
Temporal Noise Control for Sketchy Animation

G. Noris1,2 D. Sýkora3 S. Coros2 B. Whited4 M. Simmons4 A. Hornung2 M. Gross1,2 R. W. Sumner2
1ETH Zurich, CGL 2Disney Research Zurich 3CTU in Prague, FEE 4Walt Disney Animation Studios

Figure 1: Balancing scene. We compare different noise reduction values from 0% (input animation) to 100% (noise-free). Close-ups are
marked by blue squares.

Abstract

We propose a technique to control the temporal noise present in
sketchy animations. Given an input animation drawn digitally, our
approach works by combining motion extraction and inbetween-
ing techniques to generate a reduced-noise sketchy animation regis-
tered to the input animation. The amount of noise is then controlled
by a continuous parameter value. Our method can be applied to ef-
fectively reduce the temporal noise present in sequences of sketches
to a desired rate, while preserving the geometric richness of the
sketchy style in each frame. This provides the manipulation of tem-
poral noise as an additional artistic parameter, e.g. to emphasize
character emotions and scene atmosphere, and enables the display
of sketchy content to broader audiences by producing animations
with comfortable noise levels. We demonstrate the effectiveness of
our approach on a series of rough hand-drawn animations.

1 Introduction

Compared to traditional cleaned-up drawings, sketches present a
kind of visual richness, where both silhouette and interior lines are
composed of many rough strokes. This style allows another dimen-
sion of expressiveness - emotion, action, and other features can be
conveyed through the “sketchy” drawings.

The richness provided by the sketchy style can be considered to
be a form of geometric noise. Despite its positive benefits in still
images, geometric noise becomes temporal noise in sequences of
sketches and is generally unpleasant to view. The industry solution
to this problem is to remove the geometric noise. In production en-
vironments, early versions of animation (both 2D and 3D) are often
composed of sequences of rough sketches. Later in the pipeline,
these are systematically replaced either with clean-line drawings or
with renderings of 3D scenes, which typically present cleaner visu-
als. Animations completely made of sketches are less common and
generally confined to short sequences or small productions1.

Our goal is to preserve the expressiveness inherent in sketchy draw-
ings while removing unpleasant temporal issues. We propose to
reduce temporal noise while keeping geometric noise by support-
ing interpolation at a finer level, down to the individual sketchy

1Notable examples include Frédéric Back’s short “L’homme qui plan-
tait des arbres” and a brief series of sketches in the “Colors of the Wind”
sequence in Disney’s animated feature Pocahontas.

strokes. Instead of appearing and disappearing, the strokes tran-
sition smoothly from frame to frame. Enforcing these constraints
manually in typical production environments would be impractical:
establishing a fine-scale correspondence of strokes within the se-
quence of sketches and generating the proper animation path is too
labor-intensive.

A key insight of our approach is that we can first construct a noise-
free animation using only a representative subset of the input frames
such that effectively all temporal noise is removed. Then, the de-
sired amount of noise can be continuously varied on top of this
noise-free animation. Another key idea is the use of motion ex-
traction to allow local stroke searches within the global motion -
enabling an automated solution to the fine-scale stroke correspon-
dence problem.

2 Related Work

Research efforts related to sketchy or hand-drawn styles of illustra-
tion can be divided into two main topics: simplification and gener-
ation (static images as well as temporally coherent animations).

In the area of automated simpification/beautification, several tech-
niques have been developed that reduce the number of lines in a
drawing using a density measure to prune possibly redundant lines
while still conveying the notion of the original shape [Wilson and
Ma 2004; Grabli et al. 2004]. Instead of solely performing stroke
reduction, Barla et al. [2005] propose a perceptually motivated
technique for synthesizing representative lines. Input strokes are
first grouped using a greedy clustering algorithm that pairs strokes
according to screen-space proximity. A geometric reconstruction
step then follows to produce a single line for each group. The de-
scribed approach is for static drawings, though they propose in-
corporating a temporal aspect of perceptual grouping- “common
fate”, expressed by grouping line segments with similar velocity
to produce coherent animation. Shesh et al. [2008] later extended
this approach to handle time coherence by building a simplification
hierarchy of strokes and using opacity blending to interpolate be-
tween a pair of strokes and its simplified version to create smooth
transitions.

