
1

Analysis and VLSI Implementation of EWA
Rendering for Real-time HD Video Applications

Pierre Greisen∗†, Michael Schaffner∗, Simon Heinzle†, Marian Runo∗,
Aljosa Smolic†, Andreas Burg‡, Hubert Kaeslin∗, Markus Gross∗†

∗ETH Zurich, †Disney Research Zurich, ‡EPF Lausanne

Abstract—Non-linear image warping or image resampling is a
necessary step in many current and upcoming video applications
such as video retargeting, stereoscopic 3D mapping, and multi-
view synthesis. The challenges for real-time resampling include
image quality but also available energy and computational
power of the employed device. In this work, we employ an
elliptical-weighted average (EWA) rendering approach to 2D
image resampling. We extend the classical EWA framework for
increased visual quality and provide a VLSI architecture for
efficient view rendering. The resulting architecture is able to
render high-quality video sequences in real-time targeted for low-
power applications in end-user display devices.

Index Terms—rendering, EWA splatting, image-based rendering,
VLSI, video processing

I. INTRODUCTION

Visual communication has become ubiquitous. Today, we con-
sume visual content on a broad range of displays, from large
scale cinema screens, television sets, and personal computer
screens to various types of mobile devices. Pixel resolution,
aspect ratio, and frame rate of corresponding displays vary
significantly. Also, capabilities of terminal devices greatly
differ in terms of computational power, memory, and battery
lifetime. Furthermore, the delivery of visual content is carried
out over a large range of communication channels and pro-
tocols. To cope with the resulting heterogeneous environment
in visual communication, scalable video coding (SVC) tech-
niques efficiently represent and encode the same video content
in different formats [1]. Channels and terminals may pick the
right bits from the scalable stream to adapt to given capabilities
and conditions. However, SVC still couples content creation
to consumption and does not handle all possible cases.

The desired de-coupling can be achieved if the terminal device
is able to render video in the desired display format. In this
context, content-aware video retargeting recently received a
lot of attention [2]: to change the aspect ratio of a video,
the frames are transformed in a non-linear fashion, such
that visually important regions keep their aspect ratio, while
distortions are hidden in visually less important regions (see
Fig. 1). High quality non-linear image warping (rendering) in
the terminal device is a crucial component in such processing.

Further, the advent of stereoscopic 3D (S3D) for home en-
tertainment and mobile applications creates new challenges

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Image grid

Im
ag

e
w

ar
p

EWA rendering

16:9 4:3

Fig. 1: Example of EWA rendering used for aspect ratio
retargeting [2]. Refer to Fig. 17 for details. (Image courtesy
of Andrew Malone).

for end-user devices in terms of rendering and view synthesis
[3]. Depth impression in S3D is a sensitive illusion that
largely depends on the display size and viewing distance.
Disparity mapping allows for (non-linearly) adapting the depth
impression of S3D content based on viewing conditions or user
preferences [4], [5]. This enables for instance a depth button
on the remote control of a 3DTV set, similar to brightness
or color controls today. Also, disparity mapping requires view
synthesis, which can be realized by non-linear image warping.

Finally, next generation visual communication applications
will require even more sophisticated forms of view synthesis
and rendering [3]. Multiuser autostereoscopic displays require
a multiview signal as input, which can be generated from S3D
for instance by non-linear image warping [6]. Free viewpoint
video applications allow the user to select his own viewpoint
and direction, which requires synthesis of the corresponding
view [7], [8]. This may be embedded into a teleimmersion or
telepresence application [9].

In consequence, all these advanced 2D and 3D video pro-
cessing applications mentioned so far require non-linear image
warping. Most of such processing is realized today on graphics
processing units (GPUs), which are the natural choice for
rendering applications [10]. Although rendering on GPUs
achieves high performance, GPUs consume several 100 Watts.
Also, GPUs are neither cheap nor small in size and hence

2

ill-suited for many end-user devices such as smart phones
or televisions. Further, the recently appearing mobile GPUs
trade computational power for energy efficiency but always
remain less efficient than custom architectures due to the
programmability overhead. In this paper, we therefore present
a custom hardware architecture to replace GPUs in the context
of non-linear image warping, similar to work presented in [11]
and [12] for point rendering. Our design enables the above-
mentioned advanced applications at low cost and low power.

Algorithms for non-linear image warping, resampling or tex-
ture mapping have been extensively covered in literature [13],
[14]. Among those algorithms, elliptical weighted average
(EWA) filters provide a good tradeoff between visual quality
and computational complexity, especially for non-linear trans-
formations ([15], [16], [10]). Iterative methods such as [15]
or [17] can provide even better quality, but they also involve
much higher computational complexity and are less well suited
for hardware implementation. The often-used bilinear filtering,
for which also VLSI implementations have been proposed
(such as in [18]), provides fair quality at low computational
complexity for linear transformations, but can lead to poor
results for non-linear transformations. We therefore select the
EWA splatting algorithm [19] as starting point of our work.
The main algorithmic drawback of EWA filters, i.e., over-
blurring, can be extenuated by careful adjustment of the filter
parameters, which is addressed in this work. We also show
that EWA splatting can be efficiently implemented in VLSI in
contrast to iterative high-quality methods or computationally
intensive supersampling techniques.

a) Contributions: This work consists of two parts: an analysis
and optimization of the EWA splatting algorithm and a corre-
sponding VLSI architecture for real-time non-linear warping.
First, we extend the traditional EWA splatting algorithm by
showing how to optimally chose the filter parameters and
by providing an adaptive scheme that optimizes the tradeoff
between blurring and aliasing. Also, to practically deal with
the infinite impulse response (IIR) of EWA filters, we show
how to select cut-off points in the rendered target space.
Secondly, to provide a low-power, low-cost, and small size
solution, we propose a VLSI architecture of the derived EWA
splatting algorithm for real-time, high-resolution non-linear
warping. To cope with the large memory bandwidth require-
ments of EWA splatting, we propose a two-level caching
architecture that significantly reduces the required memory
bandwidth. Further, we investigate various number formats
for EWA splatting. Finally, we provide area and performance
results for a fabricated design in a 180 nm CMOS process.

b) Outline: The remainder of the paper is structured as
follows: Sec. II reviews the basics of image resampling and
EWA splatting in particular. In Sec. III we derive and discuss
the optimum EWA filter parameters. Sec. IV summarizes the
data flow of the implemented EWA splatting design and the
assumptions made for the VLSI architecture. Sec. V explains
the hardware details of the EWA splatting, with a particular
emphasis on arithmetic precision and the proposed caching
architecture. Sec. VI provides rendering quality results as well

as ASIC performance and complexity results.

II. BACKGROUND: IMAGE RENDERING AND EWA
SPLATTING

In this section, the necessary basics of image-based EWA ren-
dering are summarized, based on [19] and references therein.
In Sec. III we show how to set the parameters of the rendering
formulas to maximize the rendering quality.

A. Notation

The following notation conventions and symbols are used
throughout the paper. Scalars are represented by lower case
letters, column-vectors by bold-face lower case letters, and
matrices by uppercase letters. The entry in the ith row and
jth column of a matrix A is denoted as ai,j . The continuous
convolution is denoted by a ∗ symbol. The Dirac-delta distri-
bution is denoted by δ(x), with

∫
δ(x)f(x)dx = f(0). The

L2 norm of a square integrable function f(x) is denoted and
defined as ||f(x)||2 =

∫
Df
|f(x)|2dx, where Df is the domain

of f(x). |A| denotes the determinant of A.

