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complex structures such as turbulence, right: by generating distributions of possibly multiple classes of objects with pair correlation functions
(PCF) precisely matching those of provided input examples, such as the distributions of these candies of four colors.

Abstract

Analyzing and synthesizing point distributions are of central impor-
tance for a wide range of problems in computer graphics. Existing
synthesis algorithms can only generate white or blue-noise distri-
butions with characteristics dictated by the underlying processes
used, and analysis tools have not been focused on exploring rela-
tions among distributions. We propose a unified analysis and gen-
eral synthesis algorithms for point distributions. We employ the
pair correlation function as the basis of our methods and design
synthesis algorithms that can generate distributions with given tar-
get characteristics, possibly extracted from an example point set,
and introduce a unified characterization of distributions by map-
ping them to a space implied by pair correlations. The algorithms
accept example and output point sets of different sizes and dimen-
sions, are applicable to multi-class distributions and non-Euclidean
domains, simple to implement and run in O(n) time. We illustrate
applications of our method to real world distributions.
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1 Introduction

Observing and recreating complex structures and phenomena of the
real world is one of the main goals of computer graphics. The struc-
tures often exhibit repetitive patterns and symmetries and can be
explained well in a distributional sense. Analysis of a specific phe-
nomena is followed by fitting appropriate models and developing
specialized algorithms for synthesis. Modeling complex object dis-
tributions [Deussen et al. 1998; Lagae and Dutré 2006; Wei 2010;
Ma et al. 2011], turbulence synthesis for fluids [Selle et al. 2005a;
Pfaff et al. 2009], crowd simulations [Narain et al. 2009] and many
more applications can be seen as instances of this process. Hence,
a very important open problem is learning and synthesizing general
distributions.

Although point distributions arise in many contexts, analysis tools
and synthesis algorithms in graphics have been mostly focused
on blue-noise distributions, where points are distributed randomly
with a minimum distance between each pair. It is well-known that
using such a distribution for sampling leads to high quality anti-
aliasing. They are also used in many contexts such as image sam-
pling [Cook 1986], geometry processing and synthesis [Alliez et al.
2002; Ma et al. 2011], object placement [Deussen et al. 1998;
Lagae and Dutré 2006; Wei 2010], or procedural noise genera-
tion [Lewis 1989]. This has led to various synthesis algorithms
that generate distributions with different regularity, density, and
randomness. However, the characteristics of the generated distribu-
tions are solely determined by the underlying point processes used
and limited to blue-noise sampling. In contrast, nature is full of
distributions with complex characteristics and many applications in
graphics require analyzing and synthesizing such datasets.

Point distributions have also been extensively studied in physics and
spatial statistics [Torquato 2002; Illian et al. 2008]. The emphasis
in these fields is put on analyzing general distributions and fitting
models to understand natural processes. Statistics that depend on
correlations of locations and marks of points are used to analyze a
diversity of distributions and have been proven to be powerful and
discriminative.

In this paper, we introduce methods for analysis and synthesis of
general multi-class point distributions based on the statistical mea-
sure pair correlation function (PCF). To explore the nature of this
measure, we introduce an analysis based on the interpretation of it
as a mean in a high dimensional vector space that we call the pair
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correlation space (PCS). The vector for a given point in the PCS
simply measures the distribution of its distance to all other points.
We show that in this space, the degrees of freedom to character-
ize point distributions is low and directly linked to regularity. This
analysis allows us to explain distributions and existing synthesis
algorithms in a unified way, propose an irregularity measure, and
show that the PCF provides a compact representation for the char-
acteristics.

Following this analysis, we propose two general synthesis algo-
rithms. The first one is a generalization of dart throwing for ar-
bitrary PCFs and the other is a gradient descent based fitting of the
PCFs. The output of the first algorithm is used as the input for
the second to facilitate convergence. These algorithms can gener-
ate point distributions with desired characteristics extracted from
example distributions or synthesized. The example point sets and
generated point sets can be of different dimensions and sizes, con-
tain multiple classes, and reside on non-Euclidean domains. The
algorithms are simple to implement and run in O(n) time.

