom-dependent
camera calibration in digital close-range photogrammetry. Pho-
togrammetric Engineering & Remote Sensing 72, 1017–1026.

HOFFMAN, D., GIRSHICK, A., AKELEY, K., AND BANKS, M.
2008. Vergence-accommodation conflicts hinder visual perfor-
mance and cause visual fatigue. Journal of Vision 8, 3, 33.

HOWARD, I. P., AND ROGERS, B. J. 2002. Seeing in Depth. Ox-
ford University Press.

JONES, G., LEE, D., HOLLIMAN, N., AND EZRA, D. 2001. Con-
trolling perceived depth in stereoscopic images. SPIE, vol. 4297
of Stereoscopic Displays and Virtual Reality Systems, 42–53.

KAWAI, T., SHIBATA, T., INOUE, T., SAKAGUCHI, Y., OKABE,
K., AND KUNO, Y. 2002. Development of software for edit-
ing of stereoscopic 3D movies. SPIE, vol. 4660 of Stereoscopic
Displays and Virtual Reality Systems, 58–65.

KOPPAL, S., ZITNICK, C. L., COHEN, M., KANG, S. B.,
RESSLER, B., AND COLBURN, A. 2011. A viewer-centric ed-
itor for 3D movies. IEEE Computer Graphics and Applications
31, 1, 20 –35.

LANG, M., HORNUNG, A., WANG, O., POULAKOS, S., SMOLIC,
A., AND GROSS, M. H. 2010. Nonlinear disparity mapping for
stereoscopic 3D. ACM Transactions on Graphics 29, 4.

MAIER, F., 2010. Stereotec stereoscopic calculator.
http://stereotec.com/.

MALLON, J., AND WHELAN, P. F. 2005. Projective rectification
from the fundamental matrix. Image Vision Computing 23, 643–
650.

MALVAR, H., HE, L.-W., AND CUTLER, R. 2004. High-quality
linear interpolation for demosaicing of bayer-patterned color im-
ages. In International Conference of Acoustic, Speech and Signal
Processing, IEEE.

MASAOKA, K., HANAZATO, A., EMOTO, M., YAMANOUE, H.,
NOJIRI, Y., AND OKANO, F. 2006. Spatial distortion predic-
tion system for stereoscopic images. Electronic Imaging 15, 1,
013002:1–12.

MENDIBURU, B. 2008. 3D Movie Making - Stereoscopic Digital
Cinema from Script to Screen. Elsevier.

MUELLER, R., WARD, C., AND HUSAK, M. 2008. A system-
atized WYSIWYG pipeline for digital stereoscopic 3D filmmak-
ing. SPIE, vol. 6803 of Stereoscopic Displays and Applications.

PITIÉ, F., KOKARAM, A., AND DAHYOT, R. 2007. Automated
colour grading using colour distribution transfer. Computer Vi-
sion and Image Understanding 107, 1-2, 123–137.

RAMANATH, R., SNYDER, W., YOO, Y., AND DREW, M. 2005.
Color image processing pipeline. Signal Processing Magazine,
IEEE 22, 1, 34–43.

SONY, 2011. MPE200 multi image processor and software.
http://pro.sony.com/.

SUN, G., AND HOLLIMAN, N. 2009. Evaluating methods for con-
trolling depth perception in stereoscopic cinematography. SPIE,
vol. 7237 of Stereoscopic Displays and Virtual Reality Systems.

THE FOUNDRY, 2010. Ocula stereoscopic post-production plug-ins
for Nuke. http://www.thefoundry.co.uk/.

WANG, C., AND SAWCHUK, A. A. 2008. Disparity manipulation
for stereo images and video. SPIE, vol. 6803 of Stereoscopic
displays and applications.

ZACH, C., KARNER, K., AND BISCHOF, H. 2004. Hierarchical
disparity estimation with programmable 3D hardware. In Short
communications of WSCG, 275–282.

ZILLY, F., EISERT, P., AND KAUFF, P. 2009. Real-time analysis
and correction of stereoscopic HDTV sequences. In Proceedings
of Visual Media Production.

ZILLY, F., MUELLER, M., EISERT, P., AND KAUFF, P. 2010.
Joint estimation of epipolar geometry and rectification parame-
ters using point correspondences for stereoscopic TV sequences.
In Proceedings of 3DPVT.

ZILLY, F., MUELLER, M., EISERT, P., AND KAUFF, P. 2010. The
stereoscopic analyzer - an image-based assistance tool for stereo
shooting and 3D production. In IEEE International Conference
on Image Processing.