B. Rendering

Given a 2D source image and a transformation function
assigning a target coordinate to each source coordinate, a target
image is rendered by mapping each source pixel position into
a target pixel position and subsequently resampling the pixel
values on an integer grid.

Let uk ∈ N2 be the kth discrete pixel position with inten-
sity wk in a uniformly sampled source image. The source
image grid uk is an integer pixel grid with finite dimen-
sions. The domain of the source image index k is denoted
as Ds = {1, . . . ,WsHs} with image width Ws and image
height Hs. The rendering process transforms an arbitrary pixel
location u in the source image into a target pixel position x

x = m(u),

where m is an arbitrary mapping (see Fig. 2). Assuming an
integer grid for the source pixel positions u, the transformed
positions will generally not form an integer grid. Therefore,
we introduce the continuous source image

fs(u) =
∑
k∈Ds

wkδ(u− uk) ∗ fi(u),

=
∑
k∈Ds

wk

∫
R2

δ(τ − uk)fi(u− τ)dτ ,

=
∑
k∈Ds

wkfi(u− uk)

where fi(u) is a 2D interpolation function. Using the contin-
uous source image and the pixel transformation mapping, the
target image is

fc(x) =
∑
k∈Ds

wkfi(m
−1(x)− uk).

3

Source image Target image

uk

x = m(u)
≈ m(uk) + Jk(u-uk)

x = m(uk)

wk GC(x - m(uk))

wkGVi
(u)

Fig. 2: EWA Splatting or EWA target space rendering. Each
source pixel is mapped into a screen pixel according to its
spatially and temporally varying affine warp function Jk.

In order to be displayed, fc(x) must be sampled on a uniform
integer grid. To avoid aliasing during this sampling step, an
anti-aliasing filter h(x) is applied

fc,aa(x) = fc(x) ∗ h(x)

=

∫
R2

∑
k∈Ds

wkfi(m
−1(τ)− uk)h(x− τ)dτ . (1)

Eq. (1) provides the rendered target image for arbitrary in-
terpolation filters, anti-aliasing filters, and mappings. Thus,
generating an output image can be done by evaluating fc,aa(x)
on a 2D integer grid. To make the evaluation computationally
tractable in real-time, an approximation to the mapping func-
tion and a specific set of filters are discussed in the following.

C. Linearization

The general mapping function m(u) can be linearly approxi-
mated with a Taylor expansion around an integer grid position
uk

x = m(u) ≈ m(uk) + Jk · (u− uk),

where Jk is the 2 × 2 Jacobian matrix of m at position
uk. The approximation error is small if the interpolation
function has compact support around uk (e.g., Gaussians)
since the approximation is most precise in the vicinity of uk.
Rearranging the expression into

u = m−1(x) ≈ J−1k · (x−m(uk)) + uk,

and substituting the approximation into (1) yields

f̃c,aa(x) =

∫
R2

∑
k∈Ds

wkfi(J
−1
k τ)h(x−m(uk)− τ)dτ . (2)

D. EWA Splatting

Elliptical weighted average (EWA) splatting employs multi-
dimensional elliptical Gaussian filters. For a covariance matrix
V a Gaussian filter is defined as

GV (x) :=
1

2π|V |1/2
e−1/2x

TV −1x. (3)

Thus, in the EWA splatting setup, the anti-aliasing filter is
a 2D Gaussian while the transformed interpolation filter is a
Gaussian under an affine transformation

h(x) = GVa
(x),

fi(J
−1
k x) = GVi(J

−1
k x) =

1

|J−1k |
GJkViJT

k
(x),

where Vi = diag(σ2
i,x, σ

2
i,y) and Va = diag(σ2

a,x, σ
2
a,y) are the

diagonal interpolation and anti-aliasing covariance matrices,
respectively. σ2

i,x is the interpolation variance in horizontal
direction, σ2

i is the variance of an isotropic covariance matrix:
Vi = σ2

i I2. Substituting the Gaussian filters into (2) yields the
EWA rendering or EWA splatting equation in target space

fEWA(x) =
∑
k∈Ds

wk
1

|J−1k |
GJkViJT

k +Va
(x−m(uk)), (4)

=
∑
k∈Ds

wk|Jk|
2π|C|1/2

e−1/2(x−m(uk))
TC−1(x−m(uk)).

To obtain (4) we use the fact that a convolution of two
Gaussians is again a Gaussian. The location index k of the
EWA covariance matrix C := JkViJ

T
k + Va is omitted for ease

of notation. Fig. 2 summarizes the EWA rendering process.

III. EWA FILTER PARAMETRIZATION

In order to achieve high-quality video rendering results, an
optimal filter parameterization for the general EWA rendering
equation (4) is crucial. In this section, we derive the optimal
Gaussian interpolation covariance matrix Vi and develop a
strategy to adaptively chose the anti-aliasing covariance matrix
Va to optimize the tradeoff between aliasing and blurring.
Also, we derive cut-off points to truncate the filter support,
denoted as bounding box of the Gaussian ellipse. The eval-
uation of the filters can thus be delimited to the significant
contributions and the summation term is reduced to a small
sampling region.

A. Interpolation and anti-aliasing parametrization

The Gaussian filter can introduce excessive blurring for large
variances and can lead to aliasing for small variances. To
achieve the best possible image rendering quality, we there-
fore derive the optimal trade-off between blurring and anti-
aliasing. We first determine the optimal covariance matrix
for the circular Gaussian interpolation filter in (uniformly
sampled) source space fi,EWA(x) = GVi(x). From this result,
the optimal parameterization of the transformed interpolation
kernel in target space fi,EWA(J−1k x) follows immediately.
The parametrization of the anti-aliasing filter by itself reuses
the same values as determined for the interpolation filter in
source space. However, due to the convolution with the target
space interpolation filter, the resulting resampling filter is
locally adaptive. Hence, an optimal parametrization requires
an adaptive anti-aliasing strategy, which we propose in the
subsequent section.

4

σ = 0.2

σ = 0.39

σ = 0.6

sinc

(a) Time domain

sinc

σ=0.6σ=0.39

σ=0.2

(b) Frequency domain

Fig. 3: (Normalized) impulse responses of ideal (sinc) and
Gaussian low-pass filters with different interpolation vari-
ances.

1) Interpolation in source space: To find a good tradeoff
for the interpolation covariance matrix Vi, we minimize the
mean squared error (MSE) between the EWA filter and an
ideal low pass filter. The ideal low-pass filter is a 2D sinc
function fi,ideal(x) = sinc(x)sinc(y) which corresponds to a
2D rectangular function in frequency domain

Ffi,ideal(x) =: f̂i,ideal(p) =
1

2π
rectπ(p)rectπ(q)

where p = (p, q)T is a point in 2D angular frequency space
and rectπ(p) = 1 if |p| ≤ π and 0 else; F is the Fourier
transform operator [20].

The Fourier transform of the EWA interpolation filter in source
space is

f̂i,EWA(p) =
1

2π
exp

(
−σ

2
i (p2 + q2)

2

)
,

where Vi = σ2
i I2, and σ2

i is the interpolation variance. Note
that the optimal source space covariance matrix Vi is isotropic,
as the sampling in source space is assumed to be uniform.