Generation of static sketchy or pen-and-ink style illustrations from
input 2D images/photographs and from 3D models is a popu-
lar topic in the field of non-photorealistic animation and render-
ing (NPAR) (e.g. [Winkenbach and Salesin 1994; Salisbury et al.
1997; Coconu et al. 2006]). Far less attention has been focused



on developing temporally coherent results suitable for animation.
Existing techniques [Curtis 1998; Bourdev 1998; Kalnins et al.
2002; Kalnins et al. 2003] focus on rendering stylized silhouettes
of animated 3D models. After silhouettes are extracted from the
3D model the main challenge is to generate coherent “sketchi-
ness” along the silhouette strokes over time, e.g. through assign-
ing temporally coherent parameterizations to strokes in the image
plane [Kalnins et al. 2003; Bourdev 1998] or alternatively achieving
coherence via a particle system seeded along the silhouette[Curtis
1998] or through stroke texture representations [Bénard et al. 2010]
designed for temporal coherence. The key issue with all of these
approaches is that they require an underlying 3D model or a clean
2D image with known stroke correspondences. In our case the chal-
lenge is that we have a set of unordered strokes in each frame which
are not necessarily moving coherently and we need to determine
how to best match and interpolate them over time.

3 Method

The method we introduce offers artistic control over the level of
temporal noise in hand-drawn animations. Mismatches in the in-
dividual strokes used to define the same silhouette in consecutive
frames can be a major source of temporal noise, particularly in
rough sketches. Generally speaking, we seek to maintain the global
motion of an input animation, as well as the overall drawing style,
while manipulating the temporal noise level. Smooth output an-
imations are typically preferred, but we note that high-frequency
noise can be an effective artistic tool. The animation of a character
who is scared, for instance, could benefit from a certain amount of
temporal noise to emphasize emotion.

Before describing our method, we introduce the notation used
throughout the paper. Our algorithm operates on sequences of
frames, where each frame F contains a set of strokes that appear
in the animation at the same moment in time. Each stroke s is a
piece-wise linear curve defined by a sequence of vertices. The i-th
stroke in a frame F is given by F(i).

A motion field is a functionM : R2 → R2 that tracks the move-
ment of every point on the 2D canvas. In particular, MF2

F1
is the

motion field that describes the relative motion between frames F1

and F2. We define D(M,F) to be the deformed frame that is ob-
tained by taking the vertices of every stroke in F and displacing
them according toM.

3.1 Overview

Our approach takes as input a sequence of frames from a hand-
drawn animation. The core algorithm works in two passes (see Fig-
ure 2). First, the input sequence is processed to create a noise-free
animation (see Figure 2a). This is done by sampling the original
input animation to choose representative frames. These frames are
smoothly interpolated to create a new animation, and, for the time-
being, all other frames not in the representative subset are ignored.
The output of this stage is a set of smooth, automatically-created
inbetween frames.

In the limit if we choose only the first and very last frame of the
animation as the representative set, replacing frames from the orig-
inal sequence with these newly synthesized inbetweens would ef-
fectively produce a noise-free animation. However, much of the
finer scale motion and sketchy details would also be removed. On
the other hand, if the representative set includes all of the original
frames, then no interpolation is performed and we have the original,
noisy content.

Our goal is to allow an artist to precisely control the level of tem-
poral noise. This is enabled by the second pass of our algorithm,

Algorithm 1 CreateInbetweens

1: input F1,F2: animation frames
2: input t: interpolation parameter, 0 ≤ t ≤ 1
3: output Ft: an inbetween
4: F̂1 ← D(MF2

F1
,F1)

5: S ← computeStrokeCorrespondencePairs(F̂1,F2)
6: Ft ← {}
7: for all (i, j) ∈ S do
8: s← interpolateStrokes(F1(i),F2(j), t)
9: Ft ← Ft ∪ {s}

10: end for

which smoothly interpolates the original noisy animation with the
smooth inbetweens created during the first pass (see Figure 2b).

