
Copyright © 2012 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
SIGGRAPH Asia 2012, Singapore, November 28 – December 1, 2012.
© 2012 ACM 978-1-4503-1757-3/12/0011$15.00

Efficient Rasterization for
Edge-Based 3D Object Tracking on Mobile Devices

Etan Kissling
ETH Zurich

Kenny Mitchell
Disney Research Zurich

Thomas Oskam
Disney Research Zurich

Markus Gross
Disney Research Zurich

ETH Zurich

Abstract

Augmented reality applications on hand-held devices suffer from
the limited available processing power. While methods to detect the
location of artificially textured markers within the scene are com-
monly used, geometric properties of three-dimensional objects are
rarely exploited for object tracking. In order to track such geometry
efficiently on mobile devices, existing methods must be adapted.
By focusing on key behaviors of edge-based models, we present
a sparse depth buffer structure to provide an efficient rasterization
method. This allows the tracking algorithm to run on a single CPU
core of a current-generation hand-held device, while requiring only
minimal support from the GPU.

CR Categories: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Tracking;

Keywords: augmented reality, rasterization, pose tracking

1 Introduction

Augmented reality modifies the perception of reality by embedding
computer-generated information into images or videos. Because
real-time operation is the key to provide an optimal user experience,
algorithms have to be optimized for the specific device characteris-
tics to still allow for the processing of gameplay logic and physical
simulations.

Commonly, augmented reality applications provide printed cards
that are used to estimate the device’s position within the scene. Us-
ing this position, virtual contents can be placed in the correct loca-
tions in the device’s video stream. This approach is very restricted,
as the cards often incorporate specific textures, in order to be easily
detectable by the system. These textures can look unnatural, and
the question arises, whether actual real-world objects could be used
as tracking targets.

One research paper that describes the tracking of three-dimensional
rigid objects is ”Full-3D Edge Tracking with a Particle Filter”
[Klein and Murray 2006]. First, edge features are extracted from
the camera image. By matching them with renderings of the ob-
ject’s known geometric shape from multiple viewpoints, weights
for the different camera pose estimates are calculated. A particle
filtering technique is then applied to further investigate likely pose
estimates (see Figure 3).

(a) (b)

Figure 1: Cluttered environment result. The top row shows the im-
ages directly after a fast movement. The result after tracking suc-
ceeds is shown in the middle row. The bottom row shows the overlay
rendered on top of the extracted edge features from the camera im-
age. The colors indicate the direction of the edge gradients. In (a),
the cube’s position is detected after 1.1 seconds. In (b), the cube’s
position is detected after 0.7 seconds.

In contrast to much conventional work, the authors base their al-
gorithm on edge-based models, as edge features are robust to im-
age distortions, such as motion blur or noise. Edge features also
consume more screen space, resulting in better handling of partial
occlusions than corner-based algorithms. While Klein and Mur-
ray demonstrate their algorithm on a desktop workstation, we ex-
tend it to work on current hand-held devices that expose the Open
Graphics Library for Embedded Systems (OpenGL ES) 2.0 inter-
face. Although being powerful, this interface does not include all
features that are available in its desktop counterpart. This is prob-
lematic, as the GL OCCLUSION QUERY extension is not available,
that is used by Klein and Murray to read back certain essential pixel
counts from the GPU at real-time frame rates.

To still implement their algorithm on hand-held devices, we tried to
apply an image pyramid-based approach to emulate the behaviour
of the missing extension. However, this approach failed as not
enough performance is offered in reading back data from the GPU
to the CPU to meet the algorithm’s needs. Another attempt incor-
porated the use of large textures with multiple renderings on it, as
well as a method where the different color channels of the textures
contained renderings for multiple pose estimates. This allows the
evaluation of multiple pose estimate likelihoods in parallel. Un-
fortunately, the graphics hardware of consumer-grade mobile de-
vices is not optimized for high-resolution texture processing, and
the color channels do not offer the required bit-depth, leading to
less accurate results.

Figure 2: Partial occlusions result. The images visualize how the
tracker reacts to different types of occlusions. Even with major oc-
clusions, the cube can still be tracked.

In order to succeed with an implementation of the particle-based al-
gorithm, we devised an efficient CPU-based rasterization method to
replace the workstation GPU feature. Instead of using advanced op-
timizations applied to general purpose software rasterization algo-
rithms, we employ a custom technique that focuses on reducing the
necessary memory bandwidth by relying on a sparse depth buffer
structure. This structure allows our rasterizer to run on a single
CPU core at interactive frame rates.

2 Related Work

One of the earliest algorithms to achieve edge-based tracking is the
RAPiD tracker [Harris 1993], where control points are inserted on
model edges. To estimate the new camera pose, a search perpen-
dicular to the edge direction is performed starting at the control
points until an edge is found in the image. The camera pose is
then updated by minimizing the distance between the previous and
the current frame. This approach works only with small positional
changes between the video frames, which we cannot guarantee in
an augmented reality application on a hand-held device.

Other early approaches such as [Lowe 1990] try to detect the ob-
ject in fast motion. Measurement and matching errors are mod-
eled to accomplish this task. [Armstrong and Zisserman 1995] pro-
pose adding of redundant measurements to verify pose estimates
and to allow the system to handle incorrect measurements [Rosten
and Drummond 2005] use corner-features as a fallback mechanism
when no accurate prior pose estimate is available. In [Klein and
Drummond 2004], gyroscopes, which sense angular velocity, are
used to further increase the accuracy between video frames.

We also make use of motion sensors in our implementation. By
relying on the produced orientation data to track the device’s ori-
entation, we critically reduce the algorithmic complexity from six
degrees of freedom down to three degrees of freedom, as only the
position is required to be detected through image processing. We
further exploit the motion data to react to shaking by increasing the
estimated motion, and to slow down when the device is held still to
reduce jitter effects.

Particle filters use an alternate approach. Instead of trying to in-
crease the accuracy of a single pose estimate, multiple estimates in
parallel are used to drop wrong estimates. Important work in this
area is described in [Isard and Blake 1998] and visualized in Fig-
ure 3. [Klein and Murray 2006] extend this algorithm to provide
three-dimensional edge tracking of complex models.

In order to evaluate the likelihood for a given camera pose, [Klein
and Murray 2006] first rasterize the faces to the depth buffer. In a
second stage, the edges are rasterized with activated depth testing.
Therefore, only edge pixels that are visible are rendered. Another
pass is made that leaves only edge pixels which also match the gra-
dient directions of the camera image. The resulting likelihood is
then directly deduced from the number of pixels that are left by
these tests. This is convenient, as the GL OCCLUSION QUERY ex-
tension reveals these numbers without major drawbacks.

(a)

(b)

(c)

(d)

(e)

Pose estimates
of the last

video frame

Resampling

Motion model

Likelihood
evaluation

Posterior
probability
distribution

Figure 3: Visualization of the coarse structure of a particle filter
algorithm. Multiple camera pose estimates that are tracked in par-
allel are visualized as different bars. The height of the bars visual-
ize the different weightings. In (a), the estimates of the last frame
are shown. They approximate the posterior distribution of the last
frame. This distribution is then resampled in (b) to reduce the time
spent on unlikely estimations. After applying a motion model to the
different pose estimates in (c), the new likelihoods are evaluated in
(d). The final probability distribution is shown in (e).

3 Efficient Rasterization

On OpenGL ES 2.0 based mobile devices, OpenGL Occlusion
Queries are not available, leaving only glReadPixels to retrieve
data back from the GPU. Because this leads to a synchronization of
the GPU with the CPU, the pipeline is stalled, leading to massive
performance drops. On the device where we tested our algorithm,
OpenGL texture caches allow to access the camera memory directly
from OpenGL. However, this does not addresses the problem of
synchronization, as graphics operations must still complete before
the results can be retrieved. In order to achieve interactive frame
rates, we propose an approach based on software rasterization.