In order to compare the EWA kernel and the ideal sinc kernel,
we calculate their mean squared error (MSE)

mse(σi) = ||fi,ideal(x)− fi,EWA(x)||2,
= ||f̂i,ideal(p)− f̂i,EWA(p)||2,
∝ ||rectπ(p)rectπ(q)− exp(−σ2

i /2(p2 + q2))||2,

∝ 1 +
1

4πσ2
i

(
1− 4 · erf

(
πσi√

(2)

))
, (5)

where the first step follows directly from Parseval’s theorem,
and where erf(x) is the Gaussian error function. The best
(least-squares) tradeoff between anti-aliasing and blurring can
be obtained by choosing an interpolation variance such that the
mse(σi) is minimized. Numerical minimization of (5) yields
the optimal tradeoff in the least squares sense:

σ̂i = argminσi
(mse(σi)) ≈ 0.39.

A comparison of this ideal EWA low-pass filter to other EWA
filters is plotted in Fig. 3. Note that, using the (ideal) sinc
directly is not optimal in practice due to its slow decay and
hence large support. A necessary truncation (due to complexity
constraints) would lead to severe filter quality degradations
(e.g., Gibbs oscillations).

transformation

anti-aliasing �lter

in
te

rp
ol

at
io

n
�l

te
r Frequency domain representation

aliasing

orthogonalized axes

(a) (b)

(c)

Fig. 4: Different steps of EWA splatting in frequency domain.
The transformed axes are not necessary the principal axes
of the ellipse in target space; therefore, the transformation is
diagonalized into an orthonormal basis. With the main axes
an adaptive anti-aliasing rule is derived, which scales the axes
if aliasing is detected in a specific direction.

2) Interpolation in target space: In the EWA splatting case,
we are not interested in the source space parametrization
but in the target space parametrization. The target space
parameterization fi,EWA(J−1k x) can be directly derived from
the source space parameterization. Consider the following
transformation property [21] of Fourier transforms: if f̂(p)
is the Fourier transform of f(x) and A ∈ R2×2 an invertible
matrix, then

Ff(Ax) =
1

|A|
f̂(A−Tp).

Hence, the MSE in target space reformulates to

mse(σi) = || 1

|J−1k |
(f̂i,ideal(J

T
k p)− f̂i,EWA(JTk p))||2.

An optimization will yield the same σ̂i as found for the source
space optimization (set p′ = JTk p). Intuitively, the transfor-
mation JTk will transform the optimal source interpolation
covariance to the optimal destination interpolation covariance.

3) Anti-aliasing: The complete EWA resampling opera-
tion (4) is location-dependent, i.e., the EWA filter is a locally
adaptive filter. Convolving the location dependent interpolation
filter with an anti-aliasing filter results in a new EWA filter
with location-dependent covariance matrix. Thus, the choice of
an optimal Va depends on the interpolation variance in target
space: JkViJTk . That is, there is no single Va that optimizes
the EWA splatting operation. For instance, if we set the sum
of σi and σa to σ̂i, we have good filtering performance in
regions where there is no scaling, but in areas with strong
minifications, aliasing artifacts will appear. Setting σa larger
introduces unnecessary blurring in regions with magnification
(see Fig. 5(b,c)). In summary, Va is locally adaptive and
requires an adaptive anti-aliasing strategy.

5

B. Adaptive anti-aliasing

In the following, we derive a general closed form expression
for the ideal adaptive anti-aliasing covariance matrix. Instead
of using an MSE-based evaluation as used for the interpolation
kernel, we analyze the resampling operation in frequency
domain to derive the anti-aliasing covariance matrix. Aliasing
occurs when the 2D frequency response of the transformed
interpolation kernel Ffi,EWA(J−1k x) is larger then the 2D
Nyquist frequency [20]. More specifically, aliasing occurs
when the frequency content exceeds the region delimited
by the 2D rectangular function illustrated in Fig. 4(c). Our
adaptive anti-aliasing strategy detects if such aliasing occurs,
and locally adapts the non-isotropic anti-aliasing covariance
matrix Va = diag([σa,x, σa,y]) to avoid aliasing. In geometric
terms, the corresponding principal ellipse axes are scaled to
fit into the Nyquist rectangle. The principal axes of the ellipse
are the eigenvectors of the covariance matrix (this property is
denoted as principal axis theorem, valid for real symmetric
matrices, see e.g. [22, p. 285]).

1) Detecting aliasing: To quantify the presence of aliasing,
we evaluate the frequency response at the intersection of
the principal axes of the transformed ellipse with the ideal
anti-aliasing filter. If this frequency response value is large
compared to the optimal Gaussian (σ̂i), we will have aliasing.
The transformation matrix C̃ = JkViJ

T
k does reveal the

transformation axes but not the principal axes of the target
space Gaussian kernel (see Fig. 4(b,c)). The principal axes are
obtained with an eigen decomposition: C̃ = QΛQT , where Λ
contains the magnitudes and Q the orthogonal directions of
the principal axes.

We are interested in the intersection point of axis and ideal
low-pass filter, hence, we only need the axes directions. One
direction is given by α = q1,2/q1,1, the second is −α−1 since
the axes are orthogonal. Evaluating the decomposition yields

α =
2c̃1,2

c̃1,1 − c̃2,2 −
√

4c̃21,2 + (c̃1,1 − c̃2,2)2
.

Thus, the two intersection points of the EWA ellipse and the
ideal low-pass filter are: p1 = (1, α)T and p2 = (−α, 1)T for
|α| < 1 or else p1 = (α−1, 1)T and p2 = (1,−α−1)T . If the
value of the Gaussian filter at the intersection with an ideal
low-pass filter is larger than the value of the optimal Gaussian
kernel, there is aliasing. Hence, the condition for aliasing is

exp(−1/2pTl C̃pl) > exp(−1/2σ̂2
i) l = 1, 2. (6)

2) Removing aliasing: If the aliasing condition (6) holds, the
interpolation kernel needs to be convolved with an anti-aliasing
kernel. As stated earlier, this convolution leads to an addition
of the covariance matrices C = C̃ + Va. The anti-aliasing
variance matrix can therefore be determined by substituting C̃
with C and by solving for the upper bound of the inequality
(6)

exp(−1/2pTl (C̃ + Va)pl) = exp(−1/2σ̂2
i), l = 1, 2 ,

pTl Vapl = σ2
i − pTl C̃pl l = 1, 2 .

(a) Initial image

(b) {σi, σa} = 0.2 (c) {σi, σa} = 0.6

(d) {σi, σa} = 0.39 (e) σi = 0.39, σa adaptive

Fig. 5: Non-linear, locally affine transformation of a test
image, evaluated for different EWA filter parameterizations.
Small uniform EWA variances reconstruct sharp images, but
can lead to aliasing in areas of minification (b). Bigger EWA
variances avoid these aliasing artifacts, but lead to excessive
blurring in areas of magnification (c). Using the optimal
uniform EWA variance leads to best tradeoff (d): aliasing is
suppressed effectively, however, still some blurring is visible
on the magnified areas. Our adaptive EWA formulation yields
much sharper results in these areas (e), while still preserving
the anti-aliasing filter properties in areas of minification.

