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Abstract
We present ‘Smart Scribbles’—a new scribble-based interface for user-guided segmentation of digital sketchy
drawings. In contrast to previous approaches based on simple selection strategies, Smart Scribbles exploits richer
geometric and temporal information, resulting in a more intuitive segmentation interface. We introduce a novel
energy minimization formulation in which both geometric and temporal information from digital input devices is
used to define stroke-to-stroke and scribble-to-stroke relationships. Although the minimization of this energy is,
in general, an NP-hard problem, we use a simple heuristic that leads to a good approximation and permits an
interactive system able to produce accurate labellings even for cluttered sketchy drawings. We demonstrate the
power of our technique in several practical scenarios such as sketch editing, as-rigid-as-possible deformation and
registration, and on-the-fly labelling based on pre-classified guidelines.
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1. Introduction

Sketchy drawings are prevalent across a wide range of ap-
plications and domains. In early development phases, rough
drawings are used, for example, for concept art in product
design, and for storyboards in animation environments, and
are favoured both for the speed of generation, and the ex-
pressiveness of the results. A sketchy style also has a place
in finished art—providing a level of visual richness not found
in ‘clean’ line representations, i.e. drawings constructed from
crisp, distinct outlines and minimal interior detail.

Modern digital devices and graphics software solutions
offer powerful stylization, deformation, morphing and ani-
mation capabilities for 2D drawings. However, in order to
perform these high-level tasks, a certain degree of under-

standing of the content of the drawing is required. This is a
challenging problem due to the significant gap between the
ability of a human to discern structure in a drawing and the
capability of an algorithm to derive it from low-level stroke
information. This is true even for clean line drawings, and
most existing approaches rely on the presence of a human
user to provide sufficient information to guide the task.

The problem of extracting structure from drawings be-
comes substantially more difficult for sketchy input, and this
is one reason it is far less common to find a consistently
sketchy style in full-length animations or automatic support
for sketchy input in high-level editing packages. One impor-
tant category of drawing abstraction is segmenting the draw-
ing into logical parts. To date, there is no efficient method
available for automatic segmentation in this domain. In
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contexts where a breakdown of the drawing is required, seg-
mentation is typically achieved by design: the drawings are
created in different layers, one for each logical component.
This approach is too limiting in practice: it requires a priori
knowledge of the use of the drawing, is cumbersome (espe-
cially when different tasks require different segmentations),
and is an error-prone process, even for experienced artists.

We seek a semi-automated solution to segmenting sketchy
drawings that is fast enough for interactive use, but also
predictable and easy to use—making it accessible to even
the most novice user.

To this end, we propose the concept of Smart Scribbles
as an accurate and simple way for the user to specify se-
mantically meaningful stroke clusters within a drawing. In
contrast to previous methods that use scribbles as positional
constraints for various image editing tasks [BJ01, LLW04,
AP08, SDC09b], our formulation considers more detailed
geometric (position, orientation, curvature) and temporal in-
formation (time of creation) when analyzing stroke-to-stroke
and Scribble-to-stroke relationships. In addition, we intro-
duce the concept of locality control as a way of conveniently
trading off the Scribbles’ areas of influence for accuracy. This
allows our system to produce desired results with minimal
user intervention even for cluttered sketches.

We evaluate our approach on a collection of digitally drawn
sketches of varying complexity, and demonstrate its applica-
tion to various tasks including sketch editing and as-rigid-as-
possible (ARAP) deformation and registration. As our solu-
tion is fast to compute, our method enables tight integration
of these tasks within an interactive digital drawing session.

2. Related Work

Relevant prior art can be divided into three main cate-
gories: sketch labelling interfaces, scribble-based image seg-
mentation and classification of vector fields in scientific
visualization.

