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Abstract
We propose a method that allows geometric operations such as view change, deformation, simulation, or sym-
metrization on a single off-line sketch via a proxy geometry reconstructed directly from the sketch. The recon-
struction captures the overall shape of the object depicted by making use of the global relationships of the curves
and the assumption that the sketched object is bilaterally symmetric. After cleaning the sketch and extracting the
curves, topological and geometric properties of a set of identified points are used to derive robust correspondence
and pairwise constraints. These constraints are considered all at once in a spectral algorithm to get the optimum
matching of the curves. Depths of points on the matched curves are extracted by utilizing the symmetry assumption.
They are then used to reconstruct a smooth geometry. The whole process is automatic except for a few seconds of
user interaction.

Categories and Subject Descriptors (according to ACM CCS): Numerical Analysis [G.1.2]: Approximation—
Approximation of surfaces and contours; Computer Graphics [I.3.5]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations

1. Introduction
Sketch based 3D modeling has been receiving growing at-
tention due to the intuitive and familiar nature of sketching
for humans to communicate 3D information. Although many
sketch based interfaces have been proposed, drawing with
ordinary paper and pencil still remains to be the most conve-
nient way to draw for artists [OSSJ08]. In addition, there is
a vast amount of already drawn sketches in online or private
collections. In this work, our goal is to bring 2D sketches to
3D life and manipulate them as if they were in 3D as illus-
trated in Figure 1.

Applying 3D operations on a sketch requires extracting
3D or 2.5D cues from the sketch. Given a single off-line
hand drawn sketch of a 3D object, it is an ill-posed prob-
lem to reconstruct the implied geometry due to the ambi-
guities present [Hof00]. This has led to methods focusing
on specific classes [VC07, CKX∗08, CSPN10] of objects,
which cannot be applied to process general sketches. A more
general approach is finding models matching given contours
with inflation rules [WH96, KH06, IMT07]. Unfortunately,
finding rules that satisfy the needs of the users and consis-
tent geometries is a difficult problem [KH06].

Research on the human visual system revealed that one
of the fundamental semantics used to resolve ambiguities in
sketches is symmetry [TB98, Kon02, MWCP06]. Indeed, it

Figure 1: Top: The input symmetric sketch (left), recon-
structed coarse geometry (middle), synthesized symmetric
sketch (right). Bottom: a novel view (left), deformation (mid-
dle), and an anaglyph image (right).

has been shown that under orthographic or perspective pro-
jection, and certain degrees of symmetry, 3D structure of
a shape can be fully recovered [HYHM04] as long as one
can determine symmetric pairs of pixels. Many objects that
we sketch such as human-made items, buildings, characters,
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Figure 2: Overview of our approach.

faces, and other organic structures exhibit certain degrees
of symmetry, hence the symmetry assumption is one of the
least restrictive for sketches.

In this paper, we take a single hand-drawn sketch of a
bilaterally symmetrical object surface and reconstruct a 3D
structure as detailed as the sketch. This is achieved by find-
ing symmetric curve and point pairs, getting the depth val-
ues using symmetry, and reconstructing a depth map using
these sparse depths. The reconstruction can then be used as
a proxy geometry for various sketch processing tasks such
as viewing the sketch from a novel view-point, or under a
different perspective projection, stereoscopic viewing of the
sketch or even applying a 3D deformation to the sketch.

Our main contribution is a curve matching method that
can extract symmetric curves in a sketch. We show that it
is impossible to find symmetric pairs of points or curves if
they are considered in isolation, and thus one should use the
global structure in the sketch. Hence, we solve the matching
problem using global topological and geometric constraints
that are considered all at once.