Combining the equation above with the condition for anti-
aliasing yields(

p21,1 p21,2
p22,1 p22,2

)(
σ2
a,x

σ2
a,y

)
=(

max(0, σ̂2
i − pT1 C̃p1)

max(0, σ̂2
i − pT2 C̃p2)

)
, (7)

where pl = (p1,l, p2,l)
T , and Va = diag(σ2

a,x, σ
2
a,y) represents

the anti-aliasing covariance matrix. Thus, solving the expres-
sion for σ2

a,x and σ2
a,y provides the optimal choice for the

EWA anti-aliasing filter in target space.

We evaluate the quality improvement of our adaptive anti-
aliasing method using two different strategies: first, we provide

6

(a) Initial image (512x512) (spatial (left) and frequency (right) representation)

(b) One-to-one mapping (512x512). Left: {σi, σa} = 0.39, right σi = 0.39,
σa adaptive. In the left image a considerable amount of blurring is visible
(attenuation of high frequencies), which is quantified by a mean pixel error of
approximately 3.3 between initial and rendered image; our adaptive strategy
induces no blurring, initial and EWA rendered image are identical (mean error
equals 0).

(c) Minification/Downsampling of 3.2 (160x160). Left {σi, σa} = 0.2, right
σi = 0.39, σa adaptive. In the left image, aliasing is visible, our adaptive
strategy successfully removes high-frequency components.

Fig. 6: Frequency domain comparison of minification and one-
to-one mappings of EWA rendering between fixed kernel sizes
and our adaptive anti-aliasing strategy. The lowest frequency
component is the center point of the magnitude plots.

visual comparisons (Fig. 5) of different EWA parameteriza-
tions for a non-linear, locally affine transformation. As can be
seen, using the ideal but constant parameterization for anti-
aliasing and interpolation filters individually leads to blurring
in magnified regions. Our adaptive EWA parameterization
yields much sharper results in these areas, while still preserv-
ing the antialiasing filter properties in areas of minification. A
second evaluation consists in comparing frequency responses
after a one-to-one mapping and a minification with different
EWA parameters. Fig. 6 shows that our adaptive strategy out-
performs all other EWA parameters regarding over-blurring,
illustrated with a one-to-one mapping, and aliasing, appearing
for minifications.

3) Complexity reduction: For many video rendering applica-
tions, solving (7) for arbitrarily transformed covariance matri-
ces C̃ is not necessary: often, the image transformation Jk only
contains non-uniform scaling and no or very little shearing
and rotations. More specifically, this holds true when the off-

transformation

target spacesource space

x=xb
u

v

x

y

y=yb

y=-yb

x=-xb

x = K u

(1,0)Ku=xb

u² + v²=1

x=xb <=> (1,0) x=xb

Fig. 7: Geometric determination of the bounding box in target
space. The intersection points of a specific ellipse level (e.g.,
exp(-0.5)) with a rectangular bounding box in target space are
to be determined. Therefore the intersections are transformed
to source space where the ellipse simplifies to a circle which
makes the evaluation of the intersection easier.

diagonal elements of C̃ are negligible compared to its diagonal
elements. An evaluation of the locally affine transformations of
several video retargeting examples shows that the off-diagonal
elements are indeed several orders of magnitude smaller than
the diagonal entries (c̃i,j/c̃i,i ≈ 10−3) on average and one
order of magnitude in the worst case. Hence, C̃ behaves like
a diagonal matrix, and the main directions of the ellipse are
the principal axes p1 = (1, 0)T and p2 = (0, 1)T . The anti-
aliasing condition (7) can then be reduced to

σ2
a,x = max(0, σ̂2

i − c̃1,1) |+ c̃1,1

c̃1,1 + σ2
a,x︸ ︷︷ ︸

c1,1

= max(c̃1,1, σ̂
2
i),

and similar in y direction.

C. Bounding box

In theory, the contributions of the Gaussian filter need to be
calculated over the entire image domain. In practice, however,
the Gaussian weights decay very fast, and all weights falling
below a pre-defined cut-off threshold can be discarded without
noticeable image artifacts [13]. In the following, we will derive
a tight axis-aligned bounding box that encloses the iso-line of
a threshold value. All subsequent evaluations of the Gaussian
will be limited to this bounding box.

Assume that we strive to limit the evaluation to a cut-off
weight proportional to exp(−0.5). The EWA splatting equa-
tion (4) defines the implicit evaluation as −0.5xT (JkViJ

T
k +

Va)−1x, where we omit the translational component without
loss of generality. Unfortunately, this quadratic form does not
directly reveal the explicit point transformation x = Ku
which can be used to determine the exact bounding box. We
therefore decompose C = JkViJ

T
k + Va = KKT in order to

obtain the transformation K. Since Vi and Va are diagonal
matrices, C is symmetric and can be diagonalized into an
orthonormal basis [22]

C = QΛQT = KKT ,

where Q is orthogonal and Λ diagonal. Hence, K = Q
√

Λ is
uniquely obtained with the eigen decomposition.

7

Having obtained the explicit point transformation K, we can
now derive the bounding box delimiters (see Fig. 7). The
bounding box in target space is delimited by four straight lines
x = ±xb and y = ±yb, where x = (x, y)T is a point in target
space. Consider the case x = xb: the equation can be rewritten
as (1, 0)x = xb. Transforming the target coordinates back into
source space yields

(1, 0)Ku = xb

k1,1u+ k1,2v = xb, (8)

with u = (u, v)T . Note that this expression resembles to a line
equation in source space with normal vector (1,−k1,1/k1,2)T .

In source space, the EWA filter kernel resembles the unit cir-
cle. Hence, the optimal bounding box line must be tangent to
the unit circle. This holds true because affine transformations
conserve lines and intersections [23]. Expressed analytically,

u2 + v2 = 1, (9)

(u, v)(1,−k1,1/k1,2)T = 0, (10)

where the second equation is the condition for tangency. By
combining (8), (9), and (10), we obtain

xb = ±
√
k1,1

2 + k1,2
2.

Moreover, with

C = KKT =

(
k21,1 + k21,2 .

. k22,1 + k22,2

)
,

the bounding box equations simplify to

xb = ±√c1,1,
yb = ±√c2,2,

where the second equation follows from a similar reasoning
for yb. The bounding box rectangle then delimits the ellipse
to a cut-off value of exp(−0.5), since the rectangle delimits
the unit circle in source space. For other cut-off values, the
bounding box values can simply be scaled by sbb such that
sbbxb and sbbyb generate the desired cut-off values. Note that
the same result can be derived by applying (parts of) the results
from [24] to the 2D case.

IV. SYSTEM OVERVIEW

This section puts the EWA splatting algorithm described above
into a hardware context. To this end, we summarize first the
specifications for the reference implementation. Subsequently,
we tailor the data flow to the needs of a real-time streaming
application and provide a top level view on the hardware
architecture.

A. Specifications and Target Application

The EWA splatting setup is evaluated in the context of warp-
based video retargeting [2]. This application involves large
vertical and horizontal pixel deviations, which renders it an
excellent test-case for developing an architecture that is able

k = 1 . . .WsHs source image index
h = 1 . . .WtHt target image index
Input: pixel intensity wk, Jacobian Jk, target position

m(uk), default variances Vi = σ2
i I2, Va = σ2

aI2,
Output: fEWA(xh)
for k ∈WsHs do

Calculate C̃ = (JkViJ
T
k)

if adaptive then
Determine Va

end
Calculate C−1 = (C̃ + Va)−1

Calculate ck = 1/(2π)|Jk|
√
|C−1|

Calculate bounding box : √c1,1,
√
c2,2

for xh in bounding box do
φ = ck · exp(− 1

2 (xh −m(uk)TC−1(xh −m(uk))

ρh ← ρh + φ

f̃EWA(xh)← f̃EWA(xh) + φ · wk
end

end
for h ∈WtHt do

Normalize fEWA(xh) = f̃EWA(xh)/ρh
end

Algorithm 1: Employed EWA splatting algorithm.

to handle even the most demanding warp kernels. Other appli-
cations, such as disparity mapping or multi-view generation,
act much more locally and can therefore be considered a more
simple special case.