Our implemented software rasterizer works in multiple stages. For
each likelihood evaluation, we start by projecting the vertices into
the corresponding camera coordinate system. Secondly, we raster-
ize the edges to pixels, and store their depth values. In the third step,
the faces are also rasterized and used to detect and remove hidden
lines, that exist on complex objects. The required pixel quantities to
calculate the likelihood of the camera pose can finally be retrieved
from the depth buffer structure.

The key problem with software rasterization on a mobile device is
that memory fill rate becomes a critical performance factor. When
a simple array is used for the depth buffer structure, the clearing
operation at the beginning of each rendering already consumes too
much processing time. We circumvent this issue by, first, reducing
the size of the depth buffer, and, second, exploiting that edges con-
sume far fewer pixels on the screen than filled faces. By rendering
the edges before the faces (as opposed to the approach described
in [Klein and Murray 2006]), we only have to check a few pixels
for visibility during the face rasterization stage. This leads to fewer
memory accesses (depending on the object’s model and the viewing
angle) and, therefore, allows this technique to work well.

During edge processing, we use the Cohen-Sutherland algorithm
for clipping. The Bresenham line algorithm handles rasterization.
Faces are rasterized as their corresponding collection of triangles.
We start at the top corner of the triangle, and follow the two adjacent
edges until reaching the center corner of the triangle. For each pixel
row, the depth buffer structure is used to detect what pixels within

Depth values

Bit vector that describes which pixels match the de-
tected edge features

Indicator about which pixels are currently in use

Information about which blocks of 32 pixels con-
tain any used pixels

Figure 4: One row of the depth buffer structure. Each square cor-
responds to 4 bytes of memory. Additional records are packed into
84 bytes per pixel row.

it are hidden by the processed face. The bottom half of the triangle
is processed analogously.

3.1 Depth Buffering

When implementing a software rasterizer on a mobile device, one
core issue is the memory performance. Therefore, we propose mul-
tiple adjustments to make CPU-based depth buffering feasible.

First, the depth buffer has to be chosen small enough to fit into the
CPU cache. We chose a size of 320 × 180 pixels for the buffer,
where each pixel can be assigned a 4 byte long floating point num-
ber. In addition, an acceleration structure has to be built to allow
fast resets of the depth buffer. It is also important to allow the skip-
ping of connected pixels that are unused to reduce the required fill
rate during face rasterization.

In order to achieve this, we split the depth buffer into 180 pixel
rows, with each row structure managing its own set of 320 pixels.
This row is then segmented into 10 blocks of 32 connected pix-
els each. Two bit vectors are stored per block in addition to the
pixel’s depth values. The first one indicates which contained pix-
els are currently in use. The second one stores which pixels were
successfully matched with the camera’s edge image. An additional
bit vector is stored for the whole pixel row. It represents which of
the pixel blocks are completely unused. This additional information
consumes minimal extra memory, as shown in Figure 4.

3.1.1 Depth Buffer Insertion

During edge processing, each rasterized pixel is processed by the
optimized depth buffer algorithm.

The first step is to check whether an entry is already stored at the
position of the input pixel. This is achieved by looking at the bit
vectors located at the corresponding row in the depth buffer data
structure. If an entry already exists, an additional check is per-
formed to determine whether the existing entry is visible or the new
one. This decision is made by comparing the individual depth val-
ues. If the new entry is invisible, no further action is required and
processing can be aborted. Otherwise, the insertion into the depth
buffer structure of the old value has to be reverted before writing
the new depth value to ensure consistency. The new depth value is
then copied to the correct location in the depth value array, and the
bit vectors of the buffer structure are updated.

Next, the edge corresponding to the stored pixel is compared to the

one in the camera image at the same location. Finally, the corre-
sponding pixel counts necessary for the likelihood evaluation are
updated, that is the data which is previously retrieved by relying
on Occlusion Queries. By attaching a profiler, we revealed that in
many cases, the necessary accesses into the acceleration structure
take less time to process than the texture lookup into the camera
image.

3.1.2 Hidden Pixel Removal

After all edges have been processed, the rasterized faces are used
to detect which edge pixels are invisible due to overlap. Because
we rasterize the faces in a row-by-row manner, we always have
two points available that describe the bounds of the face on the
corresponding row. Everything between the two points is inside
the face, everything else is outside the face. The depth values are
interpolated linearly between those two points.

To remove hidden pixels, it is necessary to visit all pixels within the
range spanned by these two points and compare their depth value
to the interpolated one. To perform this task efficiently, we make
use of the CLZ operation that is part of the ARM instruction set,
which is available on most hand-held devices. This instruction is
performed in hardware and can, therefore, execute fast and in con-
stant time. Given an arbitrary 32 bit value, CLZ calculates the num-
ber of bits that are set to 0 before encountering the first 1. If none
are set, 32 is returned.

Since we use bit vectors to store information about which pixels are
currently in use, we can skip over all cleared bits and stop only at
the 1 values, that correspond to stored depth values. These values
were previously used during the edge rasterization stage. Because
the depth buffer structure is sparse, as only edges were rendered
into it, most pixels are skipped that would have been accessed in a
nave implementation. Additional speedup is achieved by using the
bit vector that contains consolidated information about entire pixel
blocks to skip over whole blocks of 32 connected pixels.

4 Results

The tracking algorithm is implemented on an Apple iPad 2 and
tested on a stationary cube with different geometric shapes on its
sides. The border-lines of the shapes are stored as edges to be
tracked. The cube’s faces are each split into two triangles and
used for hidden edge removal. The edges between the faces are
not tracked, as their visibility depends on the lighting conditions.
The model consists of 25 edges and 12 triangles. The cube serves
as a simple edge-based model, and can be readily replaced with
more realistic real-world geometry - because we use depth buffer-
ing, objects with hidden lines are also supported.

Tracking is performed at a resolution of 320×180 pixels on a single
CPU core. 300 pose estimates are tracked in parallel. 200 of them
are taken from the posterior probability distribution of the previous
video frame. 100 estimates are repositioned randomly after each
frame, without accounting for the tracking history. This allows the
re-detection of the object after tracking failure. The overlay consists
of a half-transparent colored version of the cube, that is rendered at
its detected location. The transparency level describes the tracking
accuracy. The more accurate the tracking is, the more opaque the
overlay is rendered. This ensures that the overlay becomes invisible
when the object is not present in the scene.

One of our tests focuses on the handling of partial occlusions by
moving a hand in front of the object (see Figure 2). The tracking
algorithm handles this case well and works also, when half of the
object is occluded. This leads to the conclusion that only signifi-
cant edges of an object have to be included in the geometric model,

Image capturing / Application logic / Final Rendering

Tracking

Pose estimate updates

Likelihood evaluation

Coordinate
transform Edge processing Face processing

Edge
rasterization

Depth bu�er
writes

Removal of values
from the depth bu�er

Edge feature extraction

Face rasterization

Ed
ge

 de
te

cti
on

 (G
PU

)
Re

ad
 ed

ge
 fe

at
ur

es

M
ot

ion
 m

od
el

/ R
es

am
pli

ng

Figure 5: CPU time distribution over the different functions used
in the tracking algorithm.

allowing a simple model to be used in order to track more complex
objects without sacrificing performance. A similar test is performed
in a cluttered environment. In most cases, the tracked object’s pose
is determined quickly, as shown in Figure 1. However, depending
on the structure of the extracted edge image, tracking may fail in
cluttered environments. When track of the object is lost (for exam-
ple after inducing fast motion), the recovering process completes
often in under 2 seconds.

During the tests, we analyzed the CPU time distribution over the
different functions of the algorithm. Only a single CPU core is
used during the tests.

After 5 minutes of tracking at a medium distance of around 15 cm,
89.3% of the time is spent in the tracking code and distributed as
visualized in Figure 5. 84.4% is used to update the pose estimates.
The likelihood evaluation takes up the biggest chunk of 82.3%.
31.6% of the CPU time is spent in edge processing and 38.0%
in face processing. This shows that the depth buffer acceleration
structure paid off. Without it, much more time would be wasted
in face processing as faces consume much more space than edges.
The depth buffer structure takes 17.4% for writing operations and
29.0% for the removal process. Only 0.3% make up the edge de-
tection part that runs on the GPU.

The overall distribution over the different parts of the algorithm vi-
sualizes, how the algorithm performs with different model com-
plexities. Since most of the time is spent in writing and remov-
ing pixels from the depth buffer structure, it should be possible to
achieve similar frame rates with higher-complexity models, as long
as they have roughly the same size as the tested cube.

Tracking is performed at 60 − 85 ms per frame, depending on the
pixel count of the object’s renderings. Since the different likeli-
hood evaluations are independent of each other, multiple threads
could be used to process multiple pose estimates in parallel. As
an implementation without an optimized depth buffer structure is
infeasible, and because the OpenGL Occlusion Query extension is
not available on current hand-held devices, it is not easily possible
to compare directly to other implementations.

5 Conclusion

Augmented reality on mobile devices is in most cases restricted to
2D marker tracking due to the limited processing power. To our
knowledge, we describe the first functional edge-based 3D object
tracking algorithm, that leaves enough computational power on a
mobile device to support advanced applications such as games. Our
implementation retargets [Klein and Murray 2006] to consumer de-
vices, as their algorithm provides good results on a desktop com-
puter.

In order to use this approach on a restricted hardware, we introduce
multiple extensions. First, we extend the method to incorporate the
motion sensors available on the device to detect an accurate approx-
imation for the device’s orientation. This leads to the restriction that
the tracked object has to be stationary, but allows the algorithm’s
complexity to be reduced from six degrees of freedom to three de-
grees of freedom. By including motion sensors into the object itself
and transmitting it to the hand-held device, this restriction may be
released in the future without increasing its processing power.

Next, we use an efficient rasterization based on sparse depth buffers
to cope with the lack of OpenGL Occlusion Queries on mobile de-
vices that allow efficient readouts of GPU data back to the CPU.
One downside of CPU-based rasterization is, that the size of the
tracked object’s model is limited. Since the pixels cannot be pro-
cessed in a highly parallelized manner as on GPUs, run-time in-
creases with the number of rendered pixels. One solution is to
reduce the pose estimate count for complex models. However,
this also means reducing the tracking accuracy. On the other side,
CPU-based approaches allow the use of more flexible algorithms in
the likelihood evaluation stage and in the calculation of the motion
model, as GPU-based restrictions to programs do not apply.

We prove that current hand-held devices are capable of performing
edge-based three-dimensional object tracking. Our solution is also
well positioned for the increasing CPU power of upcoming mo-
bile hardware, enabling applications that exploit the key strength of
flexible software rasterization methods further.

References

ARMSTRONG, M., AND ZISSERMAN, A. 1995. Robust object
tracking. In Asian Conference on Computer Vision, vol. I, 58–
61.

HARRIS, C. 1993. Tracking with rigid models. In Active vision,
MIT Press, 59–73.

ISARD, M., AND BLAKE, A. 1998. Condensation - conditional
density propagation for visual tracking. International Journal of
Computer Vision 29, 5–28.

KLEIN, G., AND DRUMMOND, T. 2004. Tightly integrated sensor
fusion for robust visual tracking. Image and Vision Computing
22, 10 (September), 769–776.

KLEIN, G., AND MURRAY, D. 2006. Full-3d edge tracking with
a particle filter. In Proc. British Machine Vision Conference
(BMVC’06), vol. 3, BMVA, 1119–1128.

LOWE, D. 1990. Integrated treatment of matching and measure-
ment errors for robust model-based motion tracking. In Com-
puter Vision, 1990. Proceedings, Third International Conference
on, IEEE, 436–440.

ROSTEN, E., AND DRUMMOND, T. 2005. Fusing points and lines
for high performance tracking. In Computer Vision, 2005. ICCV
2005. Tenth IEEE International Conference on, vol. 2, IEEE,
1508–1515.

