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Abstract. This paper introduces a computer-based training program
for enhancing numerical cognition aimed at children with developmen-
tal dyscalculia. Through modelling cognitive processes and controlling
the level of their stimulation, the system optimizes the learning process.
Domain knowledge is represented with a dynamic Bayesian network on
which the mechanism of automatic control operates. Accumulated know-
ledge is estimated to select informative tasks and to evaluate student
actions. This adaptive training environment equally improves success
and motivation. Large-scale experimental data quantifies substantial im-
provement and validates the advantages of the optimized training.

Keywords: learning, control theory, optimization, dynamic Bayesian
network, dyscalculia.

1 Introduction

Computer-assisted learning is gaining importance in children’s education. Intel-
ligent tutoring systems are successfully employed in different fields of education,
particularly to overcome learning disabilities [1]. The application of computers
extends conventional learning therapy. This study presents a computer-based
training program for enhancing numerical cognition, aimed at children with
developmental dyscalculia (DD) or difficulties in learning mathematics. It en-
tertains the idea that the learning process can be optimized through modelling
cognitive development and control.

Motivation. DD is a specific learning disability affecting the acquisition of
arithmetic skills. Genetic, neurobiological, and epidemiological evidence indi-
cates that DD is a brain-based disorder with a prevalence of 3-6% [2]. Challenges
are subject-dependent and hence individualization is needed to achieve substan-
tial improvements. Computer-based approaches enable the design of adaptable
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training, by estimating abilities and by providing intensive training in a stimu-
lating environment. The learner gains self efficacy and success, in turn leading
to increased motivation.

Related Work. Previous studies evaluated computer-based trainings for num-
ber processing and calculation, documenting promising results [3,4,5]. Available
trainings are designed specifically for children with DD, yet provide limited user
adaptation. In the domain of mathematics, intelligent tutoring systems focus on
specific aspects of the domain [6,7,8]. A plethora of advanced control approaches
aimed at optimization of complex mechanisms exists in the literature [9]. As
in this study, controllers can be based upon explicit models obtained through
intervention-driven identification [10]. Related predictive models aimed at treat-
ing learning disabilities have been introduced for spelling learning [1,11].

Contribution. We model the cognitive processes of mathematical development.
Recent neuropsychological findings are incorporated into a predictive dynamic
Bayesian network. We introduce automatic control aimed at optimizing learning.
This model predictive control enables a significant level of cognitive stimulation
which is user- and context-adaptive. Results from two large user-studies quantify
and validate the improvements induced by training.

2 Training Environment

Current neuropsychological models postulate the existence of task-specific rep-
resentational modules located in different areas of the brain. The functions of
these modules are relevant to both adult cognitive number processing and cal-
culation [12]. Dehaene’s triple-code model [13] presumes three representational
modules (verbal, symbolic, and analogue magnitude) related to number process-
ing. These modules develop hierarchically over time [14] and the overlap of the
number representations increases with growing mathematical understanding [17].
The development of numerical abilities follows a subject-dependent speed which
is influenced by the development of other cognitive as well as domain general
abilities and biographical aspects [14]. Hence, when teaching mathematics, a
substantial degree of individualization may not only be beneficial, but even nec-
essary. The introduced computer-based training addresses these challenges by

1. structuring the curriculum on the basis of natural development of mathe-
matical understanding (hierarchical development of number processing).

2. introducing a highly specific design for numerical stimuli enhancing the dif-
ferent representations and facilitating understanding. The different number
representations and their interrelationsships form the basis of number un-
derstanding and are often perturbed in dyscalculic children [14].

3. training operations and procedures with numbers. Dyscalculic children tend
to have difficulties in acquiring simple arithmetic procedures and show a
deficit in fact retrieval [15,16].
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(a) Landing game. (b) Plus-Minus game.

Fig. 1. In the Landing game, the position of the displayed number (29) needs to be
indicated on the number line. In the Plus-Minus game, the task displayed needs to
be modeled with the blocks of tens and ones.

4. providing a fully adaptive learning environment. Student model and control-
ling algorithm optimize the learning process by providing an ideal level of
cognitive stimulation.

Structure of the Training Program. The training is composed of multiple
games in a hierarchical structure. Games are structured according to number
ranges and further grouped into two areas. The first area focuses on “number rep-
resentations and understanding”. It trains the transcoding between alternative
representations and introduces the three principles of number understanding:
cardinality, ordinality, and relativity. Games in this area are structured accord-
ing to current neuropsychological models [13,14]. The first area is exemplified by
the Landing game (Fig. 1(a)). The second area is that of “cognitive operations
and procedures with numbers”, which aims at training concepts and automa-
tion of arithmetical operations. This is illustrated by the Plus-Minus game
(Fig. 1(b)). Games are divided into main games requiring different abilities and
support games training specific ones, serving as basic prerequisites. Difficulty
estimation and hierarchy result from the development of mathematical abilities.