Our implementation targets high-definition (HD) TV. The
current HD TV standard is half HD (1280×720) at 25 frames
per second (fps), denoted by 720p25. The implemented ASIC
is designed to support 720p25, but its architecture is easily
scalable to the upcoming full HD standard (1920× 1080).

B. Data Flow

The original EWA rendering equation (4) describes the calcu-
lations to be performed for each output pixel. Unfortunately,
a straightforward mapping of this equation is incompatible
with the introduction of a bounding-box to reduce complexity,
since identifying the subset of source pixels with relevant
contributions to a pixel in the target image is an extremely
complex task. Therefore, our approach reverses the flow such
that we accumulate the contributions of each source pixel to
the various different target pixels. The number of contributions
of each source pixel can now easily be limited by the bounding
box. However, due to this truncation and the fact that a
Gaussian is not a real interpolation filter, a post-normalization
step is required after the accumulation. Alg. 1 summarizes the
main steps of the employed EWA splatting algorithm.

8

�lter
setup rasterizer

splatting unit
splatting unit

�lter
setup rasterizer

splatting unit
splatting unit

Level 1
Accu.

Level 1
Accu.

Level 2
Accu.pixel

Control/Con�guration

arithmetic accumulation

norm
pixel

ext.
RAM

di
sp

at
ch

er

warp

ASIC

Fig. 8: Architecture overview: the blue dotted line delimits the
implemented part. In a fully working system, a specific external
RAM interface needs to be added as well as the normalization
unit.

To match this modified data flow, we assume that pixels of
the source video sequence are streamed row-wise into the
architecture, for example through an HDMI or SDI interface.
The output image is constructed and stored in a frame buffer,
from where its pixels can be forwarded again to a standard
video interface.

C. Architecture Overview

Fig. 8 provides a high-level view on the architecture. The
inputs are the 8 bit gray-level1 pixel (wk) together with
the the corresponding Jacobian transformation matrix (Jk)
and the target pixel location (m(uk)). The output of the
architecture are rendered pixels in the form of accumulated
pixel contributions and corresponding accumulation weights
for off-chip renormalization. We use a generic RAM interface
and a handshake protocol to throttle the streaming input.

The architecture is subdivided into two main stages: an arith-
metic part calculates the pixel contributions and an accumu-
lation part collects and adds up the contributions in the target
image. Since each source pixel contributes to several pixels
in the target image, a caching architecture is proposed for the
accumulation part to reduce the required memory bandwidth
to the target frame buffer which serves as accumulator, thus
requiring read-modify-write operations. Double buffering en-
sures that final read-out and accumulation do not collide.

V. EWA SPLATTING VLSI ARCHITECTURE

In this section we provide details of the proposed architecture
of the EWA splatting algorithm shown in Fig. 8 and in
Alg. 1. We illustrate the involved hardware units and evaluate
different number formats. We introduce a caching scheme that
significantly reduces the required memory bandwidth.

1The architecture remains identical for 24 bit RGB color or 8 bit gray-level
setups, only the total area and I/O bandwidth change to process three color
channels in parallel.

MAC unit MAC unit

MAC unit

1/x

x-0.5

Jk

wk

m(uk)

JkJk’

|Jk|

|C|

C

|C|-0.5

BB stepper
xb
yb

exp(.) C-1

|Jk||C|-0.5
pixel

norm.

addr.

�lter
setup

rasterizer
splatting unit

n n n n
m

1/√Cii

Fig. 9: Architecture overview of EWA splatting unit (sim-
plified). The black bars denote pipelines stages; each stage
operates for n (filter setup) or m (rasterizer) cycles. The non-
linear functions are detailed in Fig. 10.

A. EWA Arithmetic Part

The arithmetic part is structured into several parallel splatting
units which allows for scaling the required splatting through-
put easily. A dispatcher distributes the incoming Jacobian and
pixel values to the different units. Each splatting unit first gen-
erates covariance matrix, determinants, and the bounding box
in the filter setup stage and then rasterizes pixel contributions
on an integer grid delimited by the bounding box (Fig. 9).

The filter setup stage is further divided into four pipelined and
parallel running sub-stages, where each sub-stage is allocated a
specific number of cycles before data is passed on to the next
pipeline stage. Thus, the filter setup stage has a throughput
determined by the number of cycles (eight cycles is found to be
a good choice). The multi-cycle architecture is continued in the
rasterizing part, where in each cycle one of the contributions
within the bounding box is evaluated. The throughput can be
increased or decreased by modifying the number of splatting
units at constant AT-efficiency2. The benefit of the employed
multi-cycle architecture over a fine-grained pipelined systolic
architecture is the low pipelining area overhead and easy
scalability with respect to the necessary throughput.

1) Datapath implementation: The datapath of a splatting unit
contains linear matrix operations and several non-linear func-
tions (Fig. 9 and Fig. 10). Two multiply-accumulate (MAC)
units calculate the covariance matrix C and the required
determinants |Jk| and |C|. The reduced-complexity version of
adaptive anti-aliasing comes at virtually no hardware overhead,
since a thresholding operation merely consists of a comparator.
The normalization factor 1/

√
|C| of the Gaussian is efficiently

implemented with the fast inverse square root algorithm [25]
using multiplications and additions. Similarly, the square roots
in the bounding box calculation part √ci,i can be approxi-
mated with the fast inverse square root: z·1/

√
z. The bounding

box is rounded to an integer grid such that the evaluation does
not need to be very accurate. The 2-by-2 matrix inversion of
the covariance matrix C is realized by multiplying the entries
of C with 1/|C| (and inverting the sign of the off-diagonal
elements). The inversion is realized with a coarse look-up table

2The area-delay (AT) product is a standard metric in digital VLSI to
compare efficiency of hardware architectures.

9

count
leading 0’s

LUT

2
-

MSB

-

-
‘1’

>>1

0x5F3759DF

OFFSET

OFFSET

31...24 23...0

z-0.51/z exp(.)

count
leading 0’s

shift

shift

LUT

0

MAC

MSBsLSBs

valueslope

(x’C-¹x)

Fig. 10: Architecture of non-linear function approximations.
The constant ’OFFSET’ of the fast inverse square root block
depends on the integer width of the input (= 127−width+1),
for an explanation of the value 0x5F3759DF see [25].

(LUT) followed by four refining Newton iterations

zn+1 = 2 · zn − z2n · a, n = 0, . . . , 3

where a is the value to be inverted, zn the result after n
iterations, and z0 is the initial LUT value. The sampling
points of the values in the LUT are logarithmically spaced
over the function domain to increase precision. The (base-2)
logarithmic look-up is obtained by addressing the number of
leading zeros. A third MAC unit realizes the multiplications
of ci,j by 1/|C|, the bounding box scaling sbb

√
ci,i, and the

multiplication of the normalization factors 1/(2π)|Jk||C|−0.5.
Finally, the exponential function in the rasterizer part is
realized with linear interpolation between uniformly spaced
pre-calculated supporting points.