2 Related Work

Point Distributions in Computer Graphics

Spectral measures based on periodograms, along with simple scalar
measures such as the packing density, have been the prevalent
tools for analysis of point distributions in graphics [Ulichney 1987;
Lagae and Dutré 2008]. Recently, diagrams with similar anal-
ysis power have been proposed for distributions in general non-
Euclidean domains by considering the distribution of difference
vectors between points [Wei and Wang 2011]. The constructed
measures are then typically used for qualitative evaluation of the
properties of distributions. We propose a new analysis that can
quantitatively explain and relate distributions by mapping them into
a space constructed by using distances between points, where the
distance metric can belong to an arbitrary metric space.

Synthesis algorithms in graphics are mostly focused on distribu-
tions with blue-noise characteristics. The earliest thread of meth-
ods to generate blue-noise distributions is based on randomly gen-
erating points in space and accepting or rejecting based on a cri-
terion. This algorithm is known as simple sequential inhibition
in statistics, random sequential adsorption in physics [Illian et al.
2008], and dart throwing in graphics. The initial dart throwing al-
gorithm [Cook 1986] has been accelerated using a hierarchy of al-
lowable radiuses [McCool and Fiume 1992], specialized data struc-
tures [Dunbar and Humphreys 2006], parallelization [Wei 2008],
adaptive trees [Jones 2006; White et al. 2007; Gamito and Mad-
dock 2009], or explicit void region representations [Ebeida et al.
2011]. It has also been extended to multiple classes of objects [Wei
2010] such that distributions of points in different classes as well
as that of all points have blue-noise characteristics. We extend the
standard and multi-class dart throwing algorithms such that general
distributions with arbitrary characteristics can be handled.

In order to increase density and regularity, relaxation methods
where points are iteratively moved so as to optimize an energy
function and satisfy certain constraints are used. Lloyd’s algo-
rithm [Lloyd 1982] minimizes the quantization error and thus can
be utilized to obtain optimum placement of points that capture the
whole space well [McCool and Fiume 1992]. To avoid the opti-
mum involving regular structures, an equal area constraint for the
Voronoi regions [Balzer et al. 2009], or injection of randomness
into the relaxation algorithms [Schmaltz et al. 2010; Fattal 2011]
can be used. Each of these methods generate distributions with cer-
tain blue-noise characteristics dictated by the construction of the
algorithms. In contrast, our gradient descent based relaxation algo-

rithm can be used to generate distributions with general character-
istics directly controllable via specifying example distributions or
statistics.

Point Processes

Exploring patterns in point distributions is very important in a di-
verse selection of disciplines such as physics, chemistry, sociology,
geology, and astronomy. Hence, developing models for point pat-
terns to explain variations in nature has been attracting attention of
statisticians and physicists for a long time. In these fields, the gen-
erating processes of point patterns are called point processes [Illian
et al. 2008]. A particular point set is regarded as a realization of a
point process. Here, we provide a brief overview of the field that is
in the scope of this paper.

On the analysis side, the point process statistics are mainly con-
cerned with correlations of point locations and marks. The mea-
sures range from intensity of points to pairwise or higher order cor-
relations and topological characteristics such as statistics related to
Voronoi regions. In particular, we will base our analysis on the pair
correlation function which measures the probability of having a pair
of points at certain locations in space. This statistical measure was
introduced in the physics literature at the beginning of the 20th cen-
tury and is also known as the radial distribution function [Torquato
2002]. We show that the PCF is sufficient to precisely describe
characteristics of distributions with diverse properties, and it can be
utilized to define new analysis tools.

On the synthesis or simulation side, a typical approach is to gen-
erate distributions from fitted models. The models can be gener-
ally categorized as hard-core (with a minimum distance between
each pair of points) or clustering processes, or combinations of the
two at different scales, depending on the interaction between the
points. Examples of some models are Gibbs, Cox, Gaussian [Ker-
scher 2001], Matérn hard-core and clustering, and Neyman-Scott
processes, random sequential adsorption (dart throwing), and force
based algorithms [Jodrey and Tory 1985]. Once the model parame-
ters are estimated, variants of Markov Chain Monte Carlo methods
can be used to generate point sets following the model. However,
as with all model-based approaches, this method is limited by the
models chosen in the first place. Instead of relying on estimating pa-
rameters of a model, it is possible to randomly explore the configu-
ration space of all point locations and marks by adding or removing
a point at a time so as to satisfy a given condition [Torquato 2002].
However, this direct approach is not feasible and scalable for many
cases. Our algorithms do not rely on a model and still produce pre-
cise reconstructions of characteristics for general metric spaces and
multiple classes of objects efficiently.