Design of the Numerical Stimuli. Properties of numbers are encoded with
auditory and visual cues such as color, form, and topology. The digits of a number
are attached to the branches of a graph and represented with different colors
according to the positions in the place-value system (see left of Fig. 2). Numbers
are illustrated as a composition of blocks with different colors, i.e., as an assembly
of one, ten and hundred blocks. Blocks are linearly arranged from left to right
or directly integrated in the number line (Fig. 2 right). Showing all stimuli
simultaneously in each game of the training program reinforces links between
different number representations and improves number understanding.

Fig. 2. Design of numerical stimuli for the number 35
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Fig. 3. Skill net containing 100 skills (left), zoom of addition skills from 0-100 (right)

3 Selection of Actions

A fundamental component is the pedagogical module: the subsystem making
the teaching decisions. It selects the skills for training and determines the ac-
tions. The mechanisms adaptively assess user inputs and dynamically optimize
decisions [9]. The learner state is estimated and internally represented by the
student model. An attached bug library enables recognition of error patterns.

3.1 Student Model

The mathematical knowledge of the learner is modelled using a dynamic Bayesian
network [18]. The network consists of a directed acyclic graphical model repre-
senting different mathematical skills and their dependencies. This representation
is ideal for modelling mathematical knowledge as the learning domain exhibits
a distinctively hierarchical structure. The resulting student model contains 100
different skills (Fig. 3).The structure of the net was designed using experts’ ad-
vice and incorporates domain knowledge [13,14,15,16]. Two skills sA and sB have
a (directed) connection, if mastering skill sA is a prerequisite for skill sB. The
belief of a skill sAi (probability that skill is in the learnt state) is conditioned
over its parents πi:

p(sA1, ..., sAn) =
∏

i

psAi where psAi := p(sAi|πi) (1)

As the skills cannot be directly observed, the system infers them by posing tasks
and evaluating user actions. Such observations (E) indicate the presence of a skill
probabilistically. The posteriors psAi|Ek

of the net are updated after each solved
task k using the sum-product algorithm (libDAI [19]). Initially, the probabilities
are initialized to 0.5 (principle of indifference). The dynamic Bayesian net has a
memory of 5, i.e. posteriors are calculated over the last five time steps.

3.2 Controller

The selection of actions is rule-based and non-linear. Rather than following a
specified sequence to the goal, learning paths are adapted individually. This



Modelling and Optimizing the Process of Learning Mathematics 393

# remediation 
skills? 

# unplayed 
precursors? 

# main 
skills? 

0 0 0 

n n 
support 

skill 

B unplayed 
precursors 

all pre-
cursors 

n 

Recursion 
skill sr set? # main skills? no 0 

select sr 
yes n 

support 
skill 

F 

Fig. 4. Decision trees for ’Go Back’ (left) and ’Go Forward’ (right) options. At the
end nodes (triangles), the candidate skill with lowest posterior probability (’Go Back’
option)/with posterior probability closest to 0.5 (’Go Forward’ option) is selected.

increases the set of possible actions (due to multiple precursors and successors).
The controller selects one of the following options based on the current state:

1. Stay: Continue the training of the current skill;
2. Go back: Train a precursor skill;
3. Go forward: Train a successor skill;

The decision is based on the posterior probabilities delivered by the student
model. After each solved task, the controller fetches the posterior probability
ps|E(t) of the skill s being trained at time t. Then, ps|E(t) is compared against a

lower and an upper threshold, denoted by pls(t) and pus (t). The resulting interval
defines the optimal training level: if the probability lies between the thresholds,
’Stay’ is selected. In contrast, ’Go Back’ and ’Go forward’ are selected when
ps|E(t) < pls(t) and when ps|E(t) > pus (t). Thresholds are not fixed: they converge
with more played samples (nc):

pls(t) = pl0s (t) · lcnc and pus (t) = pu0s (t) · uc
nc (2)

Initial values of the upper (pl0s (t)) and lower (pu0s (t)) thresholds as well as the
change rates (lc, uc) are heuristically determined. The convergence of the thresh-
olds ensures a sufficiently large number of solved tasks per skill and prevents
training the same skill for too long without passing it.

