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Figure 1: Novel view rendering of a soccer scene using only the two input cameras shown to the left and the right.

Abstract

We propose a novel fully automatic method for novel-viewpoint synthesis. Our method robustly handles multi-
camera setups featuring wide-baselines in an uncontrolled environment. In a first step, robust and sparse point
correspondences are found based on an extension of the Daisy features [TLF10]. These correspondences together
with back-projection errors are used to drive a novel adaptive coarse to fine reconstruction method, allowing to
approximate detailed geometry while avoiding an extreme triangle count.
To render the scene from arbitrary viewpoints we use a view-dependent blending of color information in com-
bination with a view-dependent geometry morph. The view-dependent geometry compensates for misalignments
caused by calibration errors. We demonstrate that our method works well under arbitrary lighting conditions with
as little as two cameras featuring wide-baselines. The footage taken from real sports broadcast events contains fine
geometric structures, which result in nice novel-viewpoint renderings despite of the low resolution in the images.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms

1. Introduction

Novel-view video synthesis is an area of active research in
computer graphics and vision to produce views of a scene
from a virtual camera position. It has a large variety of
applications including 2D to 3D conversion, telepresence,
games, movie production, interactive TV sports broadcasts,
etc. Although they all share the same fundamental prob-
lem, the nature of each individual application and setup con-
straints can yield to a very different set of challenges and re-
quirements that may limit the range of suitable approaches.
In this work we focus on conventional sports broadcasts
footage [HGK∗11, Lib]. The goal is to extend the creative
freedom of an editor or director by providing the possibility
to place a virtual camera in the stadium without having to
change or add anything in the already existing sparse physi-
cal camera setup. This allows to have the perfect perspective
and therefore perfect shot at any given time.

As noted in [GKH09, GPZ∗11, HGK∗11] this setup is

very challenging due to several factors. There are typically
only few moving cameras available that cover the interest-
ing part of the scene and can be calibrated. In soccer they
are positioned only on one side of the stadium. Although
the cameras provide high resolution images, they are usu-
ally set to be wide-angle for editorial reasons. Therefore,
an individual player covers only a height between 50 and
200 pixels [HGK∗11] (Figure 2(a)). In sports broadcasts the
player motion is usually fast and thus often results in motion
blur. Methods for per frame automatic calibration in such
setups [Tho06] suffer from errors and typically contain no
radiometric calibration. All these factors have to be circum-
vented in order to create a convincing novel-view synthesis.

Due to these challenges the most popular approaches in
this field still use simple planar billboards [HS06] which
invariably produce unwanted visual artifacts like ghosting.
A significant visual improvement can be achieved using ar-
ticulated billboards [GHK∗10]. Unfortunately, they rely on
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(a) (b)
Figure 2: (a) Resolution of input images (b) Example with
calibration errors visible on the ground as ghosting of lines.

fairly accurate pose estimation, which is cumbersome to do
in these setups. Current methods [GPZ∗11] require a large
database of poses and high quality silhouettes while manual
interaction is still required.

In contrast, we present a fully automatic method for
novel-view synthesis using an adaptive reconstruction tech-
nique and view dependent rendering. Our method is robust
to calibration errors and low resolution of the players. Cen-
tral to our novel view synthesis method is a robust recon-
struction step that adaptively recovers a geometry using as
few as two wide-baseline cameras. The rendering method
consists of a view-dependent geometry interpolation as well
as a view-dependent texture blending, leading to convincing
novel view synthesis results even in the challenging video
setups of conventional TV broadcasts.