3 Analysis of Point Distributions

Statistical measures are extensively used to analyze distributions of
locations of objects ranging from atoms to galaxies. The main aim
of the measures is to extract correlations in the point cloud data,
which makes them deviate from classical statistical measures. The
field of point processes deals with modeling and analyzing stochas-
tic distributions of points based on the extracted correlations. For an
excellent review of the theory and applications of point processes,
we refer the reader to Illian et al.’s book [2008].

In the rest of the section, we will consider stationary (i.e. trans-
lation invariant), isotropic (i.e. rotation invariant) and ergodic (i.e.
analysis on a finite window is sufficient) point processes. Hence,
the analysis of such a point process does not depend on the point,
direction, or window chosen. We will call such point processes
simply as isotropic. If an adaptive or anisotropic distribution is re-
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Figure 2: PCF, irregularity, and radial spectral measures for distributions generated by various algorithms. Matérn clustering process is
run with clustering radius 0.8rmax. All point sets have approximately 1024 points. For the PCF and irregularity graphs, r ∈ [σ, 5] rmax.

quired, a warped domain can be constructed via a modified distance
metric [Li et al. 2010].

3.1 The Pair Correlation Function

Among the various statistics used to describe and analyze patterns,
the pair correlation function is widely accepted as the most infor-
mative. Intuitively, this measure g(x,y) describes the joint proba-
bility of having points at locations x and y at the same time.

A precise definition of the PCF can be given in terms of the inten-
sity λ and product density % of a point process. The intensity λ(x)
of a point process is the average number of points in an infinitesimal
volume around x. Hence, intuitively it measures the average den-
sity of the points. For isotropic point processes, this is a constant
value λ. To define the product density, let xi denote the points, Bi
infinitesimal spheres around the points, and dVi the volume mea-
sures of Bi. Then p(x1, · · · ,xn) = %(x1, · · · ,xn)dV1 · · ·dVn is
defined as the probability of having xi in the infinitesimal spheres
Bi. For a pair of points, a second order version of this probabil-
ity is p(x,y) = %(x,y)dVxdVy . In the isotropic case, % only
depends on the distance between the points, hence one can write
%(x,y) = % (‖x− y‖) = %(r) and p(r) = %(r)dxdy. The PCF
is then defined as

g(r) =
%(r)

λ2
. (1)

For Poisson processes, there are no correlations between the point
locations and thus p(r) = λdxλdy, which implies that g(r) = 1.
Generally, the shape of the PCF depends on the clustering and
repulsion among the points. It can be shown that as r → ∞,
g(r) → 1. For many point sets, there is a finite rc such that
g(r) = 1 for r > rc and hence, most information about the point
set is contained in g(r) for the lower values of r.

3.2 Estimation of the Pair Correlation Function

In order to estimate the PCF, the intensity and product density
should be estimated. The trivial way to estimate the intensity is
dividing the number of points by the volume of the observation re-
gion, that is λ̂ = n/|V |, which provides an unbiased estimator.
Estimating the product density is more involved and window edge
effects should be taken into account. In practice, edge effects are
less important when hard-core processes are considered.

In this paper, we adapt an estimator designed for isotropic distribu-
tions [Ohser and Mücklich 2000; Illian et al. 2008]. Disregarding
the window edge effects, the estimator can be given by

ĝ(r) =
|V |

|∂Vd|rd−1n2

∑
i6=j

kσ (r − d(xi,xj)). (2)

Here |∂Vd| denotes the volume of the boundary of a unit sphere in
a d dimensional domain, and d(xi,xj) is its distance measure. We
use the Gaussian kernel kσ(x) = 1√

πσ
e−x

2/σ2

in our estimators.

This estimator makes it clear that the PCF boils down to a density
estimation of the distribution of the distances. The inverse weight-
ing by the term |∂Vd|rd−1 normalizes the distribution by the vol-
ume of an infinitesimal spherical shell of radius r since there will
be naturally more distances at larger radiuses.

In Figure 2, PCFs of some point distributions are plotted. Unlike
the spectral measures, the smoothing level we set makes the PCF
estimates smooth and indistinguishable for different instances of
the same distribution. This property is important if only a single
distribution is all we have to extract the properties of the underlying
point process.