2. Related Work
Shape from symmetry
It has been shown that under various kinds of symme-
tries and projections, if symmetric pairs of points are
known, 3D locations of those points can be recovered
uniquely [VP94, FMW02, HYHM04]. Based on this the-
oretical framework, image-based algorithms that directly
reconstruct surfaces [YHR∗05], or use the cues given by
symmetry to aid in other applications such as photo edit-
ing [HHM05] or architectural modeling [JTC09] have been
proposed. When images contain rich information about the
3D structure such as texture or shading, one can detect a
dense set of symmetric pairs. In contrast, sketches contain
much less information about the 3D structure of the de-
picted object and descriptors cannot be used in identify-
ing symmetric pairs. Even if symmetric pairs are found,
they are only on the curves and hence very sparse. Due
to these fundamental obstacles, symmetry in sketch-based
reconstruction is used only under very restrictive assump-
tions and for a small set of sketched curves such as planar
object contours [CSPN10] or with known symmetric curve
pairs [CKX∗08, CH08, BBS08]. We overcome these prob-
lems by proposing robust curve matching and reconstruction
algorithms.

Sketch based 3D reconstruction
Sketch based interfaces for geometric modeling are more
intuitive for artists than the 3D tools and thus many meth-
ods that try to interpret user strokes to generate 3D recon-
structions have been proposed [OSSJ08]. However, most
users still find the current interfaces hard to use [GIZ09].
Recent works try to limit the classes of objects to be re-
constructed [JTC09, RDI10]. Although this improves both
the interaction convenience and the resulting models, recon-
structions are limited by the specific classes or databases
used. Instead of a full 3D reconstruction, for viewing a
sketch or cartoon from different viewpoints, partial 3D in-
formation along with specialized stroke interpolation can be
used [BCD01,RID10]. However, the results are only suitable
for certain styles of depictions. Due to the free form geom-
etry proxy our method reconstructs, we are able to handle a
broader set of shapes and modeling tasks.

In addition to interactive sketch based modeling systems,
methods to reconstruct 3D content from off-line sketches
have been developed. Algorithms have been proposed for
reconstructing polyhedral objects with line sketches and un-
der certain assumptions [VC07]. But the set of assumptions
limit their applicability for hand drawn sketches of arbi-
trary objects. For free form sketches, several contour based
algorithms to reconstruct 3D surfaces with implied topol-
ogy have been proposed [WH96, IMT99, KH06]. These al-
gorithms define rules to inflate surfaces out of the contour
lines representing depth discontinuities. However, how to
choose such rules to get the most intuitive reconstructions is
an ill-posed problem without considering further cues from
the sketch [KH06].

Although contours at depth discontinuities are fundamen-
tal components in a sketch, experimental results show that
other curves in a sketch such as the ones at creases, inten-
sity gradients or contours at normal discontinuities are as
important for perception [CGL∗08, CSD∗09]. A classifica-
tion of contours based on the type of discontinuities that
represent a legal shape can be obtained by line labeling al-
gorithms [Mal86]. Labeled lines can then be used in recon-
struction methods [KC06]. However, many different legal la-
bellings are possible and they only give where the disconti-
nuities are, not the actual constraints. This causes the recon-
struction methods to heavily rely on user input [KC06]. Our
method can extract the information present in any class of
curves as long as symmetric pairs of curves exist.

Since there can be infinitely many interpretations of a
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Figure 3: Inherent ambiguities in symmetric curve match-
ing. Different matchings can lead to different perceptions.

single sketch [Hof00], many systems incorporate user in-
put such as normals, silhouettes, creases [ZDPSS01], curves
with predefined meanings [OS10a], annotations and prim-
itive shapes [GIZ09], or depth inequalities [SSJ∗10]. The
goal is to keep the interaction intuitive and minimum. Our
algorithms are almost fully automatic except requiring the
user to click on a few choices presented, which lasts a cou-
ple of seconds.

3. Overview
The input to our algorithm is a rasterized sketch. The sketch
is first converted into a clean and thinned set of curves using
algorithms that operate on the pixels [SSSS01, OS10b] as
illustrated in Figure 4 (b). As an optional step, the silhouette
is extracted. Since in general, the silhouette of a symmetric
object will not be symmetric, it is not used in the matching
algorithm unless requested by the user. Curves are extracted
from the remaining contours by curve tracing, short curve
removal, and branch combination [Pav82].

