
To appear in ACM TOG 30(4).

OverCoat: An Implicit Canvas for 3D Painting

Johannes Schmid
Disney Research Zurich

ETH Zurich

Martin Sebastian Senn
Disney Research Zurich

ETH Zurich

Markus Gross
Disney Research Zurich

ETH Zurich

Robert W. Sumner
Disney Research Zurich

Figure 1: Our implicit canvas generalizes the traditional 2D painting metaphor to 3D, enabling a new class of expressive 3D painting.
Strokes on the cat’s tail, for example, do not conform to any precise 3D surface, but are painted in space to give the tail its rough, stylized
look.

Abstract

We present a technique to generalize the 2D painting metaphor
to 3D that allows the artist to treat the full 3D space as a canvas.
Strokes painted in the 2D viewport window must be embedded in
3D space in a way that gives creative freedom to the artist while
maintaining an acceptable level of controllability. We address this
challenge by proposing a canvas concept defined implicitly by a 3D
scalar field. The artist shapes the implicit canvas by creating ap-
proximate 3D proxy geometry. An optimization procedure is then
used to embed painted strokes in space by satisfying different ob-
jective criteria defined on the scalar field. This functionality allows
us to implement tools for painting along level set surfaces or across
different level sets. Our method gives the power of fine-tuning
the implicit canvas to the artist using a unified painting/sculpting
metaphor. A sculpting tool can be used to paint into the implicit
canvas. Rather than adding color, this tool creates a local change in
the scalar field that results in outward or inward protrusions along
the field’s gradient direction. We address a visibility ambiguity in-
herent in 3D stroke rendering with a depth offsetting method that is
well suited for hardware acceleration. We demonstrate results with
a number of 3D paintings that exhibit effects difficult to realize with
existing systems.

Keywords: digital painting, 3D painting, stroke based rendering

1 Introduction

An empty canvas represents the work space in which a painter re-
alizes his or her creative vision. Working directly with brushes and
paint to fill the canvas gives the artist full creative freedom of ex-
pression, evidenced by the huge variety of styles that have been ex-
plored through art’s rich history. Modern digital painting software
emulates the traditional painting metaphor while further empower-
ing the user with control over layering, compositing, filtering, and
other effects. As a result, digital artists have an extremely powerful,
flexible, and expressive tool set for creating 2D digital paintings.

The same is not true for 3D digital painting. Most attempts to bring
digital painting into the third dimension focus on texture painting
or methods that project stroke centerlines onto an object’s surface.
The strokes must precisely conform to the object’s surface, and the
mathematical nature of these algorithms can betray the underlying
3D structure of the scene, leading to a “gift-wrapped” appearance.
Stylistic effects that require off-surface brush strokes cannot easily
be realized. Indistinct structures such as fur, hair, or smoke must
be addressed using special-purpose modeling software without the
direct control afforded by painting. These limitations ultimately
restrict the variety of styles possible with 3D digital painting and
may hinder the artist’s ability to realize their creative vision.

In our research, we experiment with an alternate way to define the
3D painter’s workspace that targets existing limitations. We elevate
the 2D painting metaphor to 3D with a generalization that allows
the artist to treat the full 3D space as a canvas. With this new 3D
canvas, painting no longer focuses on how to paint on an object, but
rather how to paint in space. Figure 1 demonstrates a 3D painting
created by our prototype system called “OverCoat.” The implemen-
tation of the generalized canvas concept in OverCoat, which makes
this painting possible, poses several challenges.

Strokes painted in the 2D viewport window must be embedded in
3D space in a way that gives creative freedom to the artist while
maintaining an acceptable level of control. We address this chal-
lenge by proposing a canvas concept defined implicitly by a 3D
scalar function. The artist shapes the implicit canvas by creating
approximate 3D proxy geometry that defines a scalar distance field.

1

To appear in ACM TOG 30(4).

An optimization procedure is used to embed painted strokes into
3D space by satisfying criteria defined on the scalar field and im-
plemented as different objective terms. For example, one objective
term ensures that strokes are embedded on a particular level set of
the scalar field. Since any level set value can be chosen, the artist
is not restricted to painting on any particular surface. Other objec-
tive criteria allow the artist to paint across level sets, allowing fur,
hair, whiskers, or other effects to be created. By formulating the op-
timization problem on the strokes themselves, the full scalar field
need never be created and stored explicitly, leading to an efficient
stroke embedding algorithm. The need for fine-scale control over
the implicit canvas presents a second challenge, which we address
by a unified painting/sculpting metaphor. A sculpting brush uses
the same optimization procedure discussed above but creates a lo-
cal change in the scalar field, resulting in outward or inward protru-
sions along the field’s gradient. Using this sculpting tool, artists can
shape the canvas before painting into it, or move strokes that have
already been embedded to fine-tune the result. Finally, efficient ren-
dering is a key consideration in any interactive painting system. In
our case, the problem is non-trivial because merging 2D painting
and 3D concepts creates an ambiguity for the visibility determina-
tion of paint strokes. We resolve this issue with a simple pre-sorting
step that generates an unambiguous rendering order and allows our
brush model to be implemented with interactive performance.

Our primary contribution is a 3D painting system based on the con-
cept of the implicit canvas that allows artists to create a new class
of expressive 3D paintings. We also make the technical contribu-
tions of an efficient optimization procedure for stroke embedding
that supports a unified interface for both painting and sculpting. Fi-
nally, we contribute a real-time rendering algorithm to efficiently
display the resulting 3D paintings.