Relation to Other Analysis Methods The power spectrum and
the differential domain analysis of Wei and Wang [2011] are two
proposed tools for the analysis of distributions in computer graph-
ics. It can be shown [Wei and Wang 2011] that the power spec-
trum is the cosine transform of the function used for differential
domain analysis. Hence, both contain the same information. The
power spectrum and the differential domain function are computed
using the difference vectors xi − xj (assuming Rd for simplic-
ity). The differential domain function can be defined in terms of
the probability density function of these difference vectors, which
implies that power spectrum also depends on this density. For anal-
ysis, radial averages around the origin are computed to generate
R → R functions via a histogram with a bin for each concentric
shell. The variation of the function values within each bin is de-
fined as anisotropy, which measures the deviation of the distribution
from being isotropic. Thus, the main statistics used for discriminat-
ing isotropic distributions are the radial mean plots.

The estimator ĝ approximates the probability density function of
the magnitude of the difference vectors, ||xi − xj ||. This means it
contains the same information as the radial averages for the men-
tioned analysis methods, and one can be obtained from the other.
For isotropic distributions, the magnitudes of the difference vectors
are the only quantities that need to be used in a 2nd order statistic,
since they are rigid motion invariant.

Parameters The most important parameter of the estimation is
σ. In point process statistics, there is no general consensus on
how to choose this parameter [Illian et al. 2008]. Small values
will cause fluctuations in the density estimation and make the es-
timator change from one instance of a point distribution to another.
Although this is desired for the analysis of a particular instance,
obtaining a general characteristic for a particular type of distribu-
tions requires to choose a certain degree of smoothness. Another
parameter is the range [ra, rb] of the r values. This range should
ideally capture enough of the characteristics to distinguish different
processes without redundancy.

In order to define these parameters in relative terms, we first nor-
malize the distances by the distance rmax defined as the minimum
distance between pairs of points for the maximum packing of points
in a given volume [Lagae and Dutré 2008; Gamito and Maddock
2009]. This normalization ensures that the number of points and
the volume considered do not affect the PCFs. We then assign
σ = 0.25 and rb = 2.5 or 5, for all results obtained in this pa-
per (several PCF plots in the figures have rb = 5 for illustration
purposes). In our experiments, values σ ∈ [0.1, 0.5] and rb > 2.0
provided good results. The lower limit ra cannot be set to 0 due to
the numerical problems. Although there exist solutions such as the
reflection method to accurately handle the unstable range [0, σ] [Il-
lian et al. 2008], we refrained from using them for simplicity of the
algorithms and expressions. In practice, we used values as low as
ra = 0.01σ in our algorithms without problems. All plots in the
figures also use this value for ra, unless stated otherwise. Finally,
a sampling of r should be specified to reliably capture the shape
of the estimator for the given smoothness level. We use a simple
regular sampling with a spacing of 0.05 between the samples.

3.3 The Pair Correlation Space

Equation 2 can be interpreted as the average of distance distribu-
tions for each point

ĝ(r) =
1

n

∑
i

ĝi(r), (3)
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Figure 3: (a) 2D embedding of the vectors φ̄ in the PCS for both
clustering and hard-core point processes with 10 different distribu-
tions for each different point process. (b) Embedding of the hard-
core part. (c) Embedding of the vectors φi for the hard-core distri-
butions. (d) Left to right: the eigenvalues of the covariance matri-
ces for the three embeddings in (a), (b), and (c), respectively.

where ĝi(r) = |V |
n|∂Vd|rd−1

∑
j 6=i kσ (r − d(xi,xj)). This implies

that we can consider all ĝi(r)’s to describe the distributional charac-
teristics instead of just using the mean given by the PCF. Although
one can work in the functional space, for the convenience of the
exposition and its connection to the algorithms we use in practice,
we consider a discretized PCF such that the functions are evalu-
ated at discrete radiuses r1 · · · rnr . With this discretization, one
can define the vectors φi = [ĝi(r1) · · · ĝi(rnr )]T and their mean
φ̄ = 1

n

∑
i φi to describe the distribution of the points. We call the

space where φi’s live as the pair correlation space (PCS).

Since the PCS only depends on the distribution of the distances, it
is rigid motion invariant. As long as the same discretization for r is
used, one can map different point sets into the same space. Hence,
each point set is described by a distribution of vectors in this space
and the empirical mean of this distribution is given by φ̄. Precise
matching of the distributional characteristics requires matching of
the probability distributions of φi’s. However, as we will see in the
next section, the distribution of φi’s, the mean φ̄, and regularity are
highly correlated.