The next task for our symmetry-based reconstruction al-
gorithm is finding symmetric pairs of curves (Section 4). We
accomplish this task by first extracting and matching curve
points that have invariant geometric and topological proper-
ties under symmetry and orthographic projection. Once sym-
metric matching curves are found, we compute depths of the
points on the curves by utilizing the bilateral symmetry as-
sumption (Section 5). We then fit a 3D proxy geometry us-
ing the constructed 3D points and energy terms (Section 6).
A schematic view of this pipeline is illustrated in Figure 2.

4. Finding Symmetric Curves and Points
Unlike images, sketches do not contain rich 3D infor-
mation and thus conventional descriptors fail to give
matches [EHBA09]. Finding symmetric curves in a sketch is
also an unsolved problem [CSPN10] unless further assump-
tions such as planarity of curves [HMY04] are made. For
orthogonal projections, it is easy to see this is an ill-posed
problem, since many curves can match and produce well-
defined depth values for the points on them (see Section 5
for an explanation and Figure 3 for an example). Hence, in
isolation or locally, no information about matching pairs can
be obtained.

To infer matching pairs of curves, we need to define legal
matchings, by imposing several assumptions on the geom-
etry of the surface and topology of the curves. Research on
the human visual system has shown that people tend to inter-
pret close primitives on the image plane as close in the actual
scene, and smoothness of curves and surfaces are taken for

(a) (b)

(c) (d)

Figure 4: (a) A hand-drawn and scanned sketch. (b) Ex-
tracted curves. (c) Matched check points. (d) Matched
curves. Curves with the same colors are matching, while for
black curves no match could be found.

granted if humans see smooth curves in the image [Hof00].
Following these observations, we make the assumption that,
given a set of smooth curves close to each other on a smooth
surface in a sketch, with high probability they will also be
close in the real world (excluding occlusions) and thus for
symmetric surfaces, symmetric pairs of curves with the same
proximity will be sketched. Using this assumption along
with geometric constraints for orthogonal projection allows
us to formulate the curve matching problem as a correspon-
dence finding problem, which can be effectively solved by a
graph matching method. In general, sketches are not drawn
under orthographic projection. However, our matching algo-
rithm is robust to projection, which enables our system to
work on typical artist-drawn sketches.

4.1. Check points
In order to infer symmetric pairs of curves, we first iden-
tify and match points with invariant properties under sym-
metry and orthographic projection. One such class of points
is the branching points, which are the points where more
than one curve meets. In addition to the branching points,
some curves will end at isolated points. We use these points
in our algorithm as well. Furthermore, if the image plane is
rotated such that the projection of the normal of the sym-
metry plane is parallel to the x axis, then y coordinates of
symmetric point pairs will stay the same under orthographic
projection (see Section 5). Thus the extrema points on two
symmetric curves where the curves change their direction in
the y axis should also match for symmetric pairs of curves.
We call these three classes of points as check points (see Fig-
ure 5 and Figure 4 (c)).

Symmetric pairs of check points will have the same y co-
ordinates (after the image plane is rotated according to the
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(a) (b) (c)

Figure 5: Definition of check points as (a) branching points
where more than one curve meets, (b) points where curves
end, or (c) extreme points of curves.

symmetry plane normal, see Section 5) and the same num-
ber of curves in the proximity, excluding the cases of occlu-
sions or depth discontinuities. They are also easy to extract
from the sketch. We utilize these properties in our matching
algorithm.

4.2. Features for check points
A feature vector for a check point captures the geometric
and topological properties of that point that are invariant un-
der symmetry and projection. It should also be robust to the
impreciseness and noise in the sketches. This vector can be
used as a signature of that point in a matching algorithm.
In the following discussion, we assume that one can de-
tect depth discontinuities and occlusions (for example via
line labeling algorithms [Mal86]) and avoid the check points
resulting from those. Under this assumption, there are two
invariants to be considered for a symmetric pair of check
points. The first one is the number of curves connected to or
in a proximity of a check point, and the second one is the y
coordinate of it.