User-guided labelling of strokes in hand-drawn images
plays a central role in many sketch-based editing systems. In
Lank and Saund [LS05], the authors present an approach for
inferring user intent from the local velocities, accelerations
and curvatures of the selection lasso. More recently, Wolin
et al. [WSA07] presented a technique for labelling groups of
strokes from a vectorized sketch where the system attempts to
automatically fragment continuous strokes into logical pieces
to assist the user. Both of these techniques ultimately utilize
a region-based selection approach. ScanScribe, a system de-
veloped by Saund and colleagues [SFLM04], presents the
user with an intuitive selection paradigm that allows for the
creation of objects from collections of pixels and supports
further grouping into composite objects. The system is able
to automatically segment the image into basic primitives,
such as linear curve fragments, and then group them into

more complex objects, such as rectangles, using a fragment
alignment metric (or by finding perceptually closed paths as
proposed in [Sau03]). Two limitations of this automatic tech-
nique are (1) limited complexity of objects detected by the
system and (2) the inability to handle sketchy overlapping
curve fragments, thus requiring more traditional and tedious
lasso/selection-box methods for more complex drawings.

The approach presented in this paper leverages previous
works on interactive image segmentation in order to opti-
mize the labelling process based on user scribbles. Boykov
and Jolly [BJ01] developed such an approach based on graph
cuts for segmenting images and finding optimal boundaries
between objects. In [LLW04], Levin and colleagues present
a similar framework based on a least-squares optimiza-
tion for colourizing grey-scale images by roughly labelling
regions with coloured scribbles. More recently, An and
Pellacini [AP08] developed an interactive energy minimiza-
tion framework for propagating colour edits to similar re-
gions throughout the image. Our approach is most similar to
LazyBrush [SDC09b], a graph-cut-based system for the se-
lection of regions in sketchy drawings. The main difference
is that this system cannot provide the labelling of the strokes
that bound each painted region. From this point of view, our
framework can be seen as a generalization of LazyBrush,
since it extracts meaningful boundaries first, and then builds
regions inferred from those boundaries. Because this process
removes clutter from the input drawing, it greatly improves
the accuracy of selection and reduces the amount of user
interaction needed to obtain clean results.

Our approach also bears some resemblance to sketch-
based clustering of vector fields in scientific visualization
[WWYM10]. Here, the aim is to allow the user to sketch
2D curves and use them as a query to retrieve 3D field lines
whose view-dependent 2D projection is most similar to the
input sketch. The curvature along the sketched input is used
to measure the similarity between the input and projected
curves using the edit distance [WF74]. In our approach, cur-
vature is also used to distinguish between different shapes.
However, the main advantage of our work is that we formu-
late an energy minimization problem where, in addition to
shape similarity, we also take proximity, orientation, tem-
poral information and smoothness of the final labelling into
account. As a result, our system can produce reasonable clus-
tering even in cases when the shape of the input sketch is very
rough or incomplete.

3. Method

The method we present allows users to intuitively segment
digital sketches into semantically meaningful regions. The
input to our framework consists of a digitally hand-drawn
sketch and a small set of rough Scribbles. The input sketch
is composed of a set of strokes, which are piecewise linear
curves represented by sets of 2D vertices recorded from a
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digital input device such as a tablet. For each vertex of a
stroke, we additionally store its time of creation. This helps
differentiate strokes which are spatially close but are drawn
at different moments in time.

The input Scribbles are special strokes that indicate the
user’s intent to segment a particular portion of the drawing.
Two criteria related to the Scribble primitives are critical in
order to ensure a useful and intuitive system. First, Scribbles
should not have to closely follow the target region. However,
if desired, the user should be able to precisely select localized
regions. We call this property locality control. The second
criterion specifies that the time of creation of the Scribble
should not influence the segmentation results.

We observe that generally speaking, processing strokes as
a whole is very difficult. A single stroke can be arbitrarily
complex: it can cross or overlap with itself multiple times,
and/or it can densely cover an area the artist wished to fill in.
For this reason, we break strokes and Scribbles into linear
segments by densely resampling the input. Any property de-
fined locally over the stroke can easily be transferred to the
segments.