2) Arithmetic precision: To quantify the precision of the
non-linear function approximations described in the previous
paragraph and to decide on the most efficient number format in
view of chip area and throughput, we compare various number
formats against the IEEE single precision standard (32 bit
floating point). The simulated number formats are custom
fixed point and custom floating point formats defined by the
number of integer/fraction bits and significand/exponent bits,
respectively.

The PSNR for the complete EWA splatting system of the
custom number formats compared to single precision is shown
in Fig. 11. The specified data format is used for all arithmetic
operations in the data-path except for some well-defined
signals such as I/Os. Due to the non-linear approximations,
the PSNR ceils at a certain value. The ceil value, between
60 dB and 70 dB, is sufficiently high to conclude that the
approximations do not have a noticeable impact on quality.
Also, fixed-point and floating-point formats converge to the
same PSNR value, such that both formats are equivalent in
terms of precision for the corresponding number formats. In
terms of AT-efficiency, the fixed-point variant performs slightly

16 14 12 10 8 6 410

20

30

40

50

60

70

x (fractional/significand bits)

PS
N

R
 [d

B]

fixed−point (Q8.x)
floating−point (e5.x)

Fig. 11: PSNR of different number formats illustrated with
one typical example image. The abbreviation Qa.b stands for
fixed point format with a integer bits and b fractional bits,
ea.b stands for floating-point with an a bit exponent and b
bits significand. The plot shows Q8.x and e5.x, where x is
determined by the x-axis of the plot.

better when comparing a MAC unit with number formats
at the same PSNR value. Thus, we opted for a fixed point
architecture.

B. Accumulation and Caching

The main challenge of the accumulation part is the increased
bandwidth requirement on the framebuffer memory compared
to the bandwidth of the input pixels since the rasterizers
generate several pixels for each input pixel. Moreover, the
pixels to be accumulated over time are, in principle, arbitrary
distributed in the target image such that we need to buffer and
access the entire target image in random-access fashion. To
reduce the bandwidth and random-access pattern to the frame
buffer, the accumulation is realized in several stages which
takes the form of a two-level cache.

1) Key observations: The rectangular bounding boxes access
memory in blocks of neighboring pixels. Besides, since source
pixels are streamed in scanline order, subsequent target pixels
typically exhibit large horizontal overlaps. The same holds
for vertically neighboring pixels. Our proposed accumulation
architecture therefore first absorbs neighboring contributions
both horizontally and vertically and then writes larger chunks
of partially accumulated pixels into the external memory.
Also, since accumulation is mathematically an associative and
commutative operation, the complete accumulation operation
can be split into partial accumulations. This property allows to
separate the accumulation into multiple accumulation stages.

2) Analysis of accumulation bandwidth: The warp function
usually transforms neighboring pixels from the input image
into neighboring pixels in the output image, which leads to
strong spatial correlation in the accesses to the off-chip frame
buffer. Fig. 12 provides an example for such an access pattern.
The strong correlation motivates an on-chip accumulation

10

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

Target SpaceSource Space

Legend

Fig. 12: Typical accumulation buffer access patterns for the
warped pixels positions. The horizontal scanline order of the
source image is transformed to curved scanline orders in the
target image, and no holes are formed by the continuous warp
function. Therefore, consecutive horizontal and vertical target
pixels will overlap. The zoomed windows show the incoming
pixel bounding boxes in detail, for three consecutive lines (red,
green, and blue). Overlaps are indicated by color blending of
the different colors (see legend).

buffer that stores several lines to take advantage of both
horizontal and vertical proximity. The effect of on-chip buffers
on external bandwidth is shown in Fig. 13. The average splat
size being a window of almost 3-by-3 pixels, we see that with
an on-chip buffer smaller than the average splat size, we need
almost 9 times the bandwidth compared to writing the image
once. If the on-chip buffer is larger than the average splat size,
the horizontal proximity is exploited and thus the bandwidth is
reduced by a factor of 3. Finally, if the on-chip buffer covers
more than 3 vertical lines, vertical proximity can be exploited
and the minimal possible bandwidth is approached.

In addition to the on-chip accumulation buffer, two additional
design choices are made to increase the accumulation per-
formance. The first design choice is motivated by the nature
of the non-linear warping, where horizontal source lines can
possibly be rendered to (almost) arbitrary-shaped curves. If
the on-chip buffer is partitioned into multiple lines that span
the full image width, then variations in the vertical direction
beyond the number of lines within the on-chip buffer requires
costly swap operations. We therefore split the accumulation
buffer into many two-dimensional blocks (tiles), where each
block can be individually addressed. The impact of block size
and total buffer size on bandwidth performance is summarized
in Fig. 14: the smaller the block size the lower the required
accumulation bandwidth but at the cost of higher address
complexity and hence increased critical path and chip area.
The specific block size configuration of our architecture will
be detailed in the next section.

The second design choice is motivated by the size of the ac-
cumulation buffer, which is typically on the order of kBytes to
MBytes, and therefore needs to be realized using bandwidth-
limited on-chip SRAM blocks. While using such on-chip
buffers reduces the external memory bandwidth, it also shifts
the bandwidth bottleneck from external memory to the on-
chip memory blocks. We therefore introduce another level
of smaller-sized accumulation buffers, which can be realized

[1 1] [1 16] [16 1] [4 4] [16 16] [64 8] [256 8] [2048 2] [2048 4] [2048 8]
0

1

2

3

4

5

6

7

8

9

10

N
or

m
al

iz
ed

 o
ut

pu
t b

an
dw

id
th

Buffer configuration [width height]

vertical dimension
smaller than
average splat

buffer contains
(enough) image lines

buffer larger than average splat

buffer smaller than average splat

Fig. 13: Bandwidth simulation of different sizes of the on-chip
accumulation buffers, performed for different scenes. The plot
shows the mean values with associated vertical error bars
to indicate the standard deviation. The accumulation buffer
model is assumed to be ideal, where each tile is comprised
of 1x1 pixel (cf. Fig. 14). The external output bandwidth is
normalized to the bandwidth required to transmit one full
frame buffer once, and therefore a bandwidth of 1 can be
considered optimal.

1 2 4 8 16 32 64 128 256 512
100

101

102

Horizontal tile size

N
or

m
al

iz
ed

 o
ut

pu
t b

an
dw

id
th

 4*2048, 1
 4*2048, 2
 4*2048, 4
 8*2048, 1
 8*2048, 2
 8*2048, 4
16*2048, 1
16*2048, 2
16*2048, 4

Fig. 14: Effect of tile size and total on-chip buffer size on
external memory bandwidth, simulated for 720p images. The
external output bandwidth is normalized to the bandwidth
required to transmit one full frame buffer once, and therefore
a bandwidth of 1 can be considered optimal. For our design,
we select a horizontal tile size of 32 and a vertical tile size
of 2, with an overall on-chip buffer size of 8*2048 pixels for
720p or 1080p images.

in high-bandwidth distributed memory resources that allow
concurrent access to all elements. Note that this two-level
approach has no impact on external bandwidth.