Due to the imprecise nature of sketches, noise, and ar-
tifacts introduced by preprocessing, exact connections will
most probably not be available. We define the probability
pt

i of a check point xi being connected to a curve ct as
pt

i = exp{−(dt
i /σc)2}, where dt

i is the minimum of the dis-
tances of the endpoints for the curve ct to the check point xi.
We form the vector pi = [p1

i · · · p
nc
i ]T , and also sort (in de-

scending order) and stack all probabilities into another vec-
tor p̄i, where nc is the number of curves.

Similar to the number of close-by curves, the y compo-
nents will also not be exactly the same due to imprecise-
ness of the artist or noise. Thus we again define a Gaus-
sian model for the probability that yi and yi′ are the same
as rii′ = exp{−((yi− yi′)/σy)2}.

In our experiments, we found that the matching algorithm
is very robust to different values of σc and σy. For all the
results in this paper, we set σc = σy = 10. We also tested
different values in the range of 5 to 30 and in all of the cases,
there were no wrong matching pairs.

4.3. Feature comparisons and pairwise constraints
We define the confidence of a pair of check points (xi,xi′)
as follows:

s(i, i′) = rii′ (1−‖p̄i− p̄i′‖/nmc) (1)
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Figure 6: (a) Single point matching can lead to ambiguities
that can be solved by (b) propagating the information from
the matched pair.

with nmc the maximum number of curves in a neighborhood
of radius of 2.5σc around each xi. Note that in practice we
use only the curves in the neighborhood of the check points
in the definition of p̄i’s since the Gaussian is effectively zero
outside of the neighborhood. This also means the measure
is always between 0 and 1. It increases as the y coordinates
or curve proximity probabilities of two check points become
more similar.

Although this measure captures similarity between check
points, it cannot account for the constraints that force con-
sistent connections between check points. If there are pairs
(xi,xi′) and (x j,x j′) of check points, there should be a curve
between xi and x j and another curve between xi′ and x j′ , or
a curve between xi and x j′ and another one between xi′ and
x j. For this constraint, we define the following measure:

s(i, i′; j, j′) = sy(i, i′; j, j′)sc(i, i′; j, j′) (2)

sy(.) = rii′r j j′

sc(.) = max
(

max
t

(pt
i pt

j)max
t

(pt
i′ pt

j′),max
t

(pt
i pt

j′)max
t

(pt
i′ pt

j)
)

This score measures how compatible two pairs are in terms
of the curves between them. The first term sy ensures that the
ends of the two curves have similar y coordinates, and the
term sc measures the odds of having a curve between both
(xi,x j) and (xi′ ,x j′), or both (xi,x j′) and (xi′ ,x j). These
two cases come from the ambiguous labeling of the pairs.

We illustrate the power of the pairwise constraints in Fig-
ures 6 and 7. In Figure 6 (a), it is impossible to find the
matching check points on the middle level since all points
have the same number of connected curves. The same is true
for the check points on the bottom level. In contrast, there
can be only one matching pair in the top level. By propa-
gating this information to the lower levels, an algorithm can
easily find the correct matches (Figure 6 (b)). In Figure 7,
we illustrate this effect on a real example computed by our
matching algorithm (see Section 4.4). The wrong pairs in
Figure 7 (a) are replaced by the correct ones in Figure 7 (b)
by making the algorithm aware of the global structure of the
sketch via the pairwise constraints.

4.4. The matching algorithm
We formulate the curve matching problem as a correspon-
dence finding problem among the check points. Once corre-
spondences are found, matching curves can be extracted by
considering the check points at their ends.

c© The Eurographics Association 2011.
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(a) (b)

Figure 7: (a) Without the pairwise constraints, there are sev-
eral wrong matches, and for some check points no matches
are found. (b) By considering the global structure using the
pairwise constraints, all matches are found correctly.