2. Related Work

Beginning with the pioneering work of Kanade et.
al [KNR95], a lot of research on novel-view synthesis has
been done in computer graphics for the last 15 years. Some
methods were presented that work directly in 2D with
morphs [YIS05] or layers [CR03]. They are only able to in-
terpolate between images which is a camera flight along only
a single line. Our method allows novel views in the entire
area of the input cameras. Lipski et al. [LLB∗10] extend the
interpolations to a sphere. Their setup consists of cameras
with less than 10◦ baseline and does not allow to fly into the
scene because only interpolations on the sphere surface are
possible. Other methods estimate depth from stereo obtained
from a large set of video cameras [KRN97, MP04]. This ap-
proach works well for dense camera setups, which are not
available for sports broadcast setups. If only few cameras
are available, it is necessary to imply a geometric proxy with
3D information about the scene that improves the interpola-
tion [BBM∗01, SL04].

For rendering articulated characters such as players in a
sport game, it is possible to use pose estimation to obtain a
proxy geometry [CTMS03, VBMP08, dAST∗08, GHK∗10].
However, as noted in [GKH09, GPZ∗11, HGK∗11] pose es-
timation in such setups is difficult to do automatically and
still requires too much user interaction to be practical for
long sequences.

An alternative way to retrieve 3D geometric information

is to exploit the 2D silhouettes in all the camera views and
construct a visual hull of the scene, which can be used
to render the scenes from an arbitrary viewpoint with the
video camera images as textures [Lau94, MBR∗00, LMS04,
GTH∗07, PLM∗10]. Visual hull methods are suitable for
novel view synthesis of single objects. In crowded scenes,
unless a large number of cameras are employed, extrane-
ous so-called phantom geometry is generated [FB09]. Ad-
ditionally, when using distant cameras, small calibration er-
rors can cause entire arms or legs to be cut off. Guillemaut et
al. [GH11,GKH09,HGK∗11] addresses many challenges for
free-viewpoint video in sports broadcasting by jointly opti-
mizing scene segmentation and player reconstruction. Their
approach is leading to a more accurate geometry than the vi-
sual hull, but still requires a fairly large number of cameras
(6-12). Inamoto et al. [IS02] also use silhouettes and match
dense correspondences on epipolar lines. These correspon-
dences, will suffer from the same drawbacks as the visual
hull when working with weak calibration. Also their method
does only interpolate on the path between cameras whereas
we allow arbitrary viewpoints in the area of the two cameras.

Rather than relying on silhouettes alone to reconstruct a
proxy geometry, an alternative way is to use dense geom-
etry reconstruction techniques [MP04, BPS∗08, BBPP10].
The results are very convincing, but dense reconstruction
is difficult to do in wide-baseline camera setups. An al-
ternative approach suitable for setups where dense feature
matching is difficult to accomplish, is patch based recon-
struction [FSB06,SLAM08,SSS09,GFP10]. Patch based re-
construction methods only require a sparse set of correspon-
dences, but are limited to objects with a strong planarity as-
sumption, and thus not suitable for reconstructing players.

Since our wide-base camera setup does not allow dense
reconstruction, but it is possible to get reliable sparse
matches [TLF10], we propose a technique in the spirit of
the patch-based reconstruction methods. However, instead
of a bottom-up approach that tries to cluster pixels in pla-
nar patches, we propose a top-down approach that starts by
reconstructing the scene with a few large planar pieces and
recursively subdivides the geometry and gradually adds ge-
ometric detail up to resolution limitations.

Reconstructing the geometry is only half of the prob-
lem. To synthesize novel views, usually the geometry is
rendered using projective texturing from the original video
footage. The pixel colors from the video cameras are blended
using view-dependent weights [BBM∗01]. However, in-
herent calibration errors will yield rendering artifacts. A
popular method to address this problem is floating tex-
tures [EDDM∗08]. The geometry is rendered and shaded in-
dependently from the first camera and from the second cam-
era. Then, in image space, using optical flow, the two im-
ages are locally aligned to eliminate the ghosting and blur-
ring artifacts. Unfortunately, optical flow will not provide
accurate results in our setup. The exact view-dependent vi-
sual hull [MH06] renders only a view-dependent subsample
of the visual hull similar to primary rays in raytracing. How-

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



M. Germann et al. / Novel-View Synthesis of Outdoor Sport Events Using an Adaptive View-Dependent Geometry

Optimization Subdivision RefinementInitial Triangulation
View-Dependent

Rendering

cam 1

cam 2

cam 1

cam 2... ...