3.4 Characterization of Distributions in the PCS

In general, matching probability distributions requires parameter
estimates that can be costly. In the high dimensional PCS, this will
manifest itself as computational and algorithmic complexity when
one tries to match point distributions. On the other hand, we ex-
pect that the mean φ̄ might properly capture all characteristics of
point distributions since it is widely used in many fields. To pro-



 O
u

r 
al

g
o

ri
th

m
 

 O
ri

g
in

al
 a

lg
o
ri

th
m

s 

Dart Throwing [Balzer et al. 2009] Matérn Clustering Process 

Figure 4: Given a single example point set generated by different algorithms shown on the top, our algorithm can generate new point sets
with matching spectral characteristics. Average spectra of 10 distributions are shown.

vide evidence for this conjecture, we perform an analysis of the
distributions of the vectors in the PCS.

In Figure 3, PCS vectors for different distributions are plotted. We
embedded the vectors into a 2D space using principle component
analysis computed on all φi’s (c) and means φ̄ (a and b) of 10 in-
stances of distributions with approximately 1000 points. To gener-
ate the clustered distributions, we used the Matérn clustering pro-
cess with different seed points and radiuses of clusters. This pro-
cess is simulated by seeding a number of points in space following a
Poisson distribution and generating clusters of points around those
seeds within a given clustering radius uniformly. The number of
points in the clusters follows a Poisson distribution. The mean of
this distribution is set to the number of points desired (1000) di-
vided by the number of seed points.

The magnitude of the eigenvalues (d) clearly show that the data can
be well explained using only 2 dimensions. Figure 3 (a) illustrates
that there is a clear separation between clustering and hard-core
processes, with the random distribution on the border. For cluster-
ing processes, decreasing number of seed points for clusters results
in scattering of φ̄’s. For hard-core processes, going from random
to more regular point distributions, the variance of the φi (c) and
scattering of φ̄ vectors (b) diminish and in particular, for the regular
grid, the φi distribution becomes a single spike. Hence, regularity
and uniformity in point distributions result in less variance of the
vectors in the PCS.

Another interesting property of the PCS is that the φ̄’s effectively
lie on a line, as can be observed from the magnitude difference be-
tween the first eigenvalue of the covariance matrices and the others
in Figure 3 (d), and also from the embeddings in Figure 3 (a), (b),
and (c). For the hard-core distributions, this line extends from the φ̄
for random distributions to that of the regular grid. The parameter
of the means on this line correctly determines the order of regular-
ity in the point distributions. In particular, Schlömer et al.’s algo-
rithm [2011] is found to be the most regular, followed by Balzer et
al.’s algorithm [2009] and then dart throwing and different levels of
jittering. This ordering matches the regularity and packing density
observed for these algorithms in practice [Schlömer et al. 2011].

This analysis gives us a tool to characterize the distributions gener-
ated by different processes or algorithms. The means φ̄ for a distri-
bution are clustered with variance getting smaller as the means for
different distributions start to approach each other. Hence, the φ̄’s
are sufficient to discriminate different types of distributions. Fur-
thermore, the means approximately lie on a 1D line in the high
dimensional PCS, which provides an easy quantitative measure of
the closeness of distributions generated by different algorithms. We
quantify such a measure in the next section.

3.5 A Measure of Irregularity

Regularity in a point distribution can be intuitively described as the
indistinguishability of the neighborhoods of points. As the distribu-
tion becomes more random, or exhibit clearly distinctive structures
at different locations in space, the neighborhoods deviate more and
more from each other. Following this intuition, irregularity in a
distribution can be described by the vectors φi, which effectively
describe the neighborhoods of the points in terms of the distance
distributions.

We illustrate that the variance in φi’s correctly captures irregularity
in Figure 3 (c). When points are regularly distributed, the compo-
nents of different φi’s match since the distance distribution around
each point xi is the same. As more randomness is added, this regu-
larity degrades and in the case of complete randomness, the vectors
no longer correlate with each other. Clustering processes further
increase irregularity by introducing different structures at different
points.