2 Background

In his invitation to discuss computer depiction, Durand [2002] high-
lights the difference between primary space (the 3D world in which
objects live) and secondary space (the 2D canvas on which depic-
tions of those objects are created), illustrated in Figure 2. This dis-
tinction, originally introduced to analyze the historical use of repre-
sentation systems in engineering drawings [Booker 1963] and fine
art [Willats 1997], provides a lens through which to explore the de-
velopment of expressive depiction in computer graphics.

The field of non-photorealistic rendering (NPR) has developed a
rich collection of expressive depiction methods. Although tra-
ditional photorealistic rendering research focuses on the primary
space (e.g., scene representation, visibility determination, global
illumination), the NPR community first approached the problem
from the opposite direction by focusing entirely on the secondary
space of the 2D canvas. Haeberli’s interactive “Paint By Numbers”
system [1990] fills a 2D canvas with brush strokes whose attributes
are controlled by information contained in a photograph. This con-
cept led to an entire sub-field of research on stroke-based render-
ing [Hertzmann 2003]. Lu and colleagues’ impressive work on the
interactive stylization of images, video, and animations [Lu et al.
2010] includes an overview of recent work. These methods share
a common focus on computation performed in the secondary space
of the 2D canvas without an explicit representation of the 3D world.

Inspiring secondary-space results naturally led researchers to ex-
tend expressive depiction to the primary space of 3D objects, lead-
ing to a diverse collection of non-photorealistic rendering algo-
rithms. Representative works in this area include watercolor syn-
thesis [Bousseau et al. 2006], stylized depiction of fur, grass, and
trees [Kowalski et al. 1999], apparent ridges [Judd et al. 2007], and
realtime non-photorealistic rendering [Markosian et al. 1997; Praun

Secondary Space Primary Space

Figure 2: Primary space refers to the 3D world in which objects
live, while secondary space denotes the 2D canvas on which depic-
tions of those objects are created [Durand 2002]. Our work blurs
the distinction between these two spaces by upgrading strokes to
the primary space and downgrading traditional 3D objects to serve
only as helpers in defining an implicit canvas.

et al. 2001]. The common focus of these techniques is an algorith-
mic mapping from primary space to secondary space that imple-
ments different expressive styles.

Among these methods, Meier’s painterly rendering system [1996]
marks the inception of a line of research closely related to our own.
Particles attached to an object’s primary-space surface are used to
render secondary-space brush strokes so that the strokes stick to the
object as the camera moves. This simple, though groundbreaking,
concept ultimately led to the development of Disney’s Deep Canvas
technology [Katanics and Lappas 2003], which replaces Meier’s
procedurally generated particles with an artist-driven painting sys-
tem. Painted strokes are projected on the object’s surface and stored
along with all data associated with the painting system. A new view
is rendered by “repainting,” or playing back all recorded painting
operations, using the camera’s new view transformation. Concur-
rent with the development of Deep Canvas, Teece [2000] proposed
a related painting concept with a focus on interactivity. The WYSI-
WYG NPR system of Kalnins and colleagues [2002] expands upon
this line of work by showing how algorithmic rendering techniques
such as silhouette stylization or hatching can be controlled directly
by the artist via a painting interface. In the commercial world, Maya
Paint Effects [Paint Effects 2011] projects painted strokes onto the
surface of scene geometry and uses them as seed points to create
new geometric primitives such as grass or flowers.

Our work shares many similarities with these methods: We have
built an artist-driven 3D painting system that employs a stroke-
based renderer to generate temporally coherent expressive imagery.
The distinguishing characteristic of our method and one of our key
contributions can be seen in terms of primary and secondary space.
Existing methods such as Meier’s painterly rendering system, Deep
Canvas, Teece’s technique, WYSIWYG NPR, and Paint Effects all
embed strokes directly on the surface of an object or along object
features such as silhouettes. Although the artist has a great deal of
freedom when painting input strokes in secondary space, the strokes
must conform to the surfaces of their associated primary-space ob-
jects. In this way, the functionality of these systems is intimately
tied to and restricted by traditional surface representations such as
polygon meshes and NURBS surfaces. The exacting nature of these
surface representations may be at odds with an artist’s particular
style, hindering their ability to realize their artistic vision.

Our work targets precisely this limitation by proposing a general-
ized 3D canvas concept that allows strokes to be embedded any-

2

To appear in ACM TOG 30(4).

where in space. This change, in essence, blurs the distinction
between the primary and secondary spaces by upgrading painted
strokes to the primary space while at the same time downgrading
traditional 3D objects to play a subservient helper role in shaping
the implicit canvas. This new freedom to paint anywhere in space
comes at the cost of additional challenges related to usability and
control not present in previous work. Our implicit canvas concept
and optimization formulation answer these challenges.

Other researchers have approached the problem of placing color
directly in 3D with the use of specialized input devices. The Cave-
Painting system of Keefe and colleagues [Keefe et al. 2001] uses
motion capture in a virtual-reality cave to allow the artist to di-
rectly author scenes composed of ribbons, tubes, and other primi-
tives using hand gestures. Schkolne and colleagues’ Surface Draw-
ing work [2001] enables organic shapes to be modelled using hand
gestures in a semi-immersive VR setup. Because controllability is
an issue with gesture-based systems, Keefe and colleagues [2007]
propose a method that uses a haptic device and 6-DOF trackers to
draw lines in space in a more precise fashion. This body of work
makes important advancements in human-computer interaction for
ab initio design using advanced hardware devices. Our contribution
is distinguished from these direct 3D painting systems in two pri-
mary ways: OverCoat extends the tablet-based 2D digital painting
metaphor to 3D without the need of special hardware, thus making
it more accessible and familiar to work with for artists. In addition,
OverCoat’s embedding procedure, brush model, and rendering al-
gorithm merge 2D and 3D concepts to enable paintings that retain
their 2D expressiveness when viewed from any angle. Since ex-
isting direct 3D painting systems create scenes composed of 3D
primitives such as ribbons, tubes, and surfaces, they cannot easily
accommodate the expressive aesthetic of traditional digital paint-
ing.