The remainder of this section describes in detail each of
the steps used by our method.

We formulate the task of sketch clustering as an optimiza-
tion problem, where the goal is to label each stroke in a way
that minimizes an energy function. The concept of our de-
sign is depicted in Figure 2 and the remainder of this section
describes in detail each of the steps used by our method.
The energy function is defined in Section 3.1. It relies on a
smoothness and data term which are described in Sections
3.1.1 and 3.1.2, respectively. In Section 3.2, we discuss the
minimization method used to compute the final solution to
the stroke labelling.

3.1. Energy function

The input to our method consists of a set of stroke segments
S and a set of Scribble segments R associated with a set of
labels L. The goal is to find a labelling, i.e. an assignment φ

of the labels in L to every segment in S, that minimizes the
following energy function E:

E(φ) =
∑
i,j∈S

Vi,j (φi, φj ) + λ
∑
i∈S

Di(φi), (1)

where Vi,j is a smoothness term that captures the cost of the
labelling with respect to the similarity between two stroke
segments i and j . The data term Di measures the affinity
between Scribbles and strokes. The parameter λ controls the
relative influence of the smoothness and data terms.

3.1.1. Smoothness term

The smoothness term is defined as

Vi,j (φi, φj ) =
∏
g∈G

δ(g(i, j ), σg) (2)

when φi �= φj , otherwise it is zero. G is a set of similarity
terms:

prox(i, j ) = || �pj − �pi ||
dir(i, j ) = 1 − | �di · �dj |

curv(i, j ) = 1 − min(ci, cj )/max(ci, cj )

t ime(i, j ) = |tj − ti |,
where i and j are two segments, and p, d , c and t are the
position, direction, radius of curvature and time of creation
associated with each segment. The fall-off function δ is de-
fined as

δ(g(i, j ), σg) = exp

(
−g(i, j )2

σ 2
g

)
. (3)

3.1.2. Data term

The data term is defined as

Di(φi) = 1 − max
r∈R(φi )

A(i, r), (4)

where R(φi) denotes a set of Scribble segments r with label
φi . The affinity A(i, r) is defined as

A(i, r) =
∏

g∈Gdata

δ(g(i, r), σg). (5)

Here, as with the smoothness term, we measure the similarity
between segments rather than strokes. However, as Scribbles
have no associated time information, we reduce the set of
similarity terms to Gdata = {prox, dir, curv} ⊂ G. In addi-
tion, we alter the definition of curvature to become oriented:
curv(i, j ) = || �ci − �cj ||. This allows extra control in separat-
ing curves with the same curvature but different orientation
(e.g. the tangled lines in Figure 5).

One of our main goals is to allow users, if desired, to have
precise local control over the strokes that get affected by each
Scribble. To illustrate this, we consider a scenario where the
user draws a single Scribble, as shown in Figure 3(a). In
this case, because no concurrent label exists, all strokes are
selected. This behaviour, though reasonable, is not in line
with a user’s expectations of having local control.

To address this, we introduce an artificial background label
b ∈ L, in addition to the labels prescribed by the user. This
new label has a constant influence on each stroke segment
i regardless of the existence of any particular user-defined
Scribble, i.e. A(i, b) = B, where B is a threshold to over-
ride the influence of distant Scribbles. The background label
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therefore serves as a lower bound for computing the max

component in the data term (4).

Furthermore, we control the locality of each Scribble r by
modifying its proximity fall-off δ (3) as follows:

δ(prox(i, r), σprox) = 1

σprox
exp

(
−prox(i, r)2

σ 2
prox

)
. (6)

Here, σprox follows the desired locality (i.e. is large for global
influence and small for local influence) and the normaliza-
tion term 1/σprox ensures the integral over the fall-off function
stays equal for different values of σprox (i.e. amplitude is high
for small values and low for large ones). In other words, the
overall energy remains constant, while its spatial spread is
controlled. When σprox becomes very low, the response of the
fall-off function (6) for distant stroke segments also becomes
very low and can therefore be easily overridden when com-
puting the max value in (4) as illustrated in Figs. 3(b)–(f).