This observation can be quantified as an irregularity measure as
follows:

pk =
1

n

∑
i

(
φik − φ̄k

)2
. (4)

This measure describes the observed irregularity in the point set at
different radiuses rk. In practice, we normalize this measure by the
irregularity of the empirical random distribution obtained by aver-
aging 10 p’s. The p statistics (irregularity) for different distributions
are plotted in Figure 2. The level of irregularity in hard-core and
clustering processes considered exactly match the order and scat-
tering of the means φ̄ in Figure 3 (a) and (b), which shows that p is
also an accurate measure of closeness in the PCS.

4 Synthesis of Point Distributions

All statistics for point processes are aimed at providing a good sum-
mary of the distributional characteristics. Unlike other measures
such as periodograms, the PCF has a simple form and interpre-
tation directly linked to the distribution of the distances between
pairs of points. The PCS analysis we presented also shows that it
characterizes point distributions well. In this section, we build on
these properties and propose two simple synthesis algorithms that
use the PCF as a global statistic. The first one relies on simple ran-
dom sampling and can provide an initial distribution for the second
relaxation based method. We assume that a target PCF g0(r) is
computed using one or more examples, or given by the user. The
goal of the algorithms is to transform an arbitrary input point set
such that its PCF matches the target PCF.
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Figure 5: Reconstruction of clustering patterns generated by the
Matérn clustering process with different number of seeds and clus-
tering radiuses.

4.1 Generalized Dart Throwing

Our first algorithm generalizes the well-known dart throwing al-
gorithm. In the original algorithm, at each step a random point is
generated. If the distance of this point to the closest point in the
set of already accepted points is smaller than desired, it is rejected
and otherwise it is accepted. From this definition of the algorithm,
it is clear that only the lower end of the PCF is used in the deci-
sion step. In order to extend this algorithm for a given target PCF
g0, one can simply impose the condition that at any given iteration,
g(rk) ≤ g0(rk) ∀rk. Here, g(r) is normalized by the target number
of points.

The pseudo code of the resulting algorithm is provided in Algo-
rithm 1. The algorithm reduces to standard dart throwing if the
range upper limit rb is set to the hard-core radius between the
points. In practice, we use a parameter ε and relax the condi-
tion as maxk(g(rk) − g0(rk)) ≤ ε. The ε is changed at each
iteration with a user defined function. We used a simple function
fε(iteration) = c iteration, for some constant c. Using this relaxed
version avoids the expected high rejection rates and deadlocks due
to infeasible configurations but also distorts the desired character-
istics. Nevertheless, this algorithm provides a very good initial dis-
tribution for our gradient descent based fitting algorithm.

Algorithm 1 Generalized Dart Throwing
Input: Target g0(rk), number of points nT , dimension d, volume V
Output: Point Set P
P = ∅, g(rk) = 0 ∀k, iter = 0

while (|P | < nT )
ε← fε(iter)
generate a random point x in V
update g(rk) ∀k for x using equation 6

with n = nT in the normalization
if (maxk(g(rk)− g0(rk)) ≤ ε)

add x to P
else

restore previous g(rk) ∀k
iter← iter + 1
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Figure 6: (a) Running times of the algorithms as a function of the
number of points. (b) Convergence of the gradient descent algo-
rithm for (left) hard-core distributions with different number of out-
put points, and (right) for the distributions in Figure 5.

4.2 PCF Fitting by Gradient Descent

This fitting algorithm takes a random point set, or the output of Al-
gorithm 1 as the input, and tries to minimize the least squares fitting
errorE(x1, · · · ,xn) =

∫∞
0

(g(r)− g0(r))2 dr. This corresponds
to a least squares fitting of the means ||φ̄− φ̄0||2 in the PCS. Since
we discretize r to rk’s, the integral turns into a sum and the nor-
malized gradient with respect to a point xm can be computed as
follows:

∆m = −
∑
i 6=m umiwmi

|
∑
i 6=m wmi|

, (5)

wmi =
∑
k

g(rk)− g0(rk)

rd−1
k

(dmi − rk) kσ(dmi − rk).

Here, umi = ∇xmdmi (the unit vector from xi to xm for Eu-
clidean spaces) and dmi = d(xm,xi), which is assumed to be
symmetric for brevity of the expressions.