Both passes must solve the same problem of creating smooth inbe-
tween frames. In other words, given two frames of animation, we
must establish a fine-scale stroke correspondence and interpolate
smoothly between each stroke pair.

3.2 Representative Frame Sampling

The first phase of our algorithm generates a noise-free sequence
which ideally should resemble the original animation as much as
possible. The sampling scheme (i.e. choice of representative
frames) is crucial to the quality of the resulting animation. Our
method is comprised of two main components: the sampling strat-
egy and timing control.

We propose two selection strategies for choosing representative
frames. Uniform sampling selects representative frames distributed
at equal intervals specified by a window size w. Keyframes uses
important or extreme frames that are manually selected from the
original animation input.

Once the representative frames are selected, our system assumes
a uniform division of time units inside each interval, resulting in
an approximation of the input timing. Our experience is that, by
respecting the input animation keyframes, this approximation is ac-
ceptable. However, for particular scenes it might be desirable to
have a finer control. This can be achieved by altering the timing
values used to generate the inbetweens in [Whited et al. 2010].

It is assumed that the keyframe specification and timing informa-
tion when needed is explicitly provided as input, along with the
original animation. This is suitable for a classic animation environ-
ment, where both keyframes and timing information are captured
by timing charts.

3.3 Creating Smooth Inbetween Frames

Algorithm 1 describes the steps to create smooth inbetween frames.
Both passes of our method use this algorithm. The input consists
of a pair of representative animation frames, F1 and F2, and an
interpolation parameter t, 0 ≤ t ≤ 1. Our goal is to create a new
frame Ft using solely the strokes from frames F1 and F2. This
process ensures continuity in the strokes that are output as t varies
between 0 and 1, and thus results in smooth animations.

The first step towards creating smooth inbetween frames consists of
identifying the pairs of strokes from F1 and F2 that represent the
same features in the drawing at different moments in time. Every
stroke from one input frame is matched to the most likely candidate
stroke from the other frame, as expressed by a stroke correspon-
dence measure. We refer to this process as finding the stroke-to-
stroke correspondences (see Section 3.3.2).



Figure 2: Method Overview. Our method works in two phases. (a) The input sequence is processed to create a Noise-Free sequence. To do
so, three steps are performed: (1) Motion extraction (2) Frames Deformation and Stroke-to-Stroke correspondences, and (3) Interpolation.
(b) For each pair of input vs. noise-free frames, an arbitrary number of sequences with increasing noise reduction can be generated, again
using the same three steps.

Strokes that are used to define the same element in a drawing (e.g.
a portion of the silhouette) can be far apart spatially from frame
to frame. Similarly, strokes that represent different elements of the
drawing can become spatially close. Computing appropriate stroke-
to-stroke correspondences in this setting is therefore a very difficult
task, since proximity is not a reliable measure of similarity. To
mitigate this problem we compute the stroke correspondence mea-
sure after deforming the strokes of F1 according to the motion field
MF2

F1
(see Section 3.3.1). More precisely, we compute the stroke-

to-stroke correspondences between the frames F̂1 = D(MF2
F1

,F1)
and F2. In general, the spatial distances between the strokes in the
deformed version of F1 and F2 are significantly smaller, so com-
puting stroke-to-stroke correspondences in this setting is less prone
to mis-matches.

The stroke-to-stroke correspondence step results in a set of pairs
(i, j), where each pair indicates a correspondence between stroke
i of F1 and stroke j of F2. All pairs of corresponding strokes are
then interpolated to create the inbetween frames Ft (see Section
3.3.3).

The remainder of this section outlines the method used to create
the motion fields, the process of deforming the input frame, the
criteria used to compute the stroke-to-stroke correspondences, and
the stroke interpolation method.

3.3.1 Motion Extraction

An important part of our processing pipeline consists of computing
the relative motion, or motion field, between two frames F1 and
F2. We use a slightly modified version of the As-Rigid-As-Possible
(ARAP) method described in [Sýkora et al. 2009]. The original ap-
proach assumes the mask of the registered image is known before-
hand. This allows the control lattice, which represents the motion
fieldMF2

F1
, to be adapted to the topology variations of the underly-

ing shape.