There are several possible ways to control the parameter
σprox. One natural way is to use the speed of the Scribble
based on the experimentally demonstrated linear relationship
between speed and perceived locality [AZ97]:

W = β · L

T − α
. (7)

Here, W is the selection radius, L is length of the Scribble, T
is time spent on drawing it and α and β are empirically mea-
sured constants. This rule was used to control the selection
locality in systems having limited modality [LS05]. Since the
spatial spread of the fall-off function (6) grows linearly with
the increasing σprox we can set σprox = W/2. Alternatively,
one could consider the use of pen-pressure, or—in the case
of binary modality—a simple key toggle to switch between
two locality values.

3.2. Optimization method

As shown in [BVZ98], minimizing the energy function de-
fined in Equation (1) is equivalent to solving a multi-way cut
on a specific weighted graph G = {V, E}, where V = {S,L}
is a set of vertices and E = {Es , El} is a set of edges (see
Figure 4). The graph vertices V consist of stroke segments
S and label terminals L. Each stroke segment i ∈ S is con-
nected to all other stroke segments j ∈ S − {i} via edges Ei,j

having weight wi,j equal to the smoothness term Vi,j when
φi �= φj . In addition, auxiliary edges Ei,l connect stroke seg-
ments i ∈ S to label terminals l ∈ L. Each Ei,l has weight
wi,l = λ(1 − Di(l)), where λ is the parameter defined in
Equation (1).

The multi-way cut problem with two terminals is equiv-
alent to a max-flow/min-cut problem for which efficient
polynomial algorithms exist [BK04]. However, for three or
more terminals the problem is NP-hard [DJP*92]. To ob-
tain a good approximate solution, we use a simple divide-

Table 1: Parameter settings for the user study and all examples in
this paper.

Parameter Value Unit

λ 4
σprox smooth 100 px
σdir smooth 0.5
σtime smooth 1000 ms
σcurv smooth 0.1
σprox data [10; 90] px
σdir data 0.1
σcurv data 0.25
B 0.0001
Artboard width 1200 px
Artboard height 1200 px

and-conquer heuristic previously proposed in [SDC09b] to
gradually simplify the N -terminal problem into a sequence of
N − 1 binary max-flow/min-cut subproblems. This approach
provides results similar to more advanced techniques (such
as α-expansion or α/β-swap [BVZ01]), but is significantly
faster and therefore better suited for interactive applications.

4. Results

We demonstrate the effectiveness of our algorithm on a va-
riety of input sketches. All results were generated using the
parameters in Table 1.

Figure 5 shows a collection of simple input sketches and
Scribbles, together with the colour-coded stroke labelling
output by our system. These results show that desirable
sketch segmentations can be obtained using very different
scribbling strategies. We note that the input Scribbles do not
have to closely match the sketch in order for our algorithm
to work well—approximate similarity in terms of position,
orientation and curvature is sufficient.

Figures 1 and 6 show results from more complex input
sketches. To correctly segment these images, users typically
start with rough, fast strokes, and then refine the output lo-
cally using slower, more accurate strokes. Our method ro-
bustly handles scenarios where strokes that are close together
and almost parallel belong semantically to different regions
(as shown on the waiter’s legs and snake and pole example in
Figure 6). In these cases, the time metric plays an important
role in the labelling process.

Our framework does not require artists to draw the input
sketches in any particular manner. It is possible that strokes
representing the same region can be drawn at very different
moments in time. This happens, for instance, when artists
first draw silhouettes for the whole scene, and then proceed
to refine the drawing. This can diminish the advantage of
taking timing into account in the similarity metric. Correct
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Figure 1: Sketch segmentation: For each example pair, Scribbles on the left produce the segmentation on the right.