When ’Stay’ is selected, a new appropriate task is built. Otherwise, a precursor
(or successor) skill is selected by fetching all precursor (successor) skills of the
current skill and feeding them into a decision tree. Figure 4 shows the simplified
decision trees for ’Go Back’ and ’Go Forward’. The nodes of the trees encode
selection rules. If errors matching patterns of the bug library are detected, the
relevant remediation skill is trained. If a user fails to master skill sA and goes
back to sB, sA is set as a recursion skill. After passing sB, the controller will
return to sA. To consolidate less sophisticated skills and increase variability,
selective recalls are used.

This control design exhibits the following advantages:

1. Adaptability: the network path targets the needs of the individual user (Fig. 5).
2. Memory modelling: forgetting and knowledge gaps are addressed by going

back.
3. Locality: the controller acts upon current nodes and neighbours, avoiding

unreliable estimates of far nodes.
4. Generality: the controller is student model-independent: it can be used on

arbitrary discrete structures.
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Fig. 5. Skill sequences of three children in addition. Colours are consistent with Fig. 3.
User 2 and 3 passed all skills in the range, while user 1 did not pass this range within
the training period. The length of the rectangles indicates the number of samples.

4 Methods and Results

Quality of controller and student model have been measured through exter-
nal effectiveness tests. Experimental data consist of input logs of two on-going
large-scale studies (Germany and Switzerland). The studies are conducted us-
ing a cross-over design, i.e. participants are divided into a group starting the
training immediately and a waiting group. The groups are mapped according to
age (2.-5. grade of elementary school), intelligence and gender. All participants
visit normal public schools and are German-speaking. They exhibit difficulties
in learning mathematics indicated by a below-average performance in arithmetic
(addition T-score: 35.4 [SD 7.1], subtraction T-score 35.4 [SD 7.9]) [22]. Partic-
ipants trained for a period of 6 weeks with a frequency of 5 times per week,
during sessions of 20 minutes. Due to technical challenges, a subset of 33 logfiles
were completely and correctly recorded. On average, each user completed 29.84
(SD 2.87, min 24, max 36.96) sessions. The total number of solved tasks is 1562
(SD 281.53, min 1011, max 2179), while the number of solved tasks per session
corresponds to 52.37 (SD 7.9, min 37.8, max 68.1).

4.1 Logfile Analyses

The analyses of the input data show that the participants improved over time.
They provide evidence that the introduced control mechanism significantly speeds
up the learning process and that it rapidly adapts to the individual user.

Key skills. To facilitate the analysis of the log files, the concept of ’key skills’ is
introduced. Key skills are defined in terms of subject-dependent difficulty, they
are the hardest skills for the user to pass. More formally,

Definition 1. A skill sA is a key skill for a user U , that is sA ∈ KU , if the
user went back to a precursor skill sB at least once before passing sA.

From this follows that the set of key skills KU may be different for each user U
(and it typically is). In the sequence in Fig. 5, user 2 has no key skills, while
user 3 has one key skill (coloured in green) and user 1 has several key skills.

Adaptability of controller. During the study, all participants started the
training at the lowest (easiest) skill of the net. The adaptation time [t0, tKU ] is
defined as the period between the start t0 of the training and the first time the
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user hits one of his key skills tKU . On average, the participants reached their
tKU after solving 144.3 tasks (SD 113.2, min 10, max 459). The number of com-
plete sessions played up to this point is 1.95 (SD 1.63, min 0.08, max 6.48). These
results show, that the model rapidly adjusts to the state of knowledge of the user.

Improvement analysis. To quantify improvement, the learning rate over KU

is measured from all available samples (both if the participant mastered them
during training or not). The improvement over time I([tKU , tend]) is computed
using a non-linear mixed effect model (NLME) [20] employing one group per
user and key skill:

yi ∼ Binomial(1, pi) with pi =
1

1 + e−(b0+b1·xi+ui)
and ui ∼ N (0, σ2) (3)

where ui denotes the noise term, xi the normalized sample indices (xi ∈ [0, 1])
and yi the sample correctness. The resulting model (Fig. 6) exhibits an estimated
mean improvement of 22.6% (95% confidence interval = [0.21 0.24]).

b0 b1

Estimate(SD) 0.09 (0.06) 1.0 (0.06)
sig. 0.16 <1e-4
95% ci [-0.073 0.21] [0.89 1.11]

Fig. 6. The percentage of correctly solved tasks (of key skills) increases over the training
period by 22.6% (left side). Exact coefficients of NLME along with standard deviation
(in brackets) are plotted by respective significance (sig.) and confidence intervals (ci).