In our problem domain, we are dealing with a more complicated
scenario, as the input consists of an unordered set of strokes with-
out any connectivity information. However, it is still important to
take into account the topology of the input sketch, as opposed to
using a uniform grid. To overcome this difficulty we compute a
rasterized distance field, as illustrated in Fig. 3, which we use as a
mask. The computed distance field closes small gaps between the
input strokes. In addition, the distance field provides a better cue for
image registration (similar to chamfer matching [Borgefors 1988]).

In addition to the distance field, we use a hierarchical coarse-to-fine
refinement. We build a multi-resolution pyramid by recursively re-
ducing the image scale by a factor of two. Then we proceed from

the coarse to fine level and run the registration algorithm with a
control lattice of constant quad size. When moving up each level,
we render a pixel accurate motion field to initialize the position of
the control points on the finer lattice. This helps us to speed up the
convergence of the motion field extraction algorithm and increases
robustness under large motions. The hierarchical refinement also
allows us to adapt to fine details and provide tight image registra-
tion.

As noted in [Sýkora et al. 2009] the image registration algorithm
can potentially get trapped in a local optimum. These cases are
typically rare but when they occur we let the user drag-and-drop
selected control points in order to guide the algorithm towards a
better solution. This operation can be implemented simply by fixing
the position of the selected control point and changing its weight to
some very large value as in [Wang et al. 2008].

Figure 3: Building the control lattice for the ARAP image deforma-
tion: distance field computed from rasterized strokes (left), ARAP
registration using the control lattice based on the distance field
(right).

3.3.2 Frame Deformation and Stroke Matching

The motion field MF2
F1

represents the relative motion between
frames F1 and F2. This provides a way of estimating the location
of each stroke from F1, if it had been drawn at the time represented
by frameF2. The computation of the deformed frame is straightfor-
ward. The vertices v (which are simply 2-dimensional points on the
digital canvas) defining the strokes in Fi are displaced according to
the motion field: v ← v +MF2

F1
(v).

The stroke correspondence step is used to compute a measure of
how well two strokes from different frames will interpolate. In-
tuitively, the better aligned and spatially close the two strokes
are, the better their correspondence measure should be. For our
work, we define the correspondence measure between two strokes
s1 and s2 as h(s1, s2) ∗ h(s2, s1), where h(A,B) is a com-
ponent of the Hausdorff distance. More precisely, h(A,B) =
maxa∈A(minb∈B(d(a, b))) and d(a, b) is the Euclidean distance



Figure 5: Generation of the motion ground truth. A planar grid
is generated and deformed with Autodesk Maya (left). A reference
image is applied as texture on the mesh (center), generating a ref-
erence animation over which the final tree animation is sketched
(right). The animation motion is therefore captured by the mesh
deformation.

between points a and b, i.e. the vertices of strokes A and B. We
note that this is one of many choices of similarity measures [Seah
and Feng 2000; Veltkamp 2001; Lie et al. 2010]. However, in our
experiments, we found the Hausdorff distance to work well and
be more robust than other measures due to the lack of structure in
sketchy drawings.

3.3.3 Stroke Interpolation

The stroke correspondence algorithm is used to find all pairs of
strokes that need to be interpolated to create the inbetween frames.
We use the three-step deformation method introduced in Whited
et al. [2010] to create smooth blends for each pair of strokes. The
strength of this approach over other techniques [Fu et al. 2005; Bax-
ter and Anjyo 2006; Baxter et al. 2009] is that in addition to inter-
polating the stroke curvatures, it also computes the global motion
between pairs of strokes along logarithmic spiral trajectories, thus
capturing the affinity of the global motion (rotation, translation and
uniform scaling).

4 Results

We tested the effectiveness of our algorithm on hand-drawn ani-
mation sequences containing between 30 and 90 frames. In order
to evaluate our motion extraction algorithm, the animation of the
Tree shown in Figure 4 was generated procedurally (see Figure 5).
All other animations were created manually with a digital drawing
tool. The Square animation, shown in Figure 6, presents a sim-
ple case with an almost rigid motion. The use of temporal noise
as an artistic tool is investigated using the Face animation, which
is shown in Figure 11. Lastly, the Balancing animation, Figure 1,
illustrates another challenging example handled by our framework.