Commercial modeling packages [Maya; Mudbox; ZBrush] com-
plement our work by providing tools to create 3D proxy geome-
try. Sketch-based modeling tools [Igarashi et al. 1999; Nealen et al.
2007], especially those that use an implicit surface representation
[Karpenko et al. 2002; Schmidt et al. 2005; Bernhardt et al. 2008],
are well suited since the proxy geometry need only provide a rough
guide to control the implicit canvas, but is never rendered directly.
Other related work [Cohen et al. 2000; Bourguignon et al. 2001;
Tolba et al. 2001; Rivers et al. 2010] explores interesting concepts
concerning 3D drawing, but does not address detailed 3D painting
and cannot easily accommodate the expressive aesthetic we target
with OverCoat.

3 Concepts and Implementation

In order to provide a controllable and effective system for 3D paint-
ing, OverCoat employs a 3D canvas based on scalar fields that are
used to embed paint strokes in space. The artist sculpts proxy ob-
jects with any modeling package and imports them into the scene
as triangle meshes. The objects define the overall 3D layout of the
scene but need not exhibit fine geometric details since they only
serve as a guide for stroke embedding and are not rendered in the
final painting. Each proxy object implicitly defines a signed dis-
tance field that, conceptually, represents the object’s 3D canvas.

OverCoat provides the user with a set of tools to embed paint
strokes into the 3D canvas. The user first selects a proxy object and
then paints into the canvas using a familiar 2D painting interface.
The way in which paint strokes are embedded is determined by the
semantics of the embedding tools. To obtain a maximum of flexi-
bility and extensibility in the creation of these tools, we formulate
the embedding process as a mathematical optimization problem that
assigns a depth value to each point of the input paint stroke. Ob-

jective terms and constraints are used in varying combinations to
obtain different embedding behaviors. These combinations are en-
capsulated and presented to the user as a set of different embedding
tools, such as a tool to paint at a certain distance to the object, or to
paint strokes that are perpendicular to the proxy surface. The em-
bedding tools can use the scalar field magnitude, sign, and gradient
in their objective terms to establish criteria that relate any position
in space to the proxy object.

Another advantage of embedding paint strokes using an optimiza-
tion instead of specialized heuristics (such as direct projection) is
that it allows our system to gracefully handle cases where a tool’s
primary goal cannot be met. For example, by incorporating a reg-
ularizing smoothness term, our level set painting tool can easily
handle the case where painted strokes extend beyond the level set’s
silhouette. A method based on direct projection would require spe-
cial heuristics since, in this case, there is no surface on which to
project.

An additional sculpting tool allows the user to make localized mod-
ifications to the scalar field using the same embedding procedure.
In this way, the painting interface can be used both for coloring the
canvas and for manipulating the shapes.

3.1 Canvas representation

OverCoat represents a 3D canvas as a scalar field f : R3 → R. A
point x with f(x) = l is said to lie on level l. The corresponding
implicit surface at level l, also called an isosurface or level set, is the
set of all points x ∈ R3 such that f(x) = l. The scalar field relates
the points in space to the surface of the corresponding proxy ob-
ject. In OverCoat, a proxy object is defined by a triangle mesh that
forms a closed manifold solid. The scalar field is initially defined
by the signed Euclidean distance to the proxy geometry’s surface.
However, the sculpting tool can inflict direct, localized changes to
the field values so that they no longer represent distances. In ei-
ther case, the scalar field is only C0 continuous. This property
has no negative influence on the stroke embedding with the objec-
tive terms and tools presented in this paper. Problems could arise
if objective terms were introduced which are more sensitive to the
scalar field smoothness. In this case, a scalar field formulation with
higher order continuity, such as the one described by Peng and col-
leagues [2004], might be preferable.

We define all operations on the scalar field in a form that does not
require explicit storage of the field values. Thus, we avoid the mem-
ory and computational costs of a voxel decomposition or the algo-
rithmic complexity of more sophisticated distance-field representa-
tion methods [Frisken et al. 2000].

3.2 Painting representation

Inspired by Deep Canvas, a 3D painting is represented with a data
structure that stores all available input information associated with
a painted stroke in OverCoat. This information includes the stroke’s
centerline (embedded in 3D space), the brush shape and color, and
additional information, such as pen pressure. The centerline of a
stroke is stored as a sequence of points that we will refer to as stroke
points. Position and variable parameters are interpolated linearly
between the stroke points, thus forming a polyline. With this infor-
mation, the painting can be reproduced faithfully from the original
view point by playing back all painting operations. This repainting
procedure corresponds to rendering in our context. Due to the 3D
nature of our canvas, OverCoat can render the painting from any
other vantage point.

In order to match the feel of traditional 2D digital painting, paint
strokes are always rendered as 2D brush strokes on the view plane,

3

To appear in ACM TOG 30(4).

Figure 3: Paint strokes are stored in 3D in a parametric represen-
tation. For rendering, their centerlines are projected to the view
plane and sampled with brush splats. Red circles in this figure rep-
resent stroke points, while black dots are sampled splat locations.

much like a traditional 2D raster painting software might draw
them. Stroke centerlines are first projected from their embedded
3D locations onto the current view plane. OverCoat then renders
the strokes by repeatedly compositing a brush splat texture along
the stroke into the image (Figure 3). If the distance between splats
is small enough, they will appear as one smooth stroke. At paint
time, the width of a stroke is defined in screen space. When ren-
dered from different view points, this width is perspectively trans-
formed to maintain its size relative to the location in space at which
it was embedded.