Figure 2: Energy definition overview. The input consists of
a set of strokes (black) and Scribbles (red and blue dotted
lines). The output consists of a labelling of all strokes (the
labelling is indicated here by the red/blue colour assignment
to the strokes in the output). Smoothness term: For a segment
i and a neighbour segment j , Vi,j expresses the energy of
assigning a different label to i and j , based on how similar
they are. Data term: Given a labelling φi = l∗ (assigning
label l∗ to segment i), Di(φi) expresses the energy of the
labelling, which is a function of the similarity of segment i

to all Scribbles associated with l∗.

segmentations can still be obtained, but more Scribbles may
be required. Alternatively, the similarity metric can be ad-
justed to apply a smaller weight to the time parameter, or it
can be removed as is done for the Scribble metric.

4.1. User Study

In order to test the efficiency and ease of use of our method,
we conducted a user study comparing Smart Scribbles to our
implementation of several commonly-used selection tools,
namely point, box and lasso (these tools are typically in-
cluded in professional vector graphics software such as
Adobe Illustrator or Inkscape). This section includes an
overview of the study results.

Our user study had 35 participants (eight females and
27 males with ages ranging from 18 to 62). Subjects had no
prior experience using Smart Scribbles, and varying levels of
proficiency (from none to expert level) with the professional
software packages.

Participants were asked to use the different tools to match
given labellings on four different drawings of varying com-
plexity (see Figure 7). The system recorded the time taken to
complete the tasks and the mouse mileage, as well as the ac-
curacy of the final labelling. Overall distributions of times and
mouse mileage measured during the experiment are depicted
in Figure 8. There is a notable performance gain (1:23× to
2:36× median speed-up) when comparing Smart Scribbles
to the common selection tools. Paired t-tests (see Table 2)
indicate that this gain is statistically significant (p < 0.005)
for four of six drawings. The lower confidence level for the
snake and combo drawings is reflected by notable intersec-
tion between interquartile ranges of box-and-whisker plots in
Figure 8. Although the median speed-up is apparent, the ad-
vantage of Smart Scribbles is not as convincing in this case.
The main reason here could be the relatively low complexity
of these examples.

In addition, participants were presented with different
ways of controlling the locality. We tested the linear relation-
ship proposed in [AZ97], as well as a simple binary modality
associated with the extreme values of the parameter σprox data

as shown in Table 1. When asked about their experience, a
majority (31) preferred the binary switching approach. We
believe this is due to two reasons. First, in previous work,
stroke speed had a direct associated visual feedback. This
cannot easily be done with our Scribbles, as the result of the
selection is not strictly bounded by a spatial radius. A simpler,
more explicit interface may therefore be more appropriate.
Secondly, a majority of the participants (27) indicated that
they do not want to be forced to draw Scribbles slowly.

5. Applications

The labelling produced by our approach can be utilized to
generate input to perform region as well as stroke segmen-
tation (see Figure 10a). Once the labels for the segments
of each stroke are computed, we can automatically obtain
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Figure 3: The effect of the locality control by varying σprox: A blue Scribble is drawn on the foot (circled in red). On the right,
the value of σprox is progressively decreased. Notice how the selection becomes progressively more local as the influence of the
blue label gets overruled by the background label (shown in black).

an area mask of the enclosed region using the LazyBrush
[SDC09b] algorithm (see Figure 9). To this end, we first
render all segments assigned to a specific label to a raster
image. This image is used both as an input grey-scale image
(Figure 9a) and as foreground soft scribbles (blue in Fig-
ure 9b) for input to LazyBrush. In addition, we use a default
background hard scribble around the image boundary (red
in Figure 9b). Given this input, LazyBrush produces the de-
sired area mask (Figure 9c). As compared to other naive
methods (like convex-hull or flood-fill), this approach works
with concave regions and is robust to small gaps.