For the examples in this Section, to emphasize the temporal pro-
gression, consecutive animation frames are displayed with decreas-
ing opacity. For the Square, Balancing, and Face scenes, we used
a uniform representative frame sampling, with a window size of 7
frames. The Tree scene uses a set of 8 selected keyframes and the
resulting window sizes are between 4 and 7 frames. Temporal re-
duction values are displayed as percentages, where 0% is the input
animation and 100% is the Noise-Free animation.

Our algorithm was developed in C++ and runs as a single thread.
On a standard workstation, the execution of Algorithm 1 takes up
to 10 seconds per pair of frames, with the motion extraction and the
search for correspondences being the most time-consuming tasks.
Overall, computing a full scene takes a few minutes with the unop-
timized prototype.

Figure 6: Square Scene. This image shows the effect of increas-
ing window sizes. Each close-up shows 5 animation frames over-
layed with decreasing opacity. When the noise is high, the lines
look evenly distributed and unstructured (Input Sequence). With
low temporal noise, lines appear to follow a structure and tend to
be clustered (5 and 7).

Figure 8: Neighborhood Averaging. A window of three frames (red,
green, blue) is used to compute a per point neighborhood aver-
age (purple). When the motion is large (a), the resulting frame is
strongly degenerated. Even for slow animations (b), this approach
leads to undesirable kinks and deformations.

4.1 Ground Truth Comparison

To evaluate our motion extraction method we created a “ground
truth” animation of the Tree in Maya. Starting with a planar tex-
tured mesh of the undeformed tree (see Figure 5), the mesh was
deformed by using the bend deformer tool and keyframing the cur-
vature. The deformed tree texture was then used as a reference over
which an artist sketched each frame of the animation.

Figure 7 compares the extracted motion field with the ground truth
generated in Maya. In general, the extracted motion captures both
the global animation motion and local deformations due to the ge-
ometric noise. As a result, it provides a very precise stroke align-
ment, which greatly simplifies the task of finding stroke to stroke
correspondences.

4.2 Neighborhood Averaging Comparison

We compare our results with those obtained through neighborhood
interpolation, which proceeds as follows. For each sample point
p1 of a stroke j in a frame i, we collect the two nearest neighbor
points p2 and p3 in frames i − 1 and i + 1. p1 is then updated to
p1 ← (p1 + p2 + p3)/3. An example result is shown in Figure 8.
Since each sample point pk is free to move independently, divergent
attractions result in breaks of the line continuity. This usually hap-
pens when sample points of one stroke are influenced by different
sets of strokes.

This result shows that a simple averaging approach is not desirable.
In general, we observe that when the motion is large, this approach
produces obvious artifacts, losing important features of the frame.
This motivates the use of motion extraction to alleviate the effects
of large animation motions. Even when the motion is small, kinks
and undesirable deformations are present. This motivates the con-
sideration of strokes as atomic entities, therefore shifting the cor-
respondence from the individual points samples to the stroke level.
Our approach benefits from both considerations.



Figure 4: Tree scene. We compare the input animation (a) with the noise free result (b). Close-ups are marked by blue squares.

Figure 7: Motion Extraction Comparison. The extracted motion (a and c) is compared with the ground truth motion (b and d). The blue and
yellow frames represent Dj

i and Fj , with i = 22, j = 26 (a,b) and i = 29, j = 33 (c,d). The extracted motion is precise and simplifies the
search of stroke to stroke correspondences.

Figure 9: Sampling Strategy. This image shows the maximum mo-
tion error (visualized as misalignment) obtained in the Tree ani-
mation using two different sampling strategies: Uniform Sampling,
with a window size of 7 frames, and Keyframes, with 6 keyframes
marked at the important animation times.

Figure 10: Timing Control. This image shows the effect of different
timing functions applied to the same set of frames.

4.3 Sampling and Timing Control

As discussed in Section 3.2, we implemented two selection strate-
gies for choosing representative frames, uniform sampling, and
manually designated keyframes. Figure 9 compares results of using
the different selection strategies. Notice that using the input ani-
mation keyframes, as opposed to uniformly sampling the frames,
greatly reduces the motion error.