3.3 Stroke embedding

The artist paints in a particular 2D view of the 3D canvas, generat-
ing an ordered sequence of n stroke points si ∈ R2. The goal of
stroke embedding is to find 3D positions pi∈ R3 for these points
in a way that is meaningful and useful to the artist. To target an
embedding algorithm that meets these workflow considerations in
a flexible and extendable way, we cast the embedding of the stroke
points as an optimization problem. This framework allows us to im-
plement objective function terms that accomplish different embed-
ding behaviors, such as painting on a level set of the 3D canvas’s
scalar field, or across the scalar field between two chosen level sets.
Combinations of these terms are exposed to the user as different
embedding tools.

To ensure that the embedded strokes match the artist’s intent, it is
crucial that the stroke points pi project back to their original screen
space locations si in the view from which they were painted. We
enforce this property strictly by parameterizing the stroke points by
their view ray: pi = o + tidi, where o is the camera position,
di the view vector that passes through si on the screen plane, and
ti the ray parameter. The ti are thus the unknown variables of the
optimization.

3.3.1 Objective terms

We propose three objective terms that provide the ingredients nec-
essary to build OverCoat’s embedding tools. The level distance
term is minimized when all stroke points are at a particular distance
from the proxy geometry. The angle term minimizes the curva-
ture of the stroke and thus smoothes its embedding. The arc length
term favors straight embeddings by minimizing the total length of
a stroke.

Level distance OverCoat allows the user to select a specific level
l, and hence a specific isosurface f(x) = l, on which to apply
strokes. The corresponding objective term should ensure that all
stroke points are embedded as closely as possible to the selected
isosurface. The level distance objective term sums the difference

between the actual field value f(x) evaluated at all point locations
pi and the desired level l:

Elevel =

n∑
i=1

(f(pi)− l)2 . (1)

Angle The angle objective term aims to minimize the directional
deviation of consecutive line segments along a stroke. This devi-
ation is measured by the dot product between the normalized line
segments, which equals 1 when the segments are co-linear:

Eangle =

n−2∑
i=1

(
1− pi+2 − pi+1

‖pi+2 − pi+1‖
· pi+1 − pi

‖pi+1 − pi‖

)2

(2)

Arc length The arc length objective term penalizes the collective
length of all segments:

Elength =

n−1∑
i=1

‖pi+1 − pi‖2 (3)

3.3.2 Optimization

The goal for an embedding tool is to find ray parameter values
ti and thus 3D locations for all stroke points that minimize the
weighted sum of all objective terms:

E = wlevelElevel + wangleEangle + wlengthElength (4)

Individual embedding tools, described in the next section, achieve
different behaviors by setting different values for the weights wlevel,
wangle, and wlength. Our system uses the quasi-Newton L-BFGS
method to solve this non-linear optimization problem. Since the
only unknowns to the optimization are the depth values ti, the opti-
mization does not change the shape of a stroke in the view in which
the stroke was painted.

3.3.3 Embedding tools

The objective terms presented in the previous section provide the
ingredients necessary to implement three powerful embedding tools
(Figure 4). All examples were painted using these three tools.

Level set tool The level set tool embeds all stroke points as
closely as possible onto a selected level set surface. This goal is
achieved by giving a dominant weight to the level distance term
Elevel. By itself, this term has the same effect as direct projec-
tion for paint strokes within the silhouette boundaries of the level
set. When a stroke extends outside the silhouette, the closest dis-
tance solution will be roughly perpendicular to the surface in the
region where the silhouette is crossed, thus creating a sharp corner
along the embedded stroke. We incorporate the angle term Eangle

to achieve a smoother transition in this case. The weights wlevel = 1,
wangle = 0.1, and wlength = 0 were used for level set tool in all of
our examples. If a fuzzy embedding is desired, the target level can
be displaced by a random amount for each stroke, or even for each
individual stroke point.

Hair and feather tool Another set of tools allows the user to paint
across level sets. The user selects a target level for both the start and
the end of the stroke. The first and last points of a painted stroke are
constrained to lie on these prescribed levels using wlevel = 1. The
remaining stroke points, however, are optimized with wlevel = 0. In
the absence of a target surface, the angle objective term ensures a
smooth transition between the two ends with wangle = 1. With this

4

To appear in ACM TOG 30(4).

Level set tool Hair tool Feather tool
Figure 4: The three embedding tools implemented by OverCoat.

term alone, the resulting embedding will be smooth, but may be
extended undesirably in order to meet the angle criteria optimally,
resulting in strokes that overshoot the prescribed target level set.
We used the arc length term with wlength = 0.05 to regularize this
behaviour and cause a straighter embedding in space.

The resulting cross-level embedding can be controlled more explic-
itly with additional constraints. For example, the initial direction
of the stroke can be prescribed by temporarily pre-pending an ar-
tificial stroke point. This point stays fixed during the optimization
of the stroke, but affects the embedding solution through the angle
objective term. Depending on its relative position to the first ac-
tual stroke point p1, it will cause the embedded stroke to leave the
surface in a particular direction. For the “hair” tool, the temporary
point is placed along the negative gradient direction at p1, causing
the initial direction of the stroke to be perpendicular to the level set.
The “feather” tool was realized by placing the temporary point in
the direction that is tangential to the scalar field at p1 and has the
largest angle to the straight line connecting p1 and pn.