For our problem, we do not have two distinct sets of points
to match, thus we should avoid matching each point to itself.
More importantly, we need to consider pairwise constraints.
To satisfy these requirements, we use a spectral technique
to find correspondences [LH05]. The method uses the adja-
cency matrix of a graph, where the nodes are given by the
assignments a = (i, j) of the pairs of check points (xi,x j)
and the weights are determined by how much two pairs agree
with each other. Specifically, a matrix M is built, where Mab
gives the agreement score of the pairs a and b, and Maa is the
score of the pair a. Higher score means higher agreement.

Matching each check point to itself can be avoided by dis-
allowing the pairs (xi,xi). This means the matrix M will not
contain the corresponding rows and columns. The only ex-
ception to this rule is when a check point is on the symmetry
plane. We request the user to tag such check points. Pairwise
constraints are also naturally integrated into the approach.
Letting a = (i, i′) and b = ( j, j′), we set the entries of the
matrix as Maa = s(i, i′) or Maa = 1 if xi = x′i is on the sym-
metry plane, and Mab = s(i, i′; j, j′).

Once M is constructed, the principle eigenvector is com-
puted and its components are sorted. Iteratively, the follow-
ing procedure is applied: remove the current highest compo-
nent of the principle eigenvector and put the corresponding
pair into the set of accepted pairs; remove the components
of the vector corresponding to the pairs which are incom-
patible with the accepted pairs. Since our problem requires
a one-to-one matching of the check points, the compatibility
condition for our case is: if a pair a = (xi,x j) is accepted, re-
move all pairs containing the points xi or x j. The algorithm
terminates when the current component is zero or when all
components are exhausted.

After the algorithm is terminated, some check points will
have unique corresponding check points, and some will be
discarded (Figure 8). Two curves are matching, if check-
points at their ends form pairs. Curves with inconsistent end
point pairs are eliminated (Figure 4 (d)). Some inherent am-
biguities might still exist after the matching algorithm termi-
nates, such as the case illustrated in Figure 3. In these cases,

(a) (b)

Figure 8: (a) Due to the thinning algorithm used in the
preprocessing of the raw sketch, or the impreciseness of
the artist, there appears extra check points (red points). (b)
These are eliminated and do not affect the correct matching
of the rest of the points.

we ask the user to choose among the set of possible matching
curves computed. After all matching curves are found, each
point on one curve is matched to the point with the same y
coordinate on the matching curve (see Section 5).

4.5. The Matching Pipeline
In summary, we have the following steps for the matching
algorithm:
1. The user selects a pair of matching points and the sketch

is rotated accordingly.
2. He clicks on the check points on the symmetry plane.
3. All check points are matched by the algorithm.
4. Matching curves are extracted using the matched check

points. If there are any ambiguous cases, they are re-
solved by the user.

5. Points on the matching curves with the same y coordi-
nates are matched to each other.

5. Shape from Symmetry
Once symmetric pairs of points are found, it is known that
a symmetric object can be reconstructed from a single view
up to certain degrees of freedom depending on the projec-
tion type (orthographic or perspective) and the number of
symmetries present [VP94,FMW02,HYHM04]. We observe
that one can define the condition on 3D locations of points
implied by bilateral symmetry just by considering its actual
geometric meaning. Let us denote a pixel by x = [x y 0]T

such that image plane is aligned with the xy plane and is re-
siding at z = 0. Further assume a general projection model
is given by the ray field d(x). Then each point y on an ob-
ject is given by y = x + td(x) for some pixel x. Suppose we
have the symmetric pair y and y′, and that the normal of the
symmetry plane is denoted by n. Without loss of generality,
we can assume that the plane passes through the origin. With
these notations, the following equation holds:

y′ = (I−2nnT )y (3)

Plugging in the expressions for y and y′, we can arrive at a
linear system for the unknowns t and t′.

In addition to the inherent inaccuracies of hand-drawing,
artists often use, intentionally or unintentionally, distorted
perspective when they sketch. Thus a parametric model for
the camera is very hard to extract from a sketch. However,
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when they sketch small characters and objects, they tend
to use almost orthographic projections. Hence, unless the
sketch is describing a large object or it is stylized to use
exaggerated or general perspective, we can assume that an
almost orthographic projection is used.