Figure 10 shows the effect of different timing charts applied to the
same set of frames where the timing values used to generate the in-
betweens in [Whited et al. 2010] are altered. Notice how the spaces
are affected by the choice of the timing functions - most notably at
the tip of the tree.

Figure 11: Face. This scene presents a character with an emotional
evolution from happy to horrified. We adapt the noise reduction to
these emotions.

4.4 Temporal Noise as an Artistic Tool

The second phase of our method allows the generation of sequences
with varying temporal noise. By manipulating the noise reduction
level in different parts of the animation, an artist has the ability to
use the noise as an additional storytelling element. Noisy anima-
tions can be used to portray certain feelings, such as anger or fear.
A proof of concept is shown in Figure 11.

5 Conclusion

We have presented a novel technique for noise reduc-
tion/manipulation in sketchy animations and demonstrated its
use on a series of hand-drawn inputs. Our approach not only makes
the production of larger scale sketchy animations feasible through
automated noise reduction, but also widens the scope of artistic
control to include noise as a first-class creative device.

5.1 Limitations and Extensions

One limitation of this work is due to the intrinsic difficulty of han-
dling occlusions, topology changes, and disconnected components
moving independently in a 2D environment. For the motion ex-
traction step, distinct objects with different motions can create di-
vergent motion fields and occlusions can force unnatural compres-



sions; both cases are difficult to capture with a ARAP model. In
order to handle these scenarios in complex scenes, the input would
need to be first segmented into coherent layers.

Additionally, complex curved strokes that self intersect may cause
problems in the correspondence and interpolation steps. A simple
solution, similar to what is proposed in Barla et al. [2005], is to
cut these strokes into separate pieces. However, every piece would
then behave independently, which may not be the desired animation
effect.

Another limitation of our work lies in the selection of keyframes.
As shown in Figure 9 the set of selected representative frames has
a significant impact on the output animation. In particular, as the
complexity of the animation increases (i.e. higher frequency mo-
tions), a larger number of keyframes is needed to preserve the mo-
tion. This effectively limits the number of smooth inbetween frames
that we can create to reduce temporal noise.

Our frame inbetweening technique needs to be extended to provide
smooth interpolation across multiple keyframes. Although the in-
terpolating motions computed by the logarithmic spiral technique
[Whited et al. 2010] are smooth between consecutive keyframes,
the approach has the limitation that continuity is not necessarily
preserved across longer sequences. However, multiple techniques
have been proposed to preserve this continuity at the keyframes,
while still interpolating them. In one approach [Powell and
Rossignac 2008], subdivision is used to smoothly interpolate 3D
poses by blending consecutive screw motions. A more recent ap-
proach [Rossignac and Vinacua 2011] also produces continuous
motions as a blending of consecutive “steady affine motions”. In
2D, both of these algorithms may be applied to logarithmic spirals
with little modification.

Another possible area of exploration is the use of our noise reduc-
tion technique as a post-processing operation on sketchy animations
synthesized using NPAR techniques.

References

BARLA, P., THOLLOT, J., AND SILLION, F. X. 2005. Geometric
clustering for line drawing simplification. In In Proceedings of
the Eurographics Symposium on Rendering, 183–192.

BAXTER, W., AND ANJYO, K.-I. 2006. Latent doodle space.
Computer Graphics Forum 25, 3, 477–486.

BAXTER, W., BARLA, P., AND ANJYO, K. 2009. N-way morph-
ing for 2D animation. Computer Animation and Virtual Worlds
(proc. CASA 2009) 20, 79–87.

BÉNARD, P., COLE, F., GOLOVINSKIY, A., AND FINKELSTEIN,
A. 2010. Self-similar texture for coherent line stylization. In
NPAR 2010: Proceedings of the 8th International Symposium on
Non-photorealistic Animation and Rendering, ACM, 91–97.

BORGEFORS, G. 1988. Hierarchical chamfer matching: A para-
metric edge matching algorithm. IEEE Transactions on Pattern
Analysis and Machine Intelligence 10, 849–865.

BOURDEV, L. 1998. Rendering Nonphotorealiztic Strokes with
Temporal and Arc-length Coherence. Master’s thesis, Brown
University.

COCONU, L., DEUSSEN, O., AND HEGE, H.-C. 2006. Real-time
pen-and-ink illustration of landscapes. In Proceedings of the 4th
international symposium on Non-photorealistic animation and
rendering, ACM, NPAR ’06, 27–35.

CURTIS, C. 1998. Loose and sketchy animation. In Technical
Sketch SIGGRAPH 1998, ACM.

FU, H., TAI, C.-L., AND AU, O. K.-C. 2005. Morphing with
laplacian coordinates and spatial-temporal texture. In Proceed-
ings of Pacific Graphics 2005, 100–102.

GRABLI, S., DURAND, F., AND SILLION, F. X. 2004. Density
measure for line-drawing simplification. In Pacific Conference
on Computer Graphics and Applications, IEEE Computer Soci-
ety, 309–318.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI,
M. A., LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES,
J. F., AND FINKELSTEIN, A. 2002. Wysiwyg npr: draw-
ing strokes directly on 3d models. In Proceedings of the 29th
annual conference on Computer graphics and interactive tech-
niques, ACM, New York, NY, USA, SIGGRAPH ’02, 755–762.

KALNINS, R. D., DAVIDSON, P. L., MARKOSIAN, L., AND
FINKELSTEIN, A. 2003. Coherent stylized silhouettes. In Pro-
ceedings of SIGGRAPH 2003, ACM, SIGGRAPH ’03, 856–861.

LIE, D., CHEN, Q., YU, J., GU, H., TAO, D., AND SEAH, H. S.
2010. Stroke correspondence construction for vector-based 2d
animation inbetweening. In Proceedings of Computer Graphics
International 2010.

POWELL, A., AND ROSSIGNAC, J. 2008. Screwbender: Smooth-
ing piecewise helical motions. IEEE Comput. Graph. Appl. 28
(January), 56–63.

ROSSIGNAC, J., AND VINACUA, A. 2011. Steady affine motions
and morphs. ACM Transactions on Graphics (to appear).

SALISBURY, M. P., WONG, M. T., HUGHES, J. F., AND
SALESIN, D. H. 1997. Orientable textures for image-based
pen-and-ink illustration. In Proceedings of the ACM SIGGRAPH
Conference (SIGGRAPH-97), ACM Press, New York, 401–406.

SEAH, H., AND FENG, T. 2000. Computer-assisted coloring by
matching line drawings. The Visual Computer 16, 269–304.

SHESH, A., AND CHEN, B. 2008. Efficient and dynamic simplifi-
cation of line drawings. Proceedings of Eurographics, Computer
Graphics Forum 27, 2, 537–545.

SÝKORA, D., DINGLIANA, J., AND COLLINS, S. 2009. As-
rigid-as-possible image registration for hand-drawn cartoon an-
imations. In Proceedings of International Symposium on Non-
photorealistic Animation and Rendering, 25–33.

VELTKAMP, R. 2001. Shape matching: similarity measures and
algorithms. In Shape Modeling and Applications, SMI 2001 Intl.
Conference on., 188–197.

WANG, Y., XU, K., XIONG, Y., AND CHENG, Z.-Q. 2008. 2D
shape deformation based on rigid square matching. Computer
Animation and Virtual Worlds 19, 3–4, 411–420.

WHITED, B., NORIS, G., SIMMONS, M., SUMNER, R. W.,
GROSS, M., AND ROSSIGNAC, J. 2010. Betweenit: An interac-
tive tool for tight inbetweening. In Proceedings of Eurographics,
Computer Graphics Forum.

WILSON, B., AND MA, K.-L. 2004. Rendering complexity in
computer-generated pen-and-ink illustrations. In Proceedings of
the 3rd International Symposium on Non-Photorealistic Anima-
tion and Rendering 2004, Annecy, France, June 7-9, 2004, ACM,
129–137.

WINKENBACH, G., AND SALESIN, D. H. 1994. Computer-
generated pen-and-ink illustration. In Proceedings of SIG-
GRAPH 1994, ACM, 91–100.