(a) (b) (c) (d) (e) (f)

novel
view

Merge

Figure 3: Overview of the algorithm: (a)-(e) The adaptive reconstruction. (f) The view-dependent rendering.

ever, the geometry of the scene is not view-dependent. It is
a static visual hull that will still cut off entire arms or legs
in our setup due to calibration errors. We propose a view-
dependent rendering and texturing method that corrects the
local misalignments by morphing the 3D geometry using
sparse feature correspondences in the camera images.

3. Overview

The backbone of our method is a top-down adaptive recon-
struction technique that is able to retrieve a 2.5D triangula-
tion of the players in each camera even in challenging setups
consisting of only two wide-baseline cameras. The recon-
struction starts with a simple triangulation (figure 3(a)). The
triangles are placed according to a sparse 3D point cloud
(figure 3(b)), which is generated using an extended version
of the Daisy features [TLF10]. If the triangles are too large
and do not represent the shape of the object accurately (red
triangles in figure 3(c)), they are subdivided. This process
is repeated until the triangles are just small enough to ap-
proximate the shape of the object. This way the reconstruc-
tion method inherently adapts to the geometric complexity
as well as to the resolution of the represented object. In an
additional refinement step the vertex depths of those trian-
gles that do not contain any features are set to optimal depth
values of neighboring triangles including random perturba-
tion tests. The adaptive level of detail and the reconstruction
lead to a robust geometry. To cover also parts of the scene
that are occluded in one camera, we repeat the reconstruc-
tion for each camera as a base camera and merge these 2.5D
reconstructions into a final 3D geometry (figure 3(e)).

We render this geometry from an arbitrary viewpoint and
blend the color information from the available cameras.
However, inherent calibration errors will yield rendering ar-
tifacts such as ghosting. Therefore, we propose a method that
morphs the geometry based on the viewing positions to com-
pensate for calibration errors (figure 3(f)).

In section 4 the adaptive reconstruction is elaborated in
detail. The view-dependent geometry morph and rendering
is described in section 5. Our proposed method is evaluated
and discussed in section 6 and section 7.

4. Adaptive Reconstruction

We chose to represent the geometry as a per camera trian-
gle soup. The advantage of a triangle soup as opposed to
a connected mesh is that it allows us to place these trian-
gles independently solving implicitly for depth discontinu-
ities. However, to avoid discontinuities on connected surface
parts, we connect the triangles that are close together before
the rendering stage. Our reconstruction algorithm proceeds
as follows (Figure 3):

1. Initial Triangulation: an initial set of triangles is created
from the image of one of the cameras. The triangulation
of this base camera is illustrated in figure 3(a). The tri-
angles are aligned with the view of the base camera such
that the only degree of freedom is the depth of its vertices
in camera coordinates. This allows for a low-degree of
freedom optimization that facilitates the process of posi-
tioning them in 3D, without sacrificing precision.

2. Triangle Optimization: in this step each triangle of the
current set is positioned independently in 3D by optimiz-
ing the depth of its vertices only. As a result the projec-
tion of the triangle onto the base camera never changes.
The optimization process uses robust sparse feature cor-
respondences from pixels inside the projection of the tri-
angle to determine the depth of each vertex.

3. Subdivision: the 3D triangles may not approximate well
the local geometry. For instance, in figure 3(a) the players
are initially approximated only by two triangles. In this
case we subdivide the triangle if the error evaluated by
a robust error metric of texture re-projection is too big.
Figure 3(c) shows triangles to be subdivided in red. We
repeat the optimization and subdivision step until the re-
projection error is small for all triangles.

4. Refinement: due to occlusions and the low resolution of
the image, it is not always possible to find image fea-
tures in every triangle. If a triangle has no features it
inherits its vertex depths from the previous subdivision.
However, these depths could be wrong and as a result we
might have rendering artifacts such as missing parts of
the players. To further refine the position of such trian-
gles, we employ a heuristic to determine their 3D loca-
tion based on depth guesses from the neighboring trian-
gles combined with random perturbations.
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5. Merge: We reconstruct a 2.5D geometry the same way for
every input camera as base camera and build the union of
these resulting in a final 3D reconstruction (figure 3(e)).

4.1. Inital Triangulation

The initial triangulation is done in 2D using a delaunay tri-
angulation of the four corners of the image and the cor-
ners of the bounding boxes of each player (Figure 3(a)).
The bounding boxes of each player are computed automat-
ically [FBLF07]. Note that we do not rely on an accurate
bounding box detection. As one can see in figure 3(a), play-
ers who are occluding each other are generally classified into
one box. Also the goal keeper’s box is shifted. This does not
create any problems for the algorithm since it is only used as
an initial triangulation. This procedure gives us a set of 2D
triangles in a base camera, which we project to the ground
plane to obtain an initial 3D triangle soup. The ground plane
can be found automatically by the calibration method ac-
cording to pitch lines such as described in [Tho06].

4.2. Triangle Optimization

The main goal of this step is to optimize the 3D position of
the triangles in the current set. The triangles are optimized
independently while the only degree of freedom is the depth
along the camera ray of their respective vertices as illus-
trated in Figure 3(b). Our optimization technique combines
two criteria: one is based on a background color model and
one based on robust feature matches.

Background Color Model. Triangles are part of the back-
ground if more than 95% of the pixels are classified as such
by the background color model. An alternative way to ac-
complish this test is using a background subtraction tech-
nique as described in [ZPB07]. If the triangle is classified as
background, its vertices are pushed to the ground.

The depth of non-background triangles relies on feature
matching of pixels contained in the corresponding 2D trian-
gles in the camera image. We first compute a robust set of
matching pairs according to section 4.2.1. Each 2D pair of
matches represents a point in 3D that can be computed as the
intersection of two rays. Due to calibration errors these rays
usually do not intersect, and we use the point on the base
camera’s ray that is closest to the other ray, as explained in
section 5. The reconstructed set of 3D points belongs to the
scene geometry of the base camera. By applying a RANSAC
technique [FB81] we can accurately and robustly fit a plane
to the set of 3D points. Once the best fitting plane is deter-
mined, we can solve for the depths values of every vertex,
such that the optimized triangle lies in the plane.

4.2.1. Feature matching

In order to position a triangle in 3D we rely on image fea-
ture matching between the views. We selected Daisy fea-
tures [TLF10], which are designed for wide-baselines. How-
ever, due to the low resolution of each player and the lack

Figure 4: Feature correspondence search for a pixel in the
left image within a cropped epipolar stripe in the image of
the other camera.

of features on the pitch, the feature detection contains a lot
of wrongly matched pairs. Therefore, we added more con-
straints to the matching operator to get more reliable, albeit
fewer, matches. We find robust matches in three steps:

1. For every pixel in the base camera we restrict the search
space of possible matches in the second camera. This
search space is defined by a band of d = 20 pixels around
the epipolar line, whereof only pixels lying inside the
bounding box are considered. This is illustrated as the
yellow area in figure 4.

2. Only matches with a Daisy error value below 1.4 and be-
low 0.8 times the average of the matches within this stripe
are considered.

3. We verify that the match is symmetric. That is, if pc0 is
a pixel in the base camera and pc1 is its corresponding
Daisy match in the second camera, the Daisy match of
pixel pc1 has to lie within five pixels of pc0 .

The resulting matches are a relatively sparse set of reliable
matches that we use in the triangle optimization process (de-
pending on the scene, it varies from 20 to 300 per player).

4.3. Adaptive Subdivision

If the scene geometry represented by a triangle significantly
differs from a planar surface, a further subdivision of the
triangle is required. The triangles are only refined if the pro-
jective textures from the respective source cameras do not
match. The resulting triangle soup only features small tri-
angles where the underlying 3D geometry requires a refine-
ment.

Error metric. For every triangle a color error value is com-
puted to decide if the triangle has to be subdivided or not.
To do so, the current geometry is used to reproject the tex-
tures from all cameras into the base camera. The error of a
single triangle is then computed as the average of all pixel
differences, which are not occluded in any of the cameras.
To have comparable image sources, the appearances of the
images are roughly adjusted by adding a compensating color
shift as described in section 5. An example of the initial per
pixel error viewed from the base camera is shown in Fig-
ure 5(a) where the entire geometry is approximated as the
ground plane.

Inaccurate calibration will inherently introduce a bias in

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



M. Germann et al. / Novel-View Synthesis of Outdoor Sport Events Using an Adaptive View-Dependent Geometry

(a) (b)
Figure 5: Example for an initial color error when using the
ground plane as the geometric proxy. The errors appear at
pixels with wrong depth values.

(a) (b) (c)
Figure 6: (a) Initial triangulation. (b) First subdivision
based on player’s silhouettes. (c) Final subdivided geome-
try.

this error metric as the projection of a 3D point into the cam-
eras suffers from calibration errors. We address this prob-
lem by adding a geometric shift to each triangle vertex. This
view-dependent geometry is described in detail in section 5.

Subdivisions The subdivision is a simple splitting of the tri-
angle into two halves at the longest edge, including splitting
of neighbors sharing the same edge. This directly inherits the
position in 3D to the children. Therefore, even if no feature
point is available for a child (e.g. at occlusions), it still inher-
its a most plausible 3D position and orientation. In the first
iteration step, we use the background color model and a blob
detection to get contour lines. These contour lines guide the
first subdivision of the initial triangulation as shown in fig-
ure 6(b). This speeds up the reconstruction and avoids high
triangle counts, since it adds edges at potential depth discon-
tinuities.

Figure 6(c) shows a final subdivision after 3 iteration steps
of optimization and subdivision.

4.4. Refinement

Due to a lack of Daisy features, a small subset might not be
positioned correctly in 3D and could also not be recovered

Figure 7: Two examples show the improvement of the result
before and after applying the refinement step.

camera 1
(base camera)

camera 2

novel view (interpolation)

Figure 8: Sketch of the view dependent geometry. The ar-
rows indicate the view dependent geometric shift.

by the inheritance of the subdivision. This may lead to ren-
dering artifacts as shown in figure 7. To resolve these, we
assume that neighboring triangles tend to have similar 3D
depths values.

We try several positions using depth values from the
neighboring triangles adding random perturbations. Finally,
we select the one minimizing the color error.

Similar to the generalized PatchMatch method [BSGF10]
this is done iteratively over all triangles 10 times with 10 ran-
dom perturbations per vertex and iteration. Figure 7 shows
the improvement of this step.

5. View-dependent Geometry and Rendering

Our representation could be rendered as simple triangles in
3D with the color values from projective texturing of the
source camera images, using some smart blending func-
tion [BBM∗01]. Due to the inherent errors in the calibration
process, the projection errors - even on a perfectly recon-
structed geometry - result in rendering artifacts such as blur-
riness and ghosting. This problem is illustrated in figure 8.
The blue dots are reliable feature matches from one camera
to the other. If the calibration is correct then the correspond-
ing rays (the red lines) would intersect. This is generally not
the case. Wherever we position the 3D point, in at least one
camera it will not project back to the 2D position where the
feature point was detected. To solve this, we shift (morph)
this point in 3D along the line of the shortest path between
the two rays (the red arrow) when changing the viewing po-
sition. We call this shortest path a displacement. These dis-
placements describe the geometric 3D morph function from
every feature point in the base camera to the corresponding
feature point in the other camera. To calculate the morph
function of any view-dependent vertex (green dot), we in-
terpolate all the displacements of neighboring features using
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(a) (b)
Figure 9: (a) Rendering with one geometry. (b) Rendering
with a view-dependent geometry.

a weighted average (the green arrow). The weighting func-
tion is a gaussian, while only features lying in a radius of
1m of the vertex are considered being neighbors. This view-
dependent rendering (figure 3(f)) is not a 2D morph but a
morph of the 3D geometry and should not be confused with
the merge of the 2.5D reconstructions (figure 3(e)). It re-
solves most of the rendering artifacts as demonstrated in fig-
ure 9.

More formally, let vi(c) be the view-dependent position
of vertex vi in camera c ∈ C as illustrated in figure 8. Let
vi(ĉ) be the 3d position that we need to compute to render
the vertex vi from a novel viewpoint ĉ. This view-dependent
position can be interpolated between its corresponding posi-
tions of all cameras C.

vi(ĉ) = ∑
c∈C

λc(ĉ)vi(c) (1)

where the weights λc correspond to the blending weights as
described in [GHK∗10]. The angles αc used for the blend-
ing are defined as the angle between the vector from v to
the viewers position and the vector from v to the position of
camera c, with v = 1

|C| ∑c∈C vi(c).

For the texture blending, we use projective textures. How-
ever, it is important that for the projection from a source
camera c we do not use the interpolated geometry (vertex
vi(ĉ)) but the geometry relating to camera c (vertex vi(c)).
The color values are blended with the same weights λc
used above. However, at occlusions, the λc of any camera
c not covering this pixel is set to 0 and the weights are re-
normalized.

The cameras are typically not radiometrically calibrated.
Therefore, we also compute the color shifts between cam-
eras: an average color Rc,Gc,Bc is computed per camera c.
It is the average of the color values of those pixels of the im-
age c that project onto 3D positions covered by more than
one camera. The per-pixel average color for the interpolated
view rendering is then given by

Rĉ = ∑
c∈C

λc(ĉ)Rc, Gĉ = ∑
c∈C

λc(ĉ)Gc, Bĉ = ∑
c∈C

λc(ĉ)Bc.

For every source camera, the RGB values Rĉ−Rc, Gĉ−Gc,
Bĉ−Bc are added to the texture values of camera c before
interpolating the color of a pixel.

This method for geometry interpolation and texturing is

(a) (b) (c)
Figure 10: Difficult occlusion. (a) View in camera 1 with
feature points shown as white dots. (b) View in camera 2
where one player is almost entirely occluded. (c) Novel view.

(a) (b) (c) (d)
Figure 11: (a) Reconstruction with triangulation in camera
1. The ghostings on the ground are parts not seen and thus
not reconstructed in camera 1. (b) Merge of the reconstruc-
tions of camera 1 and camera 2. (c) A rendering using bill-
boarding. (d) The same view using our method.

also used for the computation of the color error in sec-
tion 4.3.

6. Results

We demonstrate our method on footage of original TV
broadcasts of several soccer scenes. All computations were
done on a standard desktop computer (Core i7 CPU,
3.20GHz). All results shown here and in the video are re-
constructed using only two source cameras.

Despite low resolutions (figure 2(a)) and calibration errors
(figure 2(b)), our algorithm fully automatically reconstructs
plausible novel views as shown in figure 11(d). Figure 9 il-
lustrates the effect of the view dependent geometry that is
able to reduce calibration error artifacts.

With our improved Daisy feature matching, the feature
matches are reduced to a set of reliable correspondences.
Sometimes this set contains only a few matches per player,
but nevertheless our adaptive reconstruction method recov-
ers a good approximation of the players geometry as shown
in figure 10.

Our method performs a reconstruction for each camera.
This can be used to recover parts occluded in one camera but
visible in another. The result of merging two reconstructions
is shown in figure 11, where figure 11(a) shows a novel view
using the reconstruction of camera 1 only and figure 11(b)
shows the same view with the unified reconstruction of the
two cameras. With the reconstruction of only one camera,
parts of players visible only in the other camera are not re-
constructed and are thus projected onto the ground. With the
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merged reconstruction we also get a valid depth for these
parts allowing to reconstruct occlusions (figure 3(e)). Fig-
ure 10 demonstrates this with another example.

Figures 11(c) and 11(d) show a comparison to billboard-
ing in a view half-way between the two source cameras.
While billboarding shows ghosting (more than two legs) due
to the planar representation, our method preserves the pose
of the player in the novel view.

Figure 12 depicts a ground truth comparison to a third
camera which was not used in the reconstruction. It demon-
strates that the result of our reconstruction is correct and with
similar quality as the input images. More results are shown
in figure 13. The first two images are always the input images
followed by the novel views. They show views not lying di-
rectly in between the cameras, e.g. top views or views from
the height of the players heads.

The accompanying video shows several flights in differ-
ent scenes. To demonstrate a possible application, it con-
tains also examples of flights over time. Despite not using
any temporal information, coherence or smoothing, these
dynamic scenes still result in plausible renderings. Artifacts
are visible mostly when players come into or leave a cameras
view range. Since we reduce the search for Daisy feature
matches to the bounding box found by the player detection,
a player that is not detected will not be reconstructed. An
example for this can be seen in the video in the first dynamic
scene where the goal keeper in the green uniform as well as
the ball are not reconstructed.

The rendering of novel views is done in real-time, i.e.,
more than 60 frames per second for HD resolution. Our fully
automatic algorithm for reconstruction takes on average 1
minute per frame. The exact timing depends on the scene
complexity, but none of our examples required more than 2
minutes to reconstruct. About 19 seconds of this time are
Daisy feature vector computation and our feature matching.
The rest of the time is spent about equally for positioning,
and for the refinement. The time required per frame could be
reduced by parallelization in several ways. First, the recon-
struction for each camera is done completely independently
(figure 3). Second, the refinement is done independently per
triangle. Third, the feature matching could be parallelized.

7. Limitations and Future Work

Although our approach produces convincing results for a
two wide-baseline camera setup, one can still spot some mi-
nor visual artifacts. Many of these are caused by inherent
limitations by the fact that we only use two cameras. For in-
stance, subjects too close to the front will have nearly no
overlapping parts and, therefore, cannot be reconstructed.
Also, some subjects are visible only in one camera and can-
not be reconstructed. Due to lack of good robust matches
occasionally triangles are not positioned optimally causing
cracking artifacts. Although our method can recover a plau-
sible depth in most occlusion cases where parts are only vis-
ible in one camera, there are situations where too few or no

features were found in the neighborhood and thus leading
to visual artifacts. Simply adding more cameras to the setup
will automatically improve these issues. The camera weights
λ, the view dependent morph (equation (1)) and the color
shifts can be computed for any arbitrary number of cameras.

Our method processes every frame independently, while
ignoring temporal coherence. The quality of this straight
forward application resulting in only occasional flickering
shows the big potential our fully automatic method has. In
the future, we would like to add temporal coherence to our
system. For instance, optical flow could be used to initialize
the geometry in the next mesh or to smooth the geometry in
the temporal domain. This will not only yield better results,
but it will also increase the efficiency of our method.

8. Conclusions

In this paper we presented a fully automatic novel-view
synthesis method suitable for conventional TV sport broad-
casts. The setup consists of only two wide-baseline video
cameras. The main ingredient of our method is an adaptive
and view-dependent reconstruction technique that can recon-
struct players even at very low resolutions. The geometry
is reconstructed in a top-down fashion. Geometric detail is
added gradually in the areas where it is needed based on a
reliable sparse feature matching technique. It also robustly
handles areas with no image features by inferring the posi-
tion based on the neighboring triangles and back-projection
error. The geometry is then rendered from a novel view-
point using a view-dependent geometry morphing and tex-
ture interpolation technique that alleviates rendering artifacts
stemmed from calibration errors. We proved the visual qual-
ity and reliability of our technique by applying it to footage
of soccer broadcasts.
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Figure 13: Results: the first row (little images) always shows the input camera views.
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