For more complex sketches, the user may need to specify
additional Scribbles (Figure 9d) to classify interior strokes
and use them as additional background soft scribbles for
LazyBrush (Figure 9e). These new scribbles enable the area
computation method to produce masks that contain holes
(Figure 9f).

We note that similar masks (Figure 9i) can be produced
with the original LazyBrush algorithm directly. However, the
area segmentation alone is not sufficient to provide a labelling
of the individual strokes, because strokes at the boundaries

Figure 4: Graph construction. Stroke segments are shown as
black circles. Terminal labels (in this example l1 and l2) are
shown as coloured squares. The graph edges wi,j reflect the
smoothness terms Vi,j between the stroke segments i, j ∈ S,
whereas the data terms Di(l) for stroke segment i ∈ S and
label l ∈ L are captured by the weights wi,l .

between different area masks cannot be consistently assigned
to one mask or another (Figure 9g). Moreover, with the orig-
inal LazyBrush algorithm, the user must be more careful,
since the optimization only takes into account the position
of the scribbles. In contrast, our framework also considers
orientation, curvature and time (compare Figures 9d and h).

The ability to easily label both strokes and areas empow-
ers a large variety of applications. One can easily alter the

Figure 5: Results for simple sketches: several different in-
puts produce the same segmentation.
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Figure 6: Example results: For each example, the colored Scribbles are shown on the input drawing and the adjacent image
shows the resulting colour-coded labellings.
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Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



G. Noris et al. / Smart Scribbles for Sketch Segmentation 2523

Figure 7: Given drawings and labellings from the user
study.

individual drawing style for all strokes that have the same la-
bel. It is also possible to accurately separate the different parts
of a sketch, specify their depth ordering [SSJ*10] and then
deform them independently using ARAP shape deforma-
tion techniques [IMH05] (see Figure 10b). These operations

Table 2: Median speed-ups and results of paired t-tests comparing
times spent on labelling different drawings using Smart Scribbles
and common selection tools.

Drawing Speed-up t(df ) p-value

Combo 1.23× −1.8798 0.07847
Snake 1.53× −2.4807 0.02461
Skull 1.83× −8.3931 0.00000
House 1.85× −5.2488 0.00001
Abstract 2.36× −5.5759 0.00003
Characters 1.65× −3.8896 0.00118

can help, for instance, in the context of image registration
[SDC09a] to produce better alignment.

When artists start a drawing, they typically begin with a
simple, high-level sketch that depicts a set of primitive shapes
(see examples and references in [GIZ09]) that are called
volume or scaffold lines. If available, we can use these aiding
structures as Scribbles to segment the final detailed sketch
(see Figure 10c). This would let the artist focus on drawing
without having to switch between different brushes. ARAP
deformation, for instance, could then be used to correct the
shape of semantically meaningful sketch regions.

6. Limitations and Future Work

The selection of good parameters for the similarity terms and
the energy function requires some effort. As can be observed
in the parameter sensitivity graphs in Figure 11, the system
is robust when parameters are perturbed one at a time. This
is due to the correlation that exists between the similarity
terms. However, it is possible that the perturbation of multiple
parameters can lead to significant changes in the result. We
also tested the benefit of including the stroke creation time in
the stroke analysis. After removing this information from the

Figure 8: Interaction times and mouse mileage of participants for different drawings using Smart Scribbles (orange) and
common selection tools (blue).
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Figure 9: Area mask computation: strokes of an input sketch
(a) can be used as LazyBrush soft scribbles (b) to automati-
cally fill the drawing (c). Additional Scribbles (d) can be used
to segment the strokes (e) for better control of the paint fill
(f). Using the original LazyBrush algorithm (h) to paint the
figure also produces a good result (i), however, the strokes
cannot be classified based on the painting alone (g).

similarity terms, and retuning the remaining parameters, we
achieved the results shown in Figure 12. In our experience,
omitting this temporal information reduces the effectiveness

of our method, as overlapping strokes require more effort to
be separated. In the future, we plan to develop a system that
allows automatic parameter tuning based on a database of
ground truth data.

Although we aim to produce accurate labelling with min-
imal user effort, detailed selection is necessary when am-
biguities exist. One such ambiguous case occurs when an
object is occluded by another object and parallel strokes
from each are very close together or even overlap. In this
case, only the time constraint can provide a distinctive met-
ric to obtain correct labelling. However, when the time is
not available or when the user does not preserve temporal
coherency of strokes, our approach requires additional user
guidance.

The proposed graph-cut energy minimization strategy is
generally very fast and produces the labelling at interactive
rates. However, in the worst case, when a large number of
strokes are close to each other as defined by our similarity
measure, the number of edges in the graph can grow quadrat-
ically with the number of strokes and the computation can
become prohibitively slow (see Figure 13). The problem can
be alleviated by subsampling the strokes and processing dis-
connected components individually. Another problem is re-
lated to the non-polynomial complexity of the core max-flow
algorithm [BK04]. In certain situations where the cost of the
minimal cut is very high and the graph topology is complex,
the number of augmentation paths can grow very quickly
along with the computation time. This issue can be solved by
a recently proposed incremental breadth-first search solution
[GHK*11] that works in polynomial time and is typically
notably faster than [BK04].

c

ba

Figure 10: Applications. (a) Opaquing of the segmented clusters, (b) ARAP deformation and opaquing with depth inequalities,
(c) on-the-fly labelling.
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Figure 11: Single parameter perturbation. Given a database of eight drawings, each with five different sets of Scribbles drawn
to match a desired segmentation, we measure the segmentation accuracy obtained with perturbations of the empirically chosen
settings of Table 1. In each graph, the horizontal axis shows the multiplication factor for one of the parameters in exponential
scale. The vertical axis shows how the correctness of the segmentation evolves. The graphs show that the system is mostly
sensitive to time and proximity information, whereas direction and curvature have less influence.

Figure 12: No-Time-Test: this image shows how the system works when no temporal information is used. Notice how the
cluttered regions require more Scribbles to produce a proper segmentation.
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Figure 13: Performance limit. The graph shows the computation time for the optimization in our implementation. The data
were generated by progressively subsampling a complex drawing. Assuming a interactivity limit of 0.2 s, our implementation
can optimize the labelling for up to 2000 segments. The corresponding subsampled drawing is shown on the right.
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The use of previously labelled drawings as Scribbles offers
another avenue for future work. These annotations could be
used on-the-fly to label new sketches as they are created,
thus simplifying further interactions. This approach could be
used, for instance, as an extension to the recently presented
ShadowDraw system [LZC11], by augmenting each sketch
in the database with Scribbles. In this way, the segmentation
could be provided automatically as new drawings are created.
A similar use case arises in the context of sketchy animations
where image registration [SDC09a] can be used to transfer
already labelled strokes and treat them as Scribbles for the
next frame. This can help, for instance, to better control
temporal noise [NSC*11]. Scribbles could also potentially
be used to improve the accuracy of drawing simplification
methods [GDS04, BTS05, SC08], as a typical problem with
the current, fully automatic, approaches is that they do not
take into account any semantic information such as provided
by our approach.

7. Conclusions

We have presented Smart Scribbles, a scribble-based inter-
face for sketch segmentation. Our method is fast, supports
multi-label segmentation and acts as an enabling technology
for a variety of applications in the context of drawing, editing
and animation.

In the long term, we envision a next-generation drawing
application, where drawing, editing and animation are tightly
integrated, and where the simplicity of the interaction is the
key. This work represents a step in this direction; a bridge
between classic drawing and digital editing.
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