
Two-Scale Particle Simulation

Barbara Solenthaler
ETH Zurich

Markus Gross
ETH Zurich

Figure 1: With our two-scale method, computing resources can be allocated to regions where complex flow behavior emerges, like in this
example around cylindrical obstacles. This region is simulated with quadrupled resolution (yellow) to get more surface details and fine-scaled
splashes at impact locations. The major remaining part of the fluid is computed with low resolution (blue).

Abstract

We propose a two-scale method for particle-based fluids that al-
locates computing resources to regions of the fluid where com-
plex flow behavior emerges. Our method uses a low- and a high-
resolution simulation that run at the same time. While in the coarse
simulation the whole fluid is represented by large particles, the
fine level simulates only a subset of the fluid with small particles.
The subset can be arbitrarily defined and also dynamically change
over time to capture complex flows and small-scale surface details.
The low- and high-resolution simulations are coupled by including
feedback forces and defining appropriate boundary conditions. Our
method offers the benefit that particles are of the same size within
each simulation level. This avoids particle splitting and merging
processes, and allows the simulation of very large resolution dif-
ferences without any stability problems. The model is easy to im-
plement, and we show how it can be integrated into a standard SPH
simulation as well as into the incompressible PCISPH solver. Com-
pared to the single-resolution simulation, our method produces sim-
ilar surface details while improving the efficiency linearly to the
achieved reduction rate of the particle number.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation.

Keywords: fluid simulation, SPH, two-scale, level of detail

Links: DL PDF

1 Introduction

Fluid simulations demand a high discretization resolution in order
to produce appealing visual results. Often, small-scale details like
small droplets, thin sheets and surface ripples are not reproduced
in the simulation. On the one hand, they are below the simulation
scale, and on the other hand, numerical dissipation and smooth-
ing dampen these effects. To cope with the increasing demand
for more detailed flow structures, different methods have been pro-
posed that follow the idea to allocate computing resources to re-
gions where complex flow behavior emerges. Many techniques
have been presented for Eulerian simulations, examples are octree
data structures [Losasso et al. 2004], coupling of 2D and 3D simula-
tions [Thürey et al. 2006], and dynamic mesh refinement [Klingner
et al. 2006].

Only few works have addressed this problem in the Lagrangian con-
text. The physical and visual quality of particle-based solvers like
SPH are defined by the number of particles that are used to dis-
cretize the fluid. Generally, the more particles that are used, the
smaller the damping artifacts and the more small-scale details like
splashes, spray, and surface waves can be reproduced. However,
doubling the resolution of a simulation increases the particle num-
ber by a factor of 8. This increases the computational cost notably
since it depends linearly on the number of particles.

While much work has been done in improving the computational
efficiency of the solver by using for example GPU implementa-
tions, e.g. [Goswami et al. 2010], or by speeding up incompress-
ibility enforcement as shown in [Solenthaler and Pajarola 2009],
only few works have explored level of detail techniques. [Adams
et al. 2007] proposed a method where large particles are dynami-
cally subdivided into smaller ones and small particles are merged
into a larger one to adjust the resolution based on a surface fea-
ture criterion. Such an adaptive sampling can reduce the compu-
tational cost to some extent. However, difficulties exist in splitting
and merging particles so that the density and force profiles are ex-
actly reproduced. Furthermore, it has to be ensured that the spatial
discretization features a smooth transition from large to small par-
ticles. This limits the maximal particle size difference inside the
fluid; [Adams et al. 2007] report of maximal size difference factors
of 4-8, i.e., the resolution is doubled in the best case.

In this paper, we adopt the idea of [Adams et al. 2007], but instead
of recursively subdividing particles which results in particles of dif-
ferent sizes that interact with each other, we rather use a hierarchy

http://doi.acm.org/10.1145/1964921.1964976
http://portal.acm.org/ft_gateway.cfm?id=1964976&type=pdf

Figure 2: In L (left), the high-resolution region (yellow) is defined
according to the current view of a rotating camera. This region is
then computed with quadrupled resolution (middle), and rendered
according to the current view direction (right).

of different resolution levels. This avoids the problems introduced
by splitting and merging, and allows the simulation of arbitrarily
large particle size differences, hence the desired resolution can be
controlled. While the number of resolution levels is not fundamen-
tally limited with our method, we focus on two scales only. For
many phenomena, two scales are sufficient since the flow can often
be classified into areas where small-scale surface effects are visible,
and regions where larger amounts of volume are propagated with-
out producing complex flow structures. Thus, we use two distinct
but coupled simulations; one simulation that computes the whole
fluid with a coarse resolution, and a high-resolution level that simu-
lates a subset of the fluid with small particles as shown in Figure 2.