At each iteration, each point xm is moved by a gradient descent
xk+1
m = xkm − λ∆m. To determine the step size λ, the algo-

rithm performs a simple search by taking 5 different λ values 10−i

i = 1, · · · , 5 and accepts the one that causes the most reduction in
the error. When a random point set is used as the input, reach-
ing convergence takes longer, but the characteristics of the out-
put point sets are not affected significantly. However, computing
the initial point set with Algorithm 1 improves convergence such
that the number of iterations are not affected by the number of
points [Schmaltz et al. 2010].

4.3 Analysis

Updating the PCF In both algorithms, the PCFs should be up-
dated after each operation of point insertion or movement. The ef-
fect of a point xm on the PCF can be computed using the following
formula

δk(xm) =
|V |

|∂Vd|rd−1
k n2

∑
i6=m

kσ (rk − dim) + kσ (rk − dmi).

(6)
As an example, when moving a point, δk(xnew)− δk(xold) should
be added to the PCF.
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Figure 7: Given an example point set with 600 points, our algo-
rithm can generate point sets with any number of points.

Time Complexity The time complexity of the algorithms de-
pends on the number of iterations to convergence, number ns of rk
samples, and the neighborhoods used when computing the gradient
of the PCF and the PCF itself. The maximum neighborhood size
depends on two factors, σ and rb, and can be precisely given as
rmax(rb + ςσ) where ς is the cutoff factor used for the Gaussian
kernels. For isotropic point sets, rmax = cdλ

−1/d for a constant
cd that depends only on the dimension. The number of points in a
hypersphere of radius r in d dimensions is given by rd|Vd|λ with
|Vd| the volume of a unit sphere. Substituting the expression of the
maximum neighborhood size, we get that number of points in the
neighborhoods is αdd|Vd| with αd = cd(rb + ςσ), which only de-
pends on the dimension d. Hence, updating the PCF or computing
the gradient of the PCF for a single point takes constant time with
respect to the number of points, resulting inO(n) complexity for all
algorithms. We verify the linear complexity of our algorithms and
illustrate the convergence of the gradient descent algorithm in Fig-
ure 6 (a) and (b), respectively. Convergence of the gradient descent
algorithm is independent of the number of points and 5 iterations
for hard-core and 10 for clustering distributions are sufficient to get
accurate characteristics.

4.4 Extensions

Multi-class Sampling In point process statistics, marked point
processes are used to describe point sets where the points have
associated properties in addition to locations [Illian et al. 2008].
Each point can have a qualitative, discrete, or continuous mark.
When discrete marks are used to indicate different classes of points,
the pair correlation functions are extended to include correlations
between classes such that one has the interclass pair correlations
gij(r) for all classes i and j. The exact form of gij(r) depends on
the mark correlation functions chosen. Since interclass correlations
are coupled, minimization of an energy that involves all gij(r)’s
will be unnecessarily complex. Instead of using all interclass corre-
lations, we include only the intraclass pair correlations in the energy
function to be minimized such that Etotal = E +

∑
iEi, where E

is defined in Section 4.2 and Ei is computed using only the points
in class i. In our experiments, this produced comparably accurate
reconstructions and also reduced the time complexity and number
of iterations of the algorithms.

Adaptive Sampling By adjusting the distance measure used, one
can easily extend the algorithm to generate adaptive isotropic or
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Figure 8: A 3D point set generated using a given 2D example and
their PCFs.

anisotropic samplings. Here, we concentrate on adaptive isotropic
samplings where the distance is given by d(x,y) = ||x−y||/s(x)
for a scaling function s. Ignoring the change in the scaling func-
tion [Fattal 2011], the expressions for the PCF and its gradient
change trivially. Given an arbitrary importance function f(x), the
scaling function can be set as s(x) ∝ f(x)−1/d.

5 Results

As the first experiment, we tested if our algorithms can reproduce
the characteristics of distributions generated by existing algorithms.
In Figure 4, top, we show averaged spectra of 10 distributions
generated by dart throwing, Balzer et al.’s algorithm [2009], and
Matérn clustering process. For each algorithm, we used a single
distribution generated as the example (shown in the figure), and ran
our algorithm 10 times using the same example. The spectra of
the generated distributions (Figure 4, bottom) almost exactly match
those of the distributions by the original algorithms. As a further
test, we generated points from the Matérn clustering process with
different number of seed points and clustering radiuses in Figure 5.
For all cases, our algorithm could accurately reproduce the same
characteristics. We used rb = 5 for the clustering processes to get
more accurate results.