3) Architecture details: As motivated before, our architecture
employs a multi-level accumulation strategy. In a first stage

11

L1 accumulator

L1 accumulator
L2 accumulator

pixel & norm.
address

2 tiles

2
til

es

L1
 ti

le
(2

x2
 p

ix
el

s)

address
L1 tile

...
...

...

L2 tile
(2x32 pixels)

40 tiles

4
til

es

address
L1 tile

2-way
assoc.

Fig. 15: Two-level accumulation architecture, and resulting
cache configuration for 720p. A third accumulation level (not
shown in the figure) is realized in the frame buffer.

neighboring and overlapping pixels of the rasterizers are
combined into several small and register-based accumulation
buffers. Next, the resulting chunks of spatially adjacent pixels
are accumulated in larger SRAM-based accumulation buffers
which can exploit larger vertical pixel proximity by absorbing
several target lines. In a final step, the outputs are transferred
and accumulated in the frame buffer (external memory). In the
best case, the last step does not require an accumulation but
only a write-out operation. The proposed structure is shown
in Fig. 15.

The two on-chip accumulators are detailed in the following
using cache terminology, i.e., they are referred to as level
1 (L1) and level 2 (L2) caches, respectively. Each cache is
composed of multiple tiles (blocks of pixels). The particularity
of our caches is that we do not replace the cache tiles with
data but rather empty them and accumulate the content in the
next higher hierarchy. The address conversion from external
memory to the accumulation buffer is performed using a 2-way
set associative mapping. Table I summarizes potential cache
configurations for various resolutions.

Using 2-way set associative accumulation buffers, each pixel
address can potentially be mapped to two different cache tiles.
In comparison, direct address mapping uses pre-determined
addresses for each external pixel address. In theory, set asso-
ciativity reduces the number of address collisions and increases
the flexibility of a cache, at the cost of an overhead in storage
of address tags and of increased addressing complexity. In
our case, the overhead of using 2-way set associativity is
negligible, but it also has only a minor effect on bandwidth.
A bigger advantage is the possibility to efficiently balance the
L1-L2 transfers: if one of the two blocks within a set contains
a partial accumulation result, it gets flagged for swapping. If
several blocks contain one (or two) partial accumulation result,
an additional least recently used flag determines the swap
priority. This allows to continuously transfer data from the L1
to the L2 accumulation stage and thus minimizes cache write-
out misses. This way, cache transfers can be balanced better to
achieve constant bandwidth at full capacity. In summary, the 2-
way associativity provides an efficient mechanism to determine
blocks that are most likely to produce a cache write-out miss.

TABLE I: Cache configurations and sizes for different target
resolutions. All the resolutions have widescreen 16:9 aspect
ratio, the number indicating the vertical resolution. ’g’ stands
for gray level images, ’c’ for color images. The last row (4
lines, g) indicates the cache used in the implemented ASIC.
The cache is 2-way set associative.

L1 cache L2 cache
memory type flip-flop array dual-port SRAM macro
read ports (g/c) 32/64 & 128/256 bit 128/256 bit
write ports (g/c) 32/64 bit 128/256 bit
tile/block size 2×2 pixels 2×32 pixels

576p 720p 1080p
tiles (8 lines) 8 256 320 480
size (8 lines, c) 256 bytes 128kB 160kB 240kB
size (4 lines, g) 128 bytes 32kB

VI. RESULTS

In this section, we summarize the results, both in terms
of rendering quality and implementation results, and also
recapitulate the limitations of our architecture.

A. Throughput

For the following throughput evaluation we use a clock
frequency of 133 MHz (synthesis result) and a frame rate of
25 (e.g., 720p25). One input pixel is assumed to generate 9
output pixels and each pixel is a 24 bit RGB value.

1) 720p: One splatting unit has a throughput of
6.65 MPixels/s. An 720p25 video stream requires a
throughput of 23 MPixels/s and thus four splatting units.
The necessary external memory bandwidth without caching
is 2 × 9 × 23MPixels/s which amounts to 3.31 GB/s for 8
byte per pixel (accumulated RGB values plus normalization
weight). The factor 2 comes from the read-modify-write
operation of the accumulation. A cache efficiency of 83%
(2 × 1.5 the minimal bandwidth) reduces the bandwidth to
550 MB/s. An additional read/clear operation to the memory
is further necessary to account for the final read-out and
clearing. An L2 cache of 8 lines with 1280 pixels per line
(160 KB) is necessary to reach the targeted cache efficiency
(see Fig. 14).

2) 1080p and beyond: For 1080p, the number of splatting
units and L1 caches needs to be doubled and the L2 cache
needs to be extended to line size of 1920 (240 KB). Also,
such an architecture allows for rendering 720p at higher frame
rates (720p50, 720p60). The architecture can be extended to
resolutions beyond 1080p if the interface bandwidth between
L1 and L2 cache is scaled accordingly.

3) Comparison to software implementation: In order to put
these numbers into context, we provide performance tests re-
sults of EWA rendering on a high-end CPU. The computation
time depends on the chosen image resolution and the warp
type. For 720p, our C++ based implementation takes between
155 ms and 165 ms for different video retargeting sequences
on a high-end machine equipped with an Intel XEON 3.2 GHz
(W3565) processor and 24 GB RAM.

12

4 Render Units
(~2.2 mm²)

2 L1 Caches
(~0.4 mm²)

L2 Cache
(~3.4 mm²)

Fig. 16: EWA video rendering chip micrograph with overlayed
main blocks and their corresponding size.

B. CMOS implementation results

The architecture described in Sec. V was implemented in
VHDL and was fabricated in 180nm (1P6M) CMOS tech-
nology. A chip micrograph is provided in Fig. 16. The design
supports image resolutions up to 2048×2048. It employs four
splatting units to support 720p25 in splatting performance. The
implemented L2 cache is reported in Tbl. I: due to die size
limitations the cache is reduced to 4 lines of gray-valued 576p.

The ASIC has been successfully tested at 123 MHz where
a power consumption of 300 mW has been measured. Core
voltage is 1.8 V and I/O pad voltage is 3.3 V. Core area is 6
mm2 which corresponds to 660 kGE. There are 64 data I/O
pins and 56 power/ground pins.

C. Rendering results

To illustrate the purpose and quality of EWA rendering, we
provide an example of 2D image retargeting. The images in
Fig. 17 show an initial image with aspect ratio of 16:9, the
content-aware retargeted 4:3 version, and the linear scaled
version for reference. The warps have been generated with a
framework similar to [2]. For more examples and explanations
on video retargeting refer to [2] directly.

D. Discussion of temporal aspects

The target applications of the EWA rendering architecture are
real-time video applications. To render video, i.e., a sequence
of correlated images, it is often not sufficient to render the
images individually, but temporal effects need to be taken into
account. Temporal artifacts occur when objects within a video
sequence are warped inconsistently in consecutive images. A
prominent example is a non-moving object that is warped
into different positions in consecutive frames which would be
perceived as ’wobbling effect’. Fig. 18 shows an example of
such a temporal artifact. Note that this artifact is not specific to

16:9 input 4:3 non-uniform 4:3 uniform

Fig. 17: Example of aspect ratio retargeting [2]. The re-
targeted image and associated image warp are shown in
comparison to uniform image scaling: while uniform scaling
visually distorts the image, the retargeting algorithm keeps the
visually important portions of the image undistorted. We show
a conversion from 16:9 to 4:3 aspect ratio (Image courtesy of
Andrew Malone).