2 Related Work

In Lagrangian approaches like SPH [Müller et al. 2003; Monaghan
2005] the resulting visual quality is defined by the resolution of
the simulation, i.e. the number of particles that are used to dis-
cretize the fluid. Low-resolution fluids often appear blobby be-
cause the surface particles are directly used for rendering. Fur-
thermore, velocity differences are smoothed out very quickly in
coarse simulations resulting in severe damping. The number of
particles, however, is limited by the computing resources that are
available. To increase efficiency, the weakly compressible SPH
method (WCSPH) [Monaghan 2005] that simulates stiff fluids to
keep density fluctuations below 1% has been replaced by an it-
erative prediction-correction scheme in [Solenthaler and Pajarola
2009]. With PCISPH, larger time steps can be used, resulting in
a solver that runs at the same cost as a standard compressible SPH
solver. Adaptive time stepping has been included in PCISPH to fur-

ther improve the performance [Ihmsen et al. 2010b]. In both SPH
and PCISPH, neighbor search is the most expensive part, thus [Ihm-
sen et al. 2010a] presented a parallel framework with optimized
memory transfer for both simulation techniques. Parallel execution
of SPH has also been explored with GPU techniques in [Harada
et al. 2007; Goswami et al. 2010].

A different strategy to optimize the performance is to allocate com-
puting resources to regions of the fluid where complex flow behav-
ior emerges. This is employed in [Adams et al. 2007] where adap-
tive particle sizes have been used to better resolve surface features.
Particles are dynamically split and merged similar to the method
presented in [Desbrun and Cani 1999]. Sampling criteria based on
physical quantities have been used as well, mainly in the CFD com-
munity to get more accurate simulations [Kitsionas and Whitworth
2002; Lastiwka et al. 2005]. Adaptive particles have been inte-
grated in a GPU SPH solver in [Zhang et al. 2008] as well as in the
FLIP model in [Hong et al. 2008]. Although the adaptive sampling
increases the efficiency of the simulation, the interaction of differ-
ently sized particles leads to difficulties. Merging and splitting, for
example, can introduce pressure oscillations because of neighbor
locations that change abruptly. This problem is reduced in [Adams
et al. 2007] by replacing a large particle by only two smaller ones
with optimized positions. Another issue is that smaller particles
have smaller neighborhood radii than large particles. This often
leads to asymmetric visibilities between two particles, violating the
momentum conservation. We avoid these problems by computing
each resolution level with distinct simulations. This fundamental
idea has been applied in [Debunne et al. 2001] to simulate elastic
objects. Instead of recursively subdividing a mesh where parts of
the mesh interact through common nodes and edges, they use sev-
eral levels of different mesh resolutions.

Similar to the particle number in Lagrangian models, the qual-
ity of Eulerian simulations depend on the grid resolution. Most
solvers are based on [Stam 1999], and large grids are used to re-
solve small-scale details and to reduce the amount of numerical
diffusion. Adaptive methods like octree data structure [Losasso
et al. 2004] and non-uniform meshes [Klingner et al. 2006] have
been presented to reduce the computational cost in areas of low
flow complexity. Often, the fluid surface is tracked on a higher res-
olution grid than the underlying fluid simulation, e.g. [Kim et al.
2009]. In addition, hybrid methods that couple an underlying grid
simulation with particles at the surface to get small-scale splashes
and droplets have been presented in [Kim et al. 2006; Losasso et al.
2008]. Although these techniques represent the surface with more
details, the fluid simulation relies on a low-resolution base simula-
tion and small-scale details that can be resolved are limited. This
restriction is avoided in [Lentine et al. 2010] where the basic fluid
resolution is kept high but the expensive pressure projection is com-
puted on a coarse grid to improve the efficiency. 3D grid simula-
tions have also been coupled with 2D heightfield methods to reduce
the accuracy vertically [Irving et al. 2006] or far away from inter-
action processes [Thürey et al. 2006]. Less physical but efficient
approaches to handle high-resolution grids include model reduction
techniques presented in [Treuille et al. 2006; Wicke et al. 2009].