In an orthographic projection, the rays are described by
d(x) = ẑ and equation 3 can be solved exactly for the z com-
ponents of y and y′ (which are t and t′) as

t =
−n̂T

p (x+x′)+2n2
z n̂T x

2nz
√

1−n2
z

(4)

t′ =
−n̂T

p (x+x′)+2n2
z n̂T x′

2nz
√

1−n2
z

Here, np is the projection of n onto the image plane (i.e.
[nx ny 0]T ). In addition to these equations, equation 3 also
implies that the vector x′− x is parallel to np. In practice,
we rotate the sketch such that np is parallel to the x axis
so that n̂p = ±x̂. This implies that the y coordinates of the
symmetric points will be the same since x′ − x is parallel
to x̂. This equation also means that every two pairs of sym-
metric points will produce meaningful depth values as long
as x′− x is parallel to n̂p. Hence, it is impossible to know
the symmetric pair of a given point, or symmetric curve of a
given curve, just by considering the coordinates or shape of
it. Therefore one needs to take the global shape information
into account to get symmetric pairs.

6. 3D Reconstruction
Given a sparse set of points with depths, we would like
to reconstruct a smooth 3D surface that interpolates these
points. Due to the sparseness of the depths, imprecise na-
ture of the curves, lack of normals and information about
the unsketched parts of the object, we chose to recon-
struct the 3D geometry as a depth map over the image
plane. We formulate the problem as an energy minimization
with constraints and propose to use a continuous formula-
tion [NWT10], with energy terms from surface approxima-
tion and deformation literature that are known to produce
tight and smooth reconstructions.

We propose to discretize the energy and minimize it along
with other terms and the constraints using compactly sup-
ported radial basis functions centered at each pixel, to get
a continuous function for the depth map. Although this for-
mulation results in a big linear system to solve for the coeffi-
cients, it is efficiently solvable thanks to the extreme sparse-
ness. Once the coefficients are computed, each evaluation of
the function at a pixel involves only a small set of neighbor-
ing pixels around the given pixel.

6.1. Function representation and constraints
We represent the depth map function as a sum of compactly
supported radial basis functions k(x,xi) = e−||x−xi||2/σ

2

such that f (x) = ∑ fik(x,xi) for pixels xi. In most applica-
tions, σ determines the level of smoothness of f . Although
bigger σ gives smoother results, it results in much higher

computation times. Since we can determine the smoothness
of f through the energy terms, we fixed σ = 1.2 such that a
three-ring neighborhood of each pixel is covered by the ef-
fective support of the Gaussian (assuming the size of a pixel
is 1). To make f (x) interpolate the known depth values, we
should have f (xd

i ) = di where we denote the points (pix-
els) with depth values by xd . By writing the expression for
f (xd

i ) = ∑ f jk(xd
i ,x j) = di, and gathering all equations, we

get a linear system Kf = d, where K is an nd by n matrix with
nd denoting the number of depth values and n the number of
pixels.

6.2. Energy terms and minimization
We discretize the thin plate spline energy with the fol-
lowing sum: ∑k f 2

xx(xk)+2 f 2
xy(xk)+ f 2

yy(xk). Minimization
of this sum leads to a quadratic form fT Tf, where Ti j =
∑k ki,xx(xk)k j,xx(xk) + ki,xy(xk)k j,xy(xk) + ki,yy(xk)k j,yy(xk)
and the subscripts denote derivatives.

Similarly, we discretize a specific case of the Sobolev
norm,

∫
||∇ f (x)||2, which is also known as an approxima-

tion to the membrane or stretching energy [TPBF87,CG91].
This leads to another quadratic form fT Bf with Bi j =
∑k∇ki(xk)

T∇k j(xk).
We gather the terms arising from the constraints and the

energies as follows:

E(f) = ||Kf−d||2 + fT (λT T+λBB)f (5)

By solving the linear system resulting from this minimiza-
tion, different continuous functions can be defined depend-
ing on the parameters used. For all results in this paper, we
set λT = 3 and λB = 1.