EWA splatting but a general problem in video rendering. An
efficient solution is to constraint the warp grid by minimizing
a temporal coherence energy expression ([26], [2])∑

k∈Ds

(mt(uk)−mt−1(uk))2,

which penalizes varying warp positions over time. The formula
uses the same notation as in Sec. II with the additional image
index t. Fig. 18 compares several video frames rendered
with and without this temporal stabilization. More details on
temporal stability can be found in [2].

E. Limitations and future work

Algorithmically, the following limitations have to be taken into
account and potentially addressed in future work. First, the
linear approximation of the per pixel warp function is only able
to handle locally affine transformations correctly. Besides, the
EWA framework always introduces a tradeoff between aliasing
and blurring, which might be improved with different warping
approaches. Finally, our implemented simplified adaptive anti-
aliasing strategy leads to aliasing when the warping consists
of significant rotations and shearing.

The VLSI architecture has not been optimized for low-power
operation so far. Although clock gating has been included, no
design effort has been spent to make the design specifically
low-power. An improved CMOS implementation will account
for this. Also, we investigate techniques for lowering the
required cache size.

VII. CONCLUSION

EWA splatting is a promising technique for current and next-
generation HD video applications such as video retargeting,
disparity mapping, and multi-view synthesis. Setting the Gaus-
sian filter variances in an adaptive way greatly improves
rendering quality. Thus, with the proposed adaptive strategy,
we are able to render high-quality images without aliasing or
excessive blurring. Furthermore, we show that EWA rendering
can be efficiently implemented into a VLSI circuit, which
would be targeted for end-user display integration. The pro-
posed VLSI architecture for real-time EWA splatting provides

13

No temporal coherence With temporal coherence

Fig. 18: Example of temporal stability of aspect ratio re-
targeting. Four consecutive frames of a video sequence with
slow camera are shown, both without temporal coherence
constraints and with temporal coherence constraints. To il-
lustrate the effect of the coherence constraints better, we show
a zoomed portion of the image with a vertical line as column
reference. Without temporal constraints, the top of the bridge
slightly moves left and right, which is perceived as a ’wobbling
effect’. Using temporal constraints, such erroneous motion can
be suppressed effectively. (Image sequence: c©Mammoth HD).

high-quality results using fixed-precision number formats.
Multi-level accumulation significantly reduces the necessary
memory bandwidth to the external frame buffer.

REFERENCES

[1] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the H.264/AVC standard,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 17, no. 9, pp. 1103–1120,
2007.

[2] P. Krähenbühl, M. Lang, A. Hornung, and M. Gross, “A system for
retargeting of streaming video,” ACM Trans. Graph., vol. 28, no. 5, pp.
126:1–126:10, 2009.

[3] A. Smolic, P. Kauff, S. Knorr, A. Hornung, M. Kunter, M. Mueller,
and M. Lang, “Three-dimensional video postproduction and processing,”
Proceedings of the IEEE, vol. 99, no. 4, pp. 607–625, 2011.

[4] M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross,
“Nonlinear disparity mapping for stereoscopic 3D,” ACM Trans. Graph.,
vol. 29, no. 4, pp. 75:1–75:10, 2010.

[5] C.-H. Chang, C.-K. Liang, and Y.-Y. Chuang, “Content-aware display
adaptation and interactive editing for stereoscopic images,” Multimedia,
IEEE Transactions on, vol. 13, no. 4, pp. 589–601, 2011.

[6] M. Farre, O. Wang, M. Lang, N. Stefanoski, A. Hornung, and A. Smolic,
“Automatic content creation for multiview autostereoscopic displays
using image domain warping,” in Multimedia and Expo (ICME), 2011
IEEE International Conference on, 2011.

[7] M. Tanimoto, M. Tehrani, T. Fujii, and T. Yendo, “Free-viewpoint TV,”
Signal Processing Magazine, IEEE, vol. 28, no. 1, pp. 67 –76, 2011.

[8] A. Smolic, “3D video and free viewpoint video: From capture to
display,” Pattern Recognition, vol. 44, no. 9, pp. 1958–1969, 2011.

[9] M. Do, Q. Nguyen, H. Nguyen, D. Kubacki, and S. Patel, “Immersive
visual communication,” Signal Processing Magazine, IEEE, vol. 28,
no. 1, pp. 58 –66, 2011.

[10] T. Akenine-Moller, E. Haines, and N. Hoffman, Real-time rendering.
AK Peters, 2008.

[11] T. Weyrich, S. Heinzle, T. Aila, D. Fasnacht, S. Oetiker, M. Botsch,
C. Flaig, S. Mall, K. Rohrer, N. Felber et al., “A hardware architecture
for surface splatting,” ACM Trans. Graph., vol. 26, no. 3, pp. 23:1-23:9,
2007.

[12] S. Heinzle, G. Guennebaud, M. Botsch, and M. Gross, “A hardware
processing unit for point sets,” in Proceedings of the 23rd ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware. Eu-
rographics Association, 2008, pp. 21–31.

[13] P. Heckbert, “Fundamentals of texture mapping and image warping,”
Masters Thesis, Univ. of California, Berkeley, Dept. of Electrical Eng.
and Computer Science, 1989.

[14] G. Wolberg, Digital image warping. IEEE Computer Society press,
1990, vol. 3.

[15] R. Szeliski, S. Winder, and M. Uyttendaele, “High-quality multi-pass
image resampling,” Microsoft Research, Tech. Rep., 2010.

[16] B. Triggs, “Empirical filter estimation for subpixel interpolation and
matching,” in Computer Vision, 2001. ICCV 2001. IEEE 8th Interna-
tional Conference on, vol. 2, 2001, pp. 550–557.

[17] R. Stasinski and J. Konrad, “Improved POCS-based image recon-
struction from irregularly-spaced samples,” in Proceedings of the XI
European Signal Processing Conference, 2002, pp. 271–290.

[18] Y.-R. Horng, Y.-C. Tseng, and T.-S. Chang, “VLSI architecture for real-
time HD 1080p view synthesis engine,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 21, no. 9, pp. 1329 –1340, 2011.

[19] M. Zwicker, H. Pfister, J. V. Baar, and M. Gross, “EWA splatting,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 8,
no. 3, pp. 223–238, 2002.

[20] R. Gonzales and R. Woods, Digital Image Processing. Prentice Hall,
2002.

[21] R. Bracewell, K.-Y. Chang, A. Jha, and Y.-H. Wang, “Affine theorem for
two-dimensional fourier transform,” Electronics Letters, vol. 29, no. 3,
p. 304, 1993.

[22] G. Strang, Linear Algebra and Its Applications. Brooks Cole, 2005.

[23] R. Hartley and A. Zisserman, Multiple view geometry. Cambridge
university press Cambridge, UK, 2000.

[24] C. Sigg, T. Weyrich, M. Botsch, and M. Gross, “GPU-based ray-
casting of quadratic surfaces,” in Eurographics Symposium on Point-
Based Graphics, 2006, pp. 59–65.

[25] C. Lomont, “Fast inverse square root,” Pur-
due University, Tech. Rep., 2003. [Online]. Available:
http://www.lomont.org/Math/Papers/2003/InvSqrt. pdf

[26] L. Wolf, M. Guttmann, and D. Cohen-Or, “Non-homogeneous content-
driven video-retargeting,” in Computer Vision, 2007. ICCV 2007. IEEE
11th International Conference on, 2007.