3 SPH Summary

Our two-scale method is based on the particle-based fluid solver
SPH [Monaghan 2005]. SPH smoothes quantities over a neigh-
borhood with radius h by using a kernel W (xij , h) to weight the
contributions according to the distance xij between two particles i
and j. A smoothed, physical quantity< q > of a particle i can thus
be computed by summing up the contributions of the neighboring

User-defined regionsLow-resolution input

L and H merged Final rendering

Complete neighborhoods

Particles added / deleted
Particles advected

Boundary region

L

H

L
H

High-resolution region

Feedback

Boundary conditions

Figure 3: Method overview. In our two-scale algorithm, a fluid subset (yellow particles) determined in the low-resolution level (L) is
additionally simulated with higher resolution (H). Appropriate boundary conditions given by L are defined (red particles), and a feedback
force from H onto L is included to get corresponding flows. The particles of both simulations can then be merged for the final rendering.

particles j

< qi >=
X

j

mj

ρj
qjW (xij , h), (1)

where mj is the mass of particle j and ρj its density. In our im-
plementation, we use the SPH force equations for multiple fluids
proposed in [Solenthaler and Pajarola 2008], and the kernels given
in [Müller et al. 2003]. We have additionally integrated our method
into the incompressible PCISPH solver presented in [Solenthaler
and Pajarola 2009] to keep density variations below 1%. The main
difference between SPH / WCSPH and PCISPH is that pressure val-
ues are set in a different way: While in SPH / WCSPH pressures are
defined by the equation of state, PCISPH iteratively adapts pressure
values according to the predicted density error of the particles.

4 Two-Scale Model

Our method, illustrated in Figure 3, uses two simulations with dif-
ferent resolution scales, a low-resolution L and a high-resolution
H. The resolution difference is a user-defined value and can be cho-
sen arbitrarily large. We have defined the particle size difference
to be a multiple of 8 in each scaling step. This results in a regular
particle sampling as discussed in Section 4.3. In our simulations we
typically use a particle size difference of a factor of 8 (doubled reso-
lution) or 64 (quadrupled resolution). Larger resolution differences
can be chosen as well, but, as we discuss in Section 6, our experi-
ments have shown that these sizes work best to keep the influence
of the damping effects from L small.

The coarse level L (blue particles) acts as the base simulation and
computes the physics for the whole fluid. In L we determine a
subset of the fluid that we want to simulate with higher resolution
(yellow particles). We show how this region can be determined in
Section 4.1. This subset region defines the second simulation. An
additional particle layer (red particles) is used to model the bound-
ary conditions for H. These particles are advected by the flow field
of L, see Section 4.2, and are dynamically added and deleted as
described in Section 4.3. When a boundary particle enters the ac-
tive, yellow region, care is taken that the physical quantities change
smoothly, see Section 4.4. Since we get more flow details in H we
include a feedback force from H onto L, this is described in Sec-
tion 4.5. The particles of H and L can then be merged for the final
rendering. The adapted SPH and PCISPH Algorithm as well as
parameter settings are given in Section 5.

4.1 High-Resolution Region

The high-resolution region H can be defined by any type of sam-
pling condition and can change dynamically during the simulation.
Since we aim for better visual quality we use geometry driven cri-
teria in all our examples, this is insofar important since the surface
particles are typically used to reconstruct the fluid surface. How-
ever, physics-driven conditions and combined criteria can be incor-
porated as well.

Spatial conditions are straightforward to define, an example is
shown in Figure 1 where a region around obstacles is defined to
be simulated with higher resolution to get more surface details at
impact locations. Camera information can be additionally included
to change the region according to the field of view as shown in
Figure 2. Often, it is desirable to allocate computing resources
to the surface of the fluid to get more surface details and fine-
scaled splashes as in Figure 3. We define a particle to be at the
surface if the distance to the center of mass of its neighborhood
xi,cm = xi −

P
j xj/

P
j 1 is above a threshold as described

in [Solenthaler et al. 2007]. Isolated particles are detected sepa-
rately, they are defined by having empty neighborhoods. We use
flood fill to extract several layers of particles that are close to the
surface. The interface between multiple fluids can be determined
similarly, the only difference is that xi,cm is based on particles of
the same fluid type only. An example where the interface region is
sampled with higher resolution is shown in Figure 4. Our method
is able to handle very complex high-resolution regions that dynam-
ically change over time, thus any other criterion to define H can be
incorporated as well.

In order to keep the computation cost low, as many operations as
possible are executed in L. Therefore, the high-resolution region is
detected in L and then transferred onto H. Each particle in H stores
a parent particle, which is the closest particle in L, and is classified
according to the region of its parent. In the following, we refer to
the particles that are inside the high-resolution region as active.

4.2 Boundary Region

We detect the boundary region analogously to H using the flood
fill method. Boundary particles are advected by the flow of L, the
velocity is interpolated from L onto H (interpolated quantities q
from L are indicated with q̂ in the following) by

v̂i∈H =
X
k∈L

vkW, (2)

Figure 4: Our method allows the definition of dynamically changing, complex high-resolution regions, like for example the interface between
two fluids with a density ratio of 10. From left to right: In L, the interface is detected and regions are determined. The interface region
(yellow) is then computed with doubled resolution. The particle subset of L and the particles of H are combined and rendered.

where W is the box kernel to avoid expensive distance computa-
tions. More accurate kernels, for example the SPH density kernel,
could be used as well. k ∈ L refers to a subset of the neighbors
of the parent of i. Since in SPH each particle has 30-40 neighbors
on average, we define the subset to include all neighbors within a
radius of h/2 to avoid excessive smoothing.

The computational overhead of boundary particles is small since
no physics or neighborhoods have to be computed for them. Nev-
ertheless, they are included in the neighborhood of close, active
particles and hence contribute to the density and exert viscous and
pressure forces. To compute the pair-wise forces, a boundary par-
ticle additionally stores the interpolated density and pressure val-
ues computed analogously to Equation 2. We have to guarantee
that the neighborhood of an active particle close to the boundary
region is completely filled with particles to avoid imbalanced pres-
sure forces. The minimal size of the boundary region is therefore
defined by the kernel size h as illustrated in Figure 5 b).

4.3 Dynamic Boundary Particle Generation

When a particle in L enters the boundary region from outside
(blue to red) we dynamically create high-resolution boundary par-
ticles in H. In case of doubled resolution, 8 particles with mass
mH = mL/8 are initialized on a cube around the parent position
as illustrated in 2D in Figure 6(a), 1). The particle spacing in H is
given by dH = dL/r, where dL is the particle spacing in L and
r is the resolution difference factor; in case of doubled resolution
the spacing is halved. Our cubical initialization results in a regular
particle distribution and is compared to a 2-particles ([Adams et al.
2007]) and spherical initialization using 7 particles ([Desbrun and
Cani 1999]) in Figure 6(a), 2) and 3). Particles created outside the
domain (Figure 6(b), i) should not be deleted because this would
lead to volume loss. In such situations, we set the particles onto
the boundary and slightly shift positions to avoid excessive cluster-
ing (Figure 6(b), ii). Since particles undergo a relaxation process to
slowly rearrange as soon as they enter the active region (see Sec-
tion 4.4), the initial particle configuration is not too critical regard-
ing particle disorder. A boundary particle is deleted as soon as its
parent does neither belong to the active nor the boundary region.

4.4 Transition Between Boundary and Active

If the parent of a particle j in H leaves the active region and enters
the boundary region, the state of j changes as well, hence it is ad-
vected by the velocity field of L in the following. The reversed case
where a particle j in H enters the active, high-resolution region is
critical regarding stability of the simulation. We therefore take care
that the physics quantities of a particle j that becomes active (Fig-

j

t t+1

a) j

h

i

j
h

t t+1

b)
i

j

Figure 5: Abrupt density and force changes are avoided during a
region transition. This holds for a boundary particle j entering the
active region (a), as well as for a neighboring particle i (b).

d

d/2

1)

2) 3)

(a) Sampling schemes.

i) ii)

d/2

d/4

d/4 d/8

(b) Particle creation at walls.

Figure 6: Our method places boundary particles as shown in 1)
to get a regular particle distribution. At domain boundaries, parti-
cles are set back onto the wall and are slightly shifted (ii) to avoid
particle clustering. In this 2D example, orange indicates doubled
resolution, and green quadrupled resolution.

ure 5a) as well as the quantities of an active particle i that has j as
a neighbor (Figure 5b) do not change from time t to t + 1 if the
particles do not experience any position changes. The latter case is
trivially fulfilled; j was already previously included in the computa-
tion and thus the density ρi and the pressure force Fp

i do not change
abruptly. The former case is more critical because advection intro-
duces errors that could lead to irregular particle sampling. Since the
quantities computed with SPH are very sensitive to the number of
neighboring particles and their locations, the interpolated quantities
at time t do not necessarily correspond to the quantities computed
by the physics at t+1. The density, for example, can be much larger
than the interpolated value when particles are clustered, leading to
large pressure forces. To alleviate this problem, we apply a parti-
cle relaxation process that allows the particles to settle into a stable
configuration. The simplest way to achieve this is by letting the
physics slowly pushing the particles into the right location. This
is done during the time trelax that we have set to 0.05s in all our
examples. During this time, the quantities ρj and Fp

j are computed
as follows:

• ρj : We slowly adjust the density to get a smooth transition
between ρ̂j(t) and ρj(t + 1). The density is computed by
ρj = αρj + (1− α)ρ̂j , where α is set to 0 at time t+ 1 and
is increased to 1 in the following time steps during trelax.

Figure 7: A feedback force is included to get corresponding flow
details in L and H. From left to right: L without feedback, L with
feedback from H, H.

• Fp
j : Pressure forces should slowly push particles away from

each other to get j into a relaxed configuration. We do that
by restricting the velocity magnitude during trelax to ṽj =
min(vj , β

h
∆t

), where ∆t is the time step, and β is experi-
mentally determined and set to 0.05 (note the similarity to the
Courant condition where β is typically set between [0.2..0.4]).
ṽj is then used to update the position xj+ = ∆tṽj . The ve-
locity is set to the interpolated velocity vj = v̂j during trelax.

4.5 Feedback

The high-resolution simulation H encounters less damping than L
and more small-scale details can be resolved, hence the flows of H
and L can diverge. To account for this effect, a feedback force is
defined to modify the velocity field of L according to the flow of H.
The force is computed for each particle i in L marked to be inside
the active region by

Ffeedback
i∈Lactive

= β(vi −
X
j∈H

vjW), (3)

where β is a constant that defines the influence of the feedback
force. In all our examples, β is set to 50 based on experiments.
j ∈ H refers to all active particles in H that have i stored as parent.
The effect of the feedback force is shown in Figure 7.

5 Implementation

We have integrated our two-scale method in a standard SPH / WC-
SPH solver (Algorithm 1 and 2), as well as in the incompressible
PCISPH solver (Algorithm 1 and 3). In both cases, we first com-
pute the low-resolution physics L with SPH or PCISPH. Then, the
different regions are determined, and boundary particles are dy-
namically added and deleted in H depending on region changes
in L. Physical quantities are interpolated from L onto all bound-
ary particles in H as well as all active particles that just left the
boundary region. Next, the high-resolution physics is computed.
Several time steps are executed depending on the resolution, given
by nSubsteps = ∆tL/∆tH . The physics (SPH or PCISPH) is
computed for all particles inside the active region, and boundary
particles are advected. After each particle is forwarded in time,
parents are updated for each particle in H. Since particle locations
change only little from one time step to the next, we search the
new parent in the neighborhood of the current parent. Only in rare
cases where the resulting distance to the parent exceeds h/2 (ap-
proximately the spacing between the particles in L), the parent is
recomputed. Simultaneously to the parent update we transfer the
velocity information from H back onto L. This is used in the next
time step to compute the feedback forces.

The steps executed in SPH (Algorithm 2) correspond to the basic
algorithm described in [Müller et al. 2003]. In PCISPH (Algo-
rithm 3), it is important that the predicted values of boundary par-
ticles are set correctly, they are simply given by v∗ = v̂, ρ∗ = ρ̂,

Algorithm 1 Two-Scales

1 while animating do
2 compute physics L {SPH or PCISPH}
3 determine regions in L
4 transfer region information from L onto H
5 add / delete Hboundary particles
6 interpolate quantities from L onto Hboundary,activeRelax

7 for nSubsteps do
8 compute physics Hactive {SPH or PCISPH}
9 advect Hboundary

10 update parent particle in H
11 interpolate feedback infomation from Hactive onto L

Algorithm 2 Compute Physics SPH (WCSPH) (Particle Set S)

1 for all i ∈ S do
2 find neighborhoods Ni

3 for all i ∈ S do
4 compute ρi, pi

5 for all i ∈ S do
6 compute forces F

p,v,g,(feedback)
i

7 for all i ∈ S do
8 compute new vi,xi

Algorithm 3 Compute Physics PCISPH (Particle Set S)

1 for all i ∈ S do
2 find neighborhoods Ni

3 for all i ∈ S do
4 compute forces F

v,g,(feedback)
i

5 while (max(ρerr)∗ > η) || (iter < minIterations) do
6 for all i ∈ S do
7 predict vi,xi

8 for all i ∈ S do
9 predict density ρ∗i

10 update pressure pi = f(ρ∗i) according to PCISPH
11 for all i ∈ S do
12 compute pressure force Fp

i

13 determine max(ρ∗errHactive
)

14 for all i ∈ S do
15 compute new vi,xi

p = p̂. Predicted values of active particles in H that undergo re-
laxation get the same restriction as described in Section 4.4. Since
these particles cannot move freely, a pressure change does not nec-
essarily result in the expected change of the particle configuration
and could slow down the convergence of the PCISPH algorithm.
We avoid this problem by allowing larger density errors than 1%
for those particles.

In the following, we describe how parameters are set in our im-
plementation. First, a particle spacing dL is defined, which is the
distance between the particles in L. This is used to initialize the
particles on a grid. The particle spacing in H, dH , depends on the
resolution difference factor r and is given by dH = dL/r; r = 2
doubles the resolution. The particle mass mL and mH are then de-
fined by m = d3/ρ0, where ρ0 is set to 1000. The support radius
h is set as twice the particle spacing. During the simulation, this
results in 30-40 neighbors on average. The time step ∆tL is com-
puted with the Courant condition and depends on h, thus ∆tH is
again scaled by r and is given by ∆tH = ∆tL/r.

6 Results and Discussion

Our method can stably handle dynamically changing and complex
high-resolution regions. This is shown in Figure 4 where the inter-

Figure 1, 9Figure 1, 9 Figure 2, 8Figure 2, 8 Figure 10, leftFigure 10, left

Our methodOur method Single-scale Our method Single-scale Our method Single-scale

Fig. 9, left Fig. 9, right

Single-scale Our method Single-scale Our method Single-scale

#P Hactive
#P Hboundary
#P L

93 - 770k
13k - 90k

46k

93 - 411k
13k - 164k

46k

2.8M 28 - 919k
6 - 41k

28k

1.7M 300k
147k
16k

910k

t [s] / time step
(avg)

2.0 1.07 7.21 1.86 5.59 0.88 2.12

Speed-up 3.6 6.7 3.0 2.4

Table 1: Particle number, timings and speed-up factors of our
method compared to the single-resolution reference simulation.

#P Hactive /
Hboundary / L

ttotal tL tH tneighbor,
forces

tmove,
advect

tregion,
interpolate

taddDel tfeedback,
parent

Figure 2, 8
at t=4.4s

461k / 20k / 28k 1.7 0.066 1.64 1.54 0.023 0.003 0.007 0.067

Table 2: Timings [s / time step] for each step of our algorithm.

face between two fluids is simulated with doubled resolution (fac-
tor 8 smaller particles) to get more interface details in a Rayleigh-
Taylor instability. This example shows that the active and the
boundary regions can arbitrarily mix without introducing any sta-
bility problems.

An example where the area around cylindrical obstacles is com-
puted with quadrupled resolution (factor 64 smaller particles) to get
small-scaled splashes and individual droplets at impact locations is
shown in Figure 1. We used two different criteria to define H, first, a
spatial constraint (Figure 9, left), and second, a combined criterion
where spatial, surface and view information is included (Figure 9,
right). Compared to the single-scale reference simulation contain-
ing 2.8M particles, our method reduces the total particle number
and hence the overall computational cost by a factor of 3.6 and 6.7
in these two cases, see Table 1.

The view of a rotating camera is included in a spatial criterion in
Figure 2. In this example, the high-resolution region moves ac-
cording to the camera location in order to allocate computational
resources to areas of the fluid that are visible to the user. Again,
quadrupled resolution is used. In this example, the computational
cost is reduced by a factor of 3 as shown in Table 1. Detailed tim-
ings for each step of our algorithm are given in Table 2, indicating
that the overhead of our method is comparatively small. The result
is visually compared to the single-scale reference simulation in Fig-
ure 8, showing that our method produces very similar flow details.
The main difference to the reference solution with 1.7M particles is
that the fluid movement is slightly damped - this corresponds to the
main limitation of our method. This is because the resolution of the
base simulation is very coarse in this example (only 28k particles),
thus L is suffering from damping that is then transferred onto H. In-
creasing the base resolution of L or including vorticity confinement
forces to adding back energy could alleviate this problem to some
extent. With larger sizes of H, the influence of L and thus the damp-
ing is reduced, this is shown in Figure 10 (note that L contains only
16k particles in this example). However, regardless of the size of H,
similar surface details emerge. Furthermore, the surface resolution
is equivalent to the reference simulation, hence similar rendering
quality is achieved. The speed-up factor in this example depends
on the size of H and is up to a factor of 2.4 (see Table 1).

Another difficulty with our method is the particle creation at the
surface. While our cubical initialization results in a regular particle
distribution and keeps horizontal surfaces flat, problems arise with
curved surfaces. In such situations, staircase artifacts might be vis-
ible, at least until the particles have rearranged due to the physics.
Again, this problem can be reduced by slightly increasing the res-
olution of L. However, as future work, we would like to explore

Figure 8: The result of our method is compared to the single-
resolution simulation for the corridor flood scene. Left: L (without
feedback), Middle: H with quadrupled resolution computed with
our two-scale algorithm, Right: Single-resolution solution.

Figure 9: The spatial sampling condition (left) can be combined
with surface and view information (right) to further reduce the par-
ticle number and to reach a larger speed-up.

the inclusion of surface normals in the particle creation process to
avoid the dependency on the resolution of L.

In SPH, the computational costs increase linearly with the number
of particles. Thus, the optimal speed-up of a multi-scale method is
linear to the reduction rate of the particle number, e.g. if the particle
number is halved, the frame rate is optimally doubled. Our results
show that our method features this characteristics and furthermore
indicate that the achieved speed-up factor highly depends on the
particular scene set-up and the sampling criterion that is used.

The presented timings are all measured on a 2 2.66 GHz Quad-
Core Intel machine. Our code can be optimized by integrating more
sophisticated techniques for neighbor search presented in [Ihmsen
et al. 2010a] and adaptive time stepping [Ihmsen et al. 2010b]. We
used PCISPH to compute the examples in Figure 1 and 10, and SPH
for all other simulations. While we focused on two resolution scales
only, our method can be extended in a straightforward way to han-
dle multiple scales. However, for most applications, it is sufficient

Figure 10: Similar surface features emerge with different sizes of
H. The size of H affects the damping influence of L, the particle
resolution at the surface however is equivalent.

to classify the fluid into regions where small-scale surface details
and splashes emerge, and areas of low flow complexity.

7 Conclusion

We have presented a two-scale method for particle-based fluids in
order to reduce the overall computational cost while still achiev-
ing small-scale surface details comparable to the single-resolution
simulation. Our method is based on the idea to simulate distinct
particle sizes in individual but coupled simulations. The coupling
is done by introducing appropriate boundary conditions as well as
feedback forces. Dynamic particle generation and deletion as well
as stable transitions between the regions enable changing and com-
plex high-resolution areas. Our method can be easily integrated into
an existing particle solver to improve the computational efficiency.
Moreover, it allows the allocation of computational resources to
those parts of the fluid where a higher resolution is desirable.

References

ADAMS, B., PAULY, M., KEISER, R., AND GUIBAS, L. J. 2007.
Adaptively sampled particle fluids. ACM Trans. Graph. (SIG-
GRAPH Proc.) 26, 3, 48–54.

DEBUNNE, G., DESBRUN, M., CANI, M.-P., AND BARR, A. H.
2001. Dynamic real-time deformations using space and time
adaptive sampling. In Proc. of ACM SIGGRAPH 2001, 31–36.

DESBRUN, M., AND CANI, M. P. 1999. Space-time adaptive
simulation of highly deformable substances. Tech. rep., INRIA
Nr. 3829.

GOSWAMI, P., SCHLEGEL, P., SOLENTHALER, B., AND PA-
JAROLA, R. 2010. Interactive SPH simulation and rendering
on the GPU. In Proc. of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 55–64.

HARADA, T., KOSHIZUKA, S., AND KAWAGUCHI, Y. 2007.
Smoothed Particle Hydrodynamics on GPUs. In Proc. of Com-
puter Graphics International, 63–70.

HONG, W., HOUSE, D. H., AND KEYSER, J. 2008. Adaptive
particles for incompressible fluid simulation. Vis. Comput. 24,
535–543.

IHMSEN, M., AKINCI, N., BECKER, M., AND TESCHNER, M.
2010. A parallel SPH implementation on multi-core CPUs. Com-
puter Graphics Forum 30, 1, 99–112.

IHMSEN, M., AKINCI, N., GISSLER, M., AND TESCHNER,
M. 2010. Boundary handling and adaptive time-stepping for
PCISPH. In Proc. of VRIPHYS, 79–88.

IRVING, G., GUENDELMAN, E., LOSASSO, F., AND FEDKIW, R.
2006. Efficient simulation of large bodies of water by coupling
two and three dimensional techniques. ACM Trans. Graph. (SIG-
GRAPH Proc.) 25, 805–811.

KIM, J., CHA, D., CHANG, B., KOO, B., AND IHM, I. 2006.
Practical animation of turbulent splashing water. In Proc. of the
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, 335–344.

KIM, D., SONG, O.-Y., AND KO, H.-S. 2009. Stretching and
wiggling liquids. ACM Trans. Graph. (SIGGRAPH ASIA Proc.)
28, 5, 1–7.

KITSIONAS, S., AND WHITWORTH, A. 2002. Smoothed Particle
Hydrodynamics with particle splitting, applied to self-gravitating
collapse. MNRAS 330, 1, 129–136.

KLINGNER, B. M., FELDMAN, B. E., CHENTANEZ, N., AND
O’BRIEN, J. F. 2006. Fluid animation with dynamic meshes.
ACM Trans. Graph. (SIGGRAPH Proc.) 25, 820–825.

LASTIWKA, M., QUINLAN, N., AND BASA, M. 2005. Adaptive
particle distribution for Smoothed Particle Hydrodynamics. Int.
J. Numer. Meth. Fluids 47, 1403–1409.

LENTINE, M., ZHENG, W., AND FEDKIW, R. 2010. A novel
algorithm for incompressible flow using only a coarse grid pro-
jection. ACM Trans. Graph. (SIGGRAPH Proc.) 29, 4, 1–9.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating wa-
ter and smoke with an octree data structure. ACM Trans. Graph.
(SIGGRAPH Proc.) 23, 3, 457–462.

LOSASSO, F., TALTON, J., KWATRA, J., AND FEDKIW, R. 2008.
Two-way coupled SPH and particle level set fluid simulation.
IEEE TVCG 14, 4, 797–804.

MONAGHAN, J. J. 2005. Smoothed Particle Hydrodynamics. Rep.
Prog. Phys. 68, 1703–1759.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In Proc. of the
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, 154–159.

SOLENTHALER, B., AND PAJAROLA, R. 2008. Density contrast
SPH interfaces. In Proc. of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 211–218.

SOLENTHALER, B., AND PAJAROLA, R. 2009. Predictive-
corrective incompressible SPH. ACM Trans. Graph. (SIG-
GRAPH Proc.) 28, 3, 1–6.

SOLENTHALER, B., ZHANG, Y., AND PAJAROLA, R. 2007. Ef-
ficient refinement of dynamic point data. In Proc. of the Euro-
graphics Symposium on Point-Based Graphics, 65–72.

STAM, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121–128.

THÜREY, N., RÜDE, U., AND STAMMINGER, M. 2006. Anima-
tion of open water phenomena with coupled shallow water and
free surface simulation. Proc. of the Eurographics/ACM SIG-
GRAPH Symposium on Computer Animation, 157–166.

TREUILLE, A., LEWIS, A., AND POPOVIĆ, Z. 2006. Model re-
duction for real-time fluids. ACM Trans. Graph. (SIGGRAPH
Proc.) 25, 826–834.

WICKE, M., STANTON, M., AND TREUILLE, A. 2009. Modu-
lar bases for fluid dynamics. ACM Trans. Graph. (SIGGRAPH
Proc.) 28, 3, 1–8.

ZHANG, Y., SOLENTHALER, B., AND PAJAROLA, R. 2008. Adap-
tive sampling and rendering of fluids on the GPU. In Proc. of the
Eurographics Symposium on Volume and Point-Based Graphics,
137–146.