Further analysis demonstrates that the possibility to go back to easier (played
or unplayed) skills yields a substantially beneficial effect. The user not only
immediately starts reducing the rate of mistakes, but also learns faster. The log
files recorded 533 individual cases of going back. All cases in which users play a
certain skill (samples xb), go back to one or several easier skills, and finally pass
them to come back to the current skill (samples xa) are incorporated. Per each
case k the correct rate over time ca,k (cb,k) is estimated separately for xa and xb.
Fitting is performed via logistic regression using bootstrap aggregation [21] with
resampling (B = 200). The direct improvement dk is the difference between the
initial correct rate ca,k(at xa = 0) and the achieved correct rate cb,k(at xb = 1).
The improvement in learning rate rk is the difference in learning rate over ca,k
and cb,k. The distributions over d̄ (mean over dk) and r̄ (mean over rk) are
well approximated by a normal distribution (Fig. 7). Both measurements are
positive on average and a two-sided t-test indicates their statistically significant
difference from zero (Tab. 1).
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Fig. 7. Distributions over direct improvement d̄ and improvement in learning rate r̄

Table 1. Statistics for the improvement after going back: Mean improvement μ, sig-
nificance of mean (sig.), standard deviation (SD), and confidence intervals (ci)

Mean μ sig. 99% ci of μ SD σ 99% ci of σ

d̄ 0.1494 <1e-6 [0.1204 0.1784] 0.2593 [0.2403 0.2814]
r̄ 0.3758 <1e-6 [0.3236 0.4280] 0.4662 [0.4319 0.5059]

4.2 Training Effects

Training effects were measured using external paper-pencil and computer tests.
The HRT [22] is a paper-pencil test. Children are provided with a list of addi-
tion (subtraction) tasks ordered by difficulty. The goal is to solve as many tasks
as possible within a time frame of 2 minutes. The AC (arithmetic test) exists
in a paper-pencil and a computer-based version. Children solve addition (and
subtraction) tasks ordered by difficulty. Tasks are presented serially in a time
frame of 10 minutes.
Analyses are done by comparing the effects of the training period (Tc) with those
of the waiting period (Wc). First results stem from 33 subjects (26 females, 7
males) in the training condition and 32 subjects (23 females, 9 males) in the
waiting condition. The training induced a significant improvement in subtrac-
tion (HRT and AC), while no improvement was found after the waiting period
(Tab. 2). Pre-tests showed no significant difference between the groups.

The improvement is supported by additional evidence: the percentage of train-
ing time children spent with subtraction tasks. In fact, 62% (73% if considering
key skills only) of arithmetical tasks consist of subtractions. The focus on sub-
traction and the significant improvement coming with it is scientifically interest-
ing as performance in subtraction is considered the main indicator for numerical
understanding [12]. Consistently with this, improved number line representation
is directly measurable from the input data. Over time, children achieved greater
accuracy when giving the position of a number on a number line (Fig. 8). The
analysis of the accuracy is performed using a NLME model:

yi ∼ Poisson(λi) with λi = eb0+b1·xi+ui and ui ∼ N (0, σ2) (4)



Modelling and Optimizing the Process of Learning Mathematics 397

Table 2. Comparison of test improvement between training and waiting condition.
The last column shows the results of a t-test on the improvements assuming same
variance and different variances, respectively.

Cond. Pre-Score(SD) Post-Score(SD) sig. Comparison

HRT
Tc 12.9 (5.38) 16.7 (5.3) 1.5e-8

2.6e-5 (2.9e-5)
Wc 14.84 (6.47) 15.06 (5.87) 0.72

AC
Tc 50.53 (27.25) 60.63 (26.3) 4.5e-4

1.9e-3 (2.0e-3)
Wc 55.18 (25.24) 52.9 (27.74) 0.42

b0 b1

Estimate(SD) 2.3 (0.07) -0.63 (0.02)
sig. <1e-4 <1e-4
95% ci [2.17 2.44] [-0.67 -0.58]

Fig. 8. Landing accuracy in the range 0-100 increases over time (left). Exact coeffi-
cients of NLME along with standard deviation (in brackets) are plotted by respective
significance (sig.) and confidence intervals (ci).

where ui denotes the noise term, xi the normalized sample indices (xi ∈ [0, 1])
and yi the deviance. Fitting is performed using one group per user.

5 Conclusion

This study introduces a model of the cognitive processes of mathematical de-
velopment based on current neuropsychological findings. Experimental results
demonstrate that domain knowledge is well represented by dynamic Bayesian
networks. The predictive model enables the optimization of the learning pro-
cess through controlled cognitive stimulation. Regression analysis highlights sus-
tained improvement; in particular, the possibility to go back significantly (and
rapidly) reduces the error rate and yields an overall increased learning rate.
Results are validated by large-scale input data analysis as well as external mea-
sures of effectiveness. The student model has the potential to be further refined
by incorporating available experimental data.
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