7. Results
We ran our method on various sketches with different
amount of noise and artifacts. For each sketch, first a depth
map and a new sketch with the symmetry plane orthogonal to
the image plane is constructed. This sketch is used as a tex-
ture to the reconstructed geometry. To get continuous curves
out of the sparse set of rotated points with depths, a B-Spline
curve is fit to each reconstructed curve. The geometry is in
the form of a dense mesh with pixels as vertices. For ren-
dering and other geometric operations this dense mesh can
be simplified significantly. The resulting textured models are
rendered using flat shading in order to show the sketch.

The matching algorithm is robust to impreciseness, ar-
tifacts, perspective distortion, and extra curves. An exam-
ple matching with very different y coordinates is given in
Figure 7. In Figures 4 (c) and 8, although there are many
close points with similar neighborhoods and y coordinates,
the matching algorithm is able to find the correct matches
thanks to the pairwise constraints. It also eliminates some
of the check points without matches. Even if some wrong
matches of check points persist, they fail to form a consis-
tent labeling for the curve matching step. Thus the algorithm
correctly identifies curves without matches, as illustrated in
Figure 4.

c© The Eurographics Association 2011.
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Figure 9: Left: An input sketch and its reconstruction. Mid-
dle: The sketch from different views. Right: An anaglyph im-
age of a deformation of the sketch.

Figure 10: An input sketch, its reconstruction, and an
anaglyph image. Note that for this anaglyph image, the
model was reconstructed without rotating the points with
depth values, to have the original sketch as the texture onto
the reconstruction.

Several reconstruction, view change and stereoscopic
imaging results are shown in Figures 1, 2, 9, and 10. The re-
constructed models capture the overall shape of the depicted
objects well with correct curvatures. The sketch-textured de-
pictions with the reconstructions match our intuition of the
sketch faithfully as illustrated by the rotated views of the
sketches. Having a depth map allows us to construct stereo-
scopic images of the sketches from different angles. It is in-
teresting to see that, even without any 3D cues from shading,
a good sense of depth can be obtained from these images.

Using the reconstructed models, one can also deform the
geometry or perform physically based simulations as in Fig-
ures 1, 9, 11, and 12. The level of deformations is limited
by the resolution of the reconstructed mesh and texture. This
problem can be solved by using procedural textures, that is,
using the B-Spline curves directly as textures.

8. Conclusions
In this paper, we proposed a new method for 3D model-
ing using a single 2D sketch depicting a symmetric object.
Several modeling operations are demonstrated such as novel
viewpoint and stereo renderings, and geometric and phys-

Figure 11: A sketch drawn by an artist with paper and pencil
is scanned, cleaned, and deformed using our method. Note
that some details are removed in the cleaning process.

Figure 12: An input sketch and a frame from its physically
based simulation.

ically based deformations. 3D manipulation is done via a
proxy 3D geometry reconstructed only from a single off-line
sketch nearly automatically. Since many man-made and nat-
ural objects are bilaterally symmetric, we are able to handle
a broad spectrum of object sketches.
Limitations One limitation of our approach is that it re-
quires symmetric pairs in the sketch. Hidden pairs lead to
incomplete reconstructions. This can be eliminated by com-
bining curves from sketches from multiple viewpoints or let-
ting the user draw the non-existent symmetric curves. An-
other limitation of the algorithm stems from the geometric
ambiguity of horizontal segments. For a pair of matching
horizontal lines, finding matching points is impossible since
all have the same y coordinates. For these cases, we currently
assume that the middle points of all pairs on the horizontal
segments are the same.
Future Directions Our algorithm can be extended for in-
trinsic and continuous symmetries, and hidden lines, com-
bined with more sophisticated preprocessing. It can provide
partial or full depth information that can aid in many applica-
tions requiring extracting 3D or 2.5D content from sketches
such as sketch based retrieval, dynamic 3D content creation,
and interactive sketch-based modeling interfaces.
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