3.3.4 Distance, derivative, and gradient computations

In the process of embedding strokes in space as described above, the
optimization procedure must repeatedly evaluate a canvas’s scalar
field to calculate the field’s magnitude f(x), the gradient ∇f , and
the derivative of the scalar field with respect to the ray parameter
∂f(pi)/∂ti = ∇f · di. In the absence of sculpting operations,
f(x) is defined to be the smallest distance to the proxy geometry,
which we designate as fproxy(x). This distance is computed by find-
ing the closest point within any primitive of the proxy geometry
mesh. The sign of the distance is found using the angle-weighted
normals of the mesh primitives [Baerentzen and Aanaes 2005]. The
gradient is generally defined by the normalized vector between the
query point x and its closest point on the surface. If x lies very
close to or exactly on the surface, this definition becomes unstable,
and the angle-weighted normal of the closest primitive is used in-
stead. All scalar field evaluations are computed on the fly, so that
OverCoat never needs to store the field in a discretized form. An
oriented bounding box tree [Gottschalk et al. 1996] is used to accel-
erate the closest primitive look-ups, which allows the embedding to
be performed interactively.

3.3.5 Initialization and refinement

To accelerate convergence and avoid inappropriate local minima,
our system initializes the unknowns to lie on the frontmost target
level set of the scalar field using Sphere Tracing, a ray marching
technique described by Hart [1994]. For the hair and feather tools,
only the first and the last stroke points are initialized to their respec-
tive target levels, while the remaining unknowns are initialized with
a linear interpolation between the two end points.

If a target surface or parts of it are at a considerable angle to the
screen plane, the sampling of points along the stroke from the input
device may not be sufficient for the stroke to be embedded nicely
in the scalar field. For example, the level objective term can only

be faithful to the chosen isosurface if the stroke sampling is fine
enough for the level of detail of the surface. Likewise, the angle
term can only provide an effective smoothing if the sampling is ap-
propriate. Our system therefore refines input strokes painted with
the level set tool during their initialization. If the Euclidean dis-
tance between two consecutive stroke points after initialization is
larger than a given threshold, a new stroke point is inserted halfway
between the existing stroke points in 2D and immediately projected
according to the initialization method described above. This step is
repeated until all stroke segments are at most twice as long as the
shortest segment in the stroke, thus guaranteeing a roughly uniform
sampling along the stroke.

The refinement process has the added benefit of detecting strokes
that cross occluding contours. Painting across occluding contours
can result in stroke segments bridging two parts of an isosurface,
which are potentially far apart in 3D. Attempting to refine such a
segment causes an infinite recursion within a segment that cannot
become any shorter. The end points of this segment eventually con-
verge to two distinct 3D points that both project to the same point
in 2D (Figure 5). OverCoat detects this case by comparing the orig-
inal segment length with the lengths of the two new segments. If
the ratio is below a given threshold, the paint stroke is split into two
at the location of convergence. We found that a value of 0.1 works
well for the threshold ratio.

3.4 Sculpting

In the same way that paint strokes are embedded to add color to
the canvas, our sculpting tool embeds sculpting strokes that alter
the shape of the canvas itself. Sculpting strokes act as direct mod-
ifiers to the canvas’s scalar field and thus have an influence on the
embedding of subsequent strokes. A sculpting stroke defines a con-
tribution function C(r,R), where r is the smallest distance from x
to any of the line segments of the sculpting stroke, and R is a user-
defined radius of influence. OverCoat uses a cubic polynomial with
local support [Wyvill et al. 1986] for C(r,R):

C(r,R) =

{
2 r3

R3 − 3 r2

R2 + 1, if r < R

0, otherwise
(5)

The scalar field is modified by adding the contributions of all sculpt-
ing strokes to the field function:

f(x) = fproxy(x)−
∑
j

KjC(rj , Rj), (6)

where j enumerates all sculpting strokes with a non-zero contribu-
tion at x, and Kj determines the magnitude and direction of each
sculpting operation. The contribution functions locally change the
magnitude of the scalar field gradient. The amount by which a
surface is shifted by a sculpting operation therefore depends both
on Kj and previous sculpting operations in the region. OverCoat
keeps the magnitude of the surface deformation approximately con-
stant by setting Kj to the scalar field at a user-chosen distance in
gradient direction from the stroke centerline.

Once a sculpting stroke has been embedded, it is incorporated into
the evaluation of the canvas’s scalar field. As a consequence, the
scalar field values no longer represent the distance to the zero level
set. The gradient of the scalar field is augmented by the sculpting
contribution functions:

∇f(x) = ∇fproxy(x)−
∑
j

Kj∇C(rj , Rj), (7)

∇C(r,R) =

{
6 r2

R3
∂r
∂x
− 6 r

R2
∂r
∂x

, if r < R

0, otherwise
(8)

5

To appear in ACM TOG 30(4).

Figure 5: This illustration shows three consecutive refinement steps of a paint stroke crossing an occluding contour of a target isosurface. In
every step, the ratio between the original segment and the smaller sub-segment gets larger.

The ray marching procedure used to find an initial embedding so-
lution (Section 3.3.5) requires a lower bound of the Euclidean dis-
tance to the target level set l to determine its step size. If the query
point x is not within the influence region of any sculpting strokes,
a practical lower distance bound is the minimum between the dis-
tance to the closest sculpting stroke and fproxy(x) − l. Otherwise,
OverCoat uses a distance bound derived according to Hart [1994]:

d(x, S) >=
f(x)− l

1 +
∑
j

|Kj |
3

2Rj

, (9)

where the lower part of the fraction is the Lipschitz constant of the
signed distance field of the proxy geometry (which is equal to 1)
plus the Lipschitz constant of the sum of all contributions of the
sculpting strokes.

To provide immediate feedback of the sculpting operations to the
user, OverCoat deforms a copy of the proxy geometry by moving
affected vertices along their normal to the new zero level set. If
necessary, the mesh is refined to account for geometric complex-
ity added by the sculpting tool. This copy is used for display only,
while future scalar field computations use the original proxy geom-
etry together with the sculpting stroke influence functions directly
(Equation 6).

3.5 Rendering

As described in Section 3.2, paint strokes are rendered after pro-
jecting their centerlines onto the view plane. A small textured quad
representing the paint brush is moved along the stroke and repeat-
edly composited into the image with the over operator. For each
view change, all strokes must be redrawn. Our method is able to
perform rendering at interactive refresh rates for scenes with hun-
dreds of thousands of splats (Table 1).

A complication is introduced by conflicting rules for the overlap
order of paint strokes. The classic 2D painting metaphor requires
paint strokes to be placed on top of each other in the order that
they were originally painted. The semantics of the underlying 3D
object, on the other hand, prescribe that strokes from different sur-
faces should be rendered in depth order. Locally, we expect strokes
to be rendered in the sequence that they were painted, while glob-
ally they must adhere to depth order.

We address this conflict in OverCoat by sorting all splats according
to a modified depth value before rendering. This modified depth
value is taken from a shifted centerpoint position:

qk = pk + C · n · dk. (10)

Position pk and direction dk are interpolated from the stroke
points. The interpolated direction represents the view rays along
which the stroke points were initially embedded. The integer n is

an identifier of the stroke sequence, which is increased by one for
each stroke that is drawn. The stroke order is therefore translated
into a depth offset, but this modified depth value is only used for
splat sorting. A constant rendering parameter C scales the magni-
tude of the depth offsetting.

4 Results

We present five complete 3D paintings created by three different
artists using our prototype OverCoat software. For these paint-
ings, the artists modeled approximate proxy geometry in either
Maya [Maya] or ZBrush [ZBrush] and imported it into OverCoat
for painting. The proxy geometry does not include fine details. In-
stead, the artists achieved the detailed result by painting strokes
with the level set, hair, and feather tools, or sculpting additional de-
tails with the sculpting tool. The accompanying video contains an
overview with live screen captures that show the different tools in
action, a video of an artist using the system, and turntable anima-
tions of all five paintings.

The “Cat and Mouse” painting is shown in Figure 1 from three dif-
ferent viewpoints. The cat’s tail is depicted with strokes that do not
conform to the proxy geometry’s surface. By painting off surface,
the artist gave the tail its rough, comic look. The whiskers on the
cat and mouse demonstrate strokes painted in space using the hair
tool. Figure 6 depicts an “Autumn Tree” from front and top views.
In the bottom row of the figure, a rendering of the stroke center-
lines is blended with the proxy geometry. It shows that the leaves
are painted in the space surrounding the rough canopy geometry.
“Captain Mattis” is shown in Figure 8. The sculpting tool was used
to sculpt the Captain’s beard and eyebrows. The bottom row of Fig-
ure 8 visualizes the original, unsculpted head, the sculpting strokes,
and the final painted result. The “Angry Bumble Bee” in Figure 7
shows how the hair and feather tools can be used to create a fluffy
appearance. The “Wizard vs. Genie” painting shown in Figure 11
is our most complex example. Facial features and cloth wrinkles
were sculpted using OverCoat’s sculpting tool, and the smoke was
given a fuzzy appearance by using the random offset feature of the
level set tool.

Figure 9 demonstrates the advantage of OverCoat over more tradi-
tional methods that restrict 3D paintings to conform tightly to the
surface of scene objects. The left column in this figure shows the
3D painting as created by the artist. To create the right column, we
reprojected all paint strokes onto the zero level set so that they lie
exactly on the proxy geometry. In the reprojection, the silhouette of
the captain’s arm becomes a precise line without stylization, reveal-
ing the smooth nature of the underlying 3D geometry. Likewise, the
bee’s fuzzy body and hairstyle lose their expressive quality.

Statistics about the examples are included in Table 1. The paintings
range in complexity from 5,000 to 24,000 strokes. Our renderer
maintained interactive frame rates for all examples.

6

To appear in ACM TOG 30(4).

Figure 6: “Autumn Tree”: Leaves are individually painted strokes
on offset levels of rough geometry representing canopies.

Figure 7: “Angry Bumble Bee”: OverCoat allows painting hair
and fur, as well as other structure that may not be easily repre-
sentable using textured meshes.

Figure 8: “Captain Mattis”: Top row: Finished painting, paint
strokes, and proxy geometry. Bottom row: original proxy geometry,
geometry with sculpting strokes, and final painting.

Figure 9: The left column shows excerpts of the original paintings.
In the right column, all strokes were projected onto the zero level
set in order to highlight the benefit of our embedding methods.

Figure 10: This figure shows the proxy geometry used for the “An-
gry Bumble Bee,” “Cat and Mouse” and “Wizard vs. Genie” ex-
amples.

5 Conclusion

We have presented a system that bridges the worlds of 2D raster
painting and 3D rendering by generalizing the 2D painting metaphor
to the third dimension in a way that empowers the artist to create
a new class of expressive 3D paintings. We contribute the concept
of an implicit canvas shaped by the artist through the creation of
approximate proxy geometry, as well as an optimization procedure
for stroke embedding. Taken together, these contributions enable
new workflows for 3D painting, including the painting and sculpt-
ing tools implemented in our prototype software.

Our work represents the first experiment in realizing a new concept
for 3D painting. As such, there are many limitations in our pro-
totype system and, correspondingly, ample room for future work.
With our current system, the artist must paint all lighting and tex-
ture information by hand. While this gives the artist the utmost
level of freedom of expression, it also means more work. Future
work could incorporate ideas from Meier’s painterly rendering sys-
tem [1996] or WYSIWYG NPR [Kalnins et al. 2002] to transfer
scene lighting and shading information to painted strokes. The fi-
delity of our rendered brushes is limited by the simplicity of our
splat-based paint model. Future work could incorporate more re-

7

To appear in ACM TOG 30(4).

Figure 11: “Wizard vs. Genie”: Since OverCoat has a unifying representation for both surface and space, it is easy to paint clouds and
other volumetric effects, by painting on offset surfaces. Effects such as the clouds in these images would be difficult to achieve with texture
painting techniques. The beard in the rightmost image shows an exemplary use of the feather tool.

Example Triangles Strokes Splats Time
Autumn Tree 29k 21k 138k 270 ms
Captain Mattis 6.6k 5k 40k 70 ms
Cat and Mouse 7.5k 5k 130k 200 ms
Angry Bumble Bee 6.3k 20k 304k 370 ms
Wizard vs. Genie 30k 24k 452k 610 ms

Table 1: Results statistics: The second and third columns list the
triangle count of the proxy geometry and the total number of paint
strokes of each example scene. The last two columns show the num-
ber of splats and the rendering time for a representative view ren-
dered with 720p resolution.

alistic media simulation, such as the impressive paint model used
by Project Gustav [Baxter et al. 2010]. Stylized 2D paintings of-
ten exhibit view-dependent shape changes. Our system cannot sup-
port such changes, since the 3D canvas’s structure is independent
of camera view. Future would could incorporate ideas from view-
dependent geometry [Rademacher 1999] into the 3D canvas author-
ing process. Our renderer implements a fixed-function compositing
algorithm. In contrast, 2D digital painting software packages give
the artist a great deal of control over layering, masking, and com-
positing. Incorporating these concepts into OverCoat represents an
additional avenue of future work. Ambiguities in stroke order are
known to present problems for stroke-based renderers [Meier 1996;
Katanics and Lappas 2003]. Our solution, based on splat ordering,
can lead to occasional popping artifacts due to order changes. More
thorough investigation of stroke-order ambiguities is a topic for fu-
ture work. Our artists were successful in using Maya and ZBrush
for modeling in conjunction with OverCoat. However, the system
could be improved by integrating sketch-based modeling and de-
formation concepts [Igarashi et al. 1999; Nealen et al. 2007] di-
rectly into OverCoat. Level-of-detail, which has played a promi-
nent role in non-photorealistic rendering [Markosian et al. 2000], is
only loosely handled by our system by scaling brush sizes accord-
ing to view distance. Future work could target more direct incorpo-
ration of level-of-detail into the implicit canvas.

Our current system accommodates only static paintings. This
enables many interesting applications, such as interactive comic
books and children’s stories, or 3D concept art. An exciting di-
rection for future research is the animation of paintings created in
OverCoat. Paint strokes could be transformed according to ani-
mated proxy objects using space deformation techniques or by ex-
ploiting the point-to-surface correspondence given by the distance
field. Ideally, the user could bring paintings to life directly within
OverCoat by using the painting interface to author animations.

Acknowledgements

We would like to thank Daniel Teece for his support of our research,
and Maurizio Nitti and Alessia Marra for their artistic input and the
”Cat and Mouse”, ”Angry Bumble Bee”, and ”Wizard vs. Genie”
example artwork.

References

BAERENTZEN, J. A., AND AANAES, H. 2005. Signed distance
computation using the angle weighted pseudonormal. IEEE
Transactions on Visualization and Computer Graphics 11 (May),
243–253.

BAXTER, W., CHU, N., AND GOVINDARAJU, N. 2010. Project
gustav: immersive digital painting. In ACM SIGGRAPH 2010
Talks, ACM, 41:1–41:1.

BERNHARDT, A., PIHUIT, A., CANI, M.-P., AND BARTHE, L.
2008. Matisse: Painting 2D regions for modeling free-form
shapes. In Eurographics Workshop on Sketch-Based Interfaces
and Modeling, 57–64.

BOOKER, P. 1963. A history of engineering drawing. Chatto &
Windus.

BOURGUIGNON, D., CANI, M.-P., AND DRETTAKIS, G. 2001.
Drawing for illustration and annotation in 3d. Computer Graph-
ics Forum 20, 3, 114–122.

BOUSSEAU, A., KAPLAN, M., THOLLOT, J., AND SILLION, F. X.
2006. Interactive watercolor rendering with temporal coherence
and abstraction. In Proceedings of the 4th international sympo-
sium on Non-photorealistic animation and rendering, 141–149.

COHEN, J. M., HUGHES, J. F., AND ZELEZNIK, R. C. 2000.
Harold: A world made of drawings. In Proceedings of the 1st
international symposium on Non-photorealistic Animation and
Rendering, 83–90.

DURAND, F. 2002. An invitation to discuss computer depic-
tion. In Proceedings of the 2nd international symposium on Non-
photorealistic animation and rendering, ACM, 111–124.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES,
T. R. 2000. Adaptively sampled distance fields: A general rep-
resentation of shape for computer graphics. In Proceedings of
ACM SIGGRAPH 2000, Computer Graphics Proceedings, An-
nual Conference Series, 249–254.

8

To appear in ACM TOG 30(4).

GOTTSCHALK, S., LIN, M., AND MANOCHA, D. 1996. Obb-
tree: A hierarchical structure for rapid interference detection.
In Proceedings of SIGGRAPH 96, Computer Graphics Proceed-
ings, Annual Conference Series, 171–180.

HAEBERLI, P. E. 1990. Paint by numbers: Abstract image repre-
sentations. In Computer Graphics (Proceedings of SIGGRAPH
90), 207–214.

HART, J. C. 1994. Sphere tracing: A geometric method for the
antialiased ray tracing of implicit surfaces. The Visual Computer
12, 527–545.

HERTZMANN, A. 2003. A survey of stroke-based rendering. Com-
puter Graphics and Applications, IEEE 23, 4 (july-aug.), 70 –
81.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
A sketching interface for 3d freeform design. In Proceedings of
SIGGRAPH 99, Computer Graphics Proceedings, Annual Con-
ference Series, 409–416.

JUDD, T., DURAND, F., AND ADELSON, E. 2007. Apparent ridges
for line drawing. ACM Transactions on Graphics 26, 3 (July),
19:1–19:7.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI,
M. A., LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES,
J. F., AND FINKELSTEIN, A. 2002. Wysiwyg npr: Drawing
strokes directly on 3d models. ACM Transactions on Graphics
21, 3 (July), 755–762.

KARPENKO, O., HUGHES, J. F., AND RASKAR, R. 2002. Free-
form sketching with variational implicit surfaces. Computer
Graphics Forum 21, 3, 585–594.

KATANICS, G., AND LAPPAS, T. 2003. Deep Canvas: Integrating
3D Painting and Painterly Rendering. In Theory and Practice
of Non-Photorealistic Graphics: Algorithms, Methods, and Pro-
duction Systems, ACM SIGGRAPH 2003 Course Notes.

KEEFE, D. F., FELIZ, D. A., MOSCOVICH, T., LAIDLAW, D. H.,
AND LAVIOLA, JR., J. J. 2001. Cavepainting: a fully immersive
3d artistic medium and interactive experience. In Proceedings of
the 2001 symposium on Interactive 3D graphics, ACM, 85–93.

KEEFE, D., ZELEZNIK, R., AND LAIDLAW, D. 2007. Drawing
on air: Input techniques for controlled 3d line illustration. IEEE
Transactions on Visualization and Computer Graphics 13, 1067–
1081.

KOWALSKI, M. A., MARKOSIAN, L., NORTHRUP, J. D., BOUR-
DEV, L., BARZEL, R., HOLDEN, L. S., AND HUGHES, J. F.
1999. Art-based rendering of fur, grass, and trees. In Proceed-
ings of SIGGRAPH 99, Computer Graphics Proceedings, Annual
Conference Series, 433–438.

LU, J., SANDER, P. V., AND FINKELSTEIN, A. 2010. Interac-
tive painterly stylization of images, videos and 3d animations.
In Proceedings of the 2010 ACM SIGGRAPH symposium on In-
teractive 3D Graphics and Games, 127–134.

MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J., BOUR-
DEV, L. D., GOLDSTEIN, D., AND HUGHES, J. F. 1997. Real-
time nonphotorealistic rendering. In Proceedings of SIGGRAPH
97, Computer Graphics Proceedings, Annual Conference Series,
415–420.

MARKOSIAN, L., MEIER, B. J., KOWALSKI, M. A., HOLDEN,
L. S., NORTHRUP, J. D., AND HUGHES, J. F. 2000. Art-based
rendering with continuous levels of detail. In Proceedings of

the 1st international symposium on Non-photorealistic anima-
tion and rendering, 59–66.

MAYA. http://www.autodesk.com/maya.

MEIER, B. J. 1996. Painterly rendering for animation. In Proceed-
ings of SIGGRAPH 96, Computer Graphics Proceedings, Annual
Conference Series, 477–484.

MUDBOX. http://www.autodesk.com/mudbox.

NEALEN, A., IGARASHI, T., SORKINE, O., AND ALEXA, M.
2007. Fibermesh: Designing freeform surfaces with 3d curves.
ACM Transactions on Graphics 26, 3 (July), 41:1–41:9.

PAINT EFFECTS. 2011. Painting in 3d using paint
effects. In Autodesk Maya Learning Resources.
http://download.autodesk.com/us/maya/2011help.

PENG, J., KRISTJANSSON, D., AND ZORIN, D. 2004. Interac-
tive modeling of topologically complex geometric detail. ACM
Transactions on Graphics 23, 3 (Aug.), 635–643.

PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A.
2001. Real-time hatching. In Proceedings of ACM SIGGRAPH
2001, Computer Graphics Proceedings, Annual Conference Se-
ries, 579–584.

RADEMACHER, P. 1999. View-dependent geometry. In Proceed-
ings of SIGGRAPH 99, Computer Graphics Proceedings, Annual
Conference Series, 439–446.

RIVERS, A., IGARASHI, T., AND DURAND, F. 2010. 2.5d cartoon
models. ACM Transactions on Graphics 29, 4 (July), 59:1–59:7.

SCHKOLNE, S., PRUETT, M., AND SCHRÖDER, P. 2001. Surface
drawing: creating organic 3d shapes with the hand and tangi-
ble tools. In Proceedings of the SIGCHI conference on Human
factors in computing systems, ACM, 261–268.

SCHMIDT, R., WYVILL, B., SOUSA, M., AND JORGE, J. 2005.
Shapeshop: Sketch-based solid modeling with blobtrees. In Eu-
rographics Workshop on Sketch-Based Interfaces and Modeling,
53–62.

TEECE, D. 2000. Animating with expressive 3d brush strokes (an-
imation abstract). In Proceedings of the 1st international sympo-
sium on Non-photorealistic animation and rendering, ACM.

TOLBA, O., DORSEY, J., AND MCMILLAN, L. 2001. A projec-
tive drawing system. In Proceedings of the 2001 symposium on
Interactive 3D graphics, ACM, 25–34.

WILLATS, J. 1997. Art and representation: new principles in the
analysis of pictures. Princeton University Press.

WYVILL, G., MCPHEETERS, C., AND WYVILL, B. 1986. Data
structure for soft objects. The Visual Computer 2, 4, 227–234.

ZBRUSH. http://www.pixologic.com/zbrush.

9