Multi-class distributions can also be accurately reconstructed by
our method. This is illustrated in Figures 1 (right), 11, and 12
(a, b). Intraclass as well as overall PCFs are well-preserved. The
distributions of points in different classes can have very different
characteristics. In Figure 1 (right), although a small number of
points from each class are used as examples, accurate results are
obtained for all four classes.

As illustrated in Figure 7, our algorithm does not need the example
sample size to be the same as the output size. An example point
set with 600 points is sufficient to generate outputs of various sizes
with identical characteristics. Yet, since the PCF depends on a den-
sity estimation of distances, for extremely small point sets, there
can be unwanted fluctuations. We experimentally found out that
for rb = 2.5, example sets of around a hundred points are suffi-
cient to produce accurate PCFs for 2 dimensions. Dimensionality
of the example and output point sets can also be set arbitrarily since
the PCF is defined for any dimensions. We show an example in 3
dimensions in Figure 8.

By interpolating the PCFs, a family of distributions with novel char-
acteristics can be obtained. Since the PCFs effectively lie on a line
as shown in Figure 3, simple linear interpolation can generate valid
PCFs from which distributions can be synthesized. An interesting
application of this interpolation is to combine hard-core and cluster-
ing distributions. Results of such an experiment are shown in Fig-
ure 9. The PCF φ̄0 of a hard-core (Balzer et al.’s algorithm [2009])
and that φ̄1 of a clustering (Matérn clustering process) distribution
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Figure 9: By interpolating PCFs of point sets generated by Balzer et al.’s algorithm [2009] and Matérn clustering process, distributions with
novel characteristics can be obtained. Average spectra of 10 distributions are shown.

are interpolated as φ̄0(1−t)+ φ̄1t and new distributions having the
interpolated PCFs are synthesized (with rb = 5). As the parameter
t is changed, the evolution of the spectra and point distributions can
be clearly seen.

Finally, density adaptation of our algorithm is illustrated in Fig-
ure 10 for different number of points. Given an example sample
distribution and an input density, our algorithm can generate adap-
tive samplings with characteristics matching the example, and den-
sity matching the input density.

6 Applications

6.1 Synthesizing Real World Structures

Many entities in the real world have distributions with particular
characteristics. Often, these distributions have various scales of
clustering and repulsion, and interclass as well as intraclass inter-
actions, leading to interesting patterns. We applied our algorithms
to learn PCFs of real world distributions and generate new distribu-
tions with the same characteristics.

An example synthesis result is shown in Figure 1 (right), where a
photo of candies with four different colors is used to generate the
example PCFs (the black curve in each PCF graph is the PCF of
all points). As shown in the PCF graphs, our algorithms are able to
precisely match the characteristics of all the distributions. This is
also apparent in the rendering, where red candies are in clusters, and
all candies as well as candies of the same colors are distributed with
a hard-core distance between them. A further example is shown
in Figure 11, where data gathered from a real distribution of oak
and beech trees [Pommerening 2002] is used as the input example.
Our synthesis algorithm can precisely reproduce the characteristics,
which allows us to construct and render a bigger forest following
the real world distributions.

6.2 Turbulent Fluid Simulations

In fluid simulations, methods for detail enhancement have become
popular in recent years. These methods augment a low-resolution
base simulation with synthetic sub-grid detail, by e.g. applying a
curl noise turbulence texture [Kim et al. 2008]. While the de-
tail structure is known for the special case of homogeneous, fully-
developed turbulence in which Kolmogorov’s law holds, turbulent
details in real flows tend to be more complex, due to anisotropic
effects and transition processes. It would therefore be interesting
to extract the fingerprint of a set of given reference turbulent flow
simulations, and use this as a basis for detail synthesis on top of
other arbitrary flows.

Our method allows us to achieve this transfer directly in a La-
grangian manner, using a very compact fingerprint. A small vortic-

ity field from a real high-resolution simulation is taken as the input
(Figure 12 (a), top). This field is positive (red) in some regions and
negative (blue) in others. The sign determines the direction of rota-
tion (clockwise or counterclockwise), and the absolute value deter-
mines how strong the vorticity is, i.e. how much the fluid is rotating
in that region. The field is separated into a negative and a positive
field, and for each, a set of vortex particles is randomly placed ac-
cording to the absolute value of the density field (Figure 12 (a),
bottom). Next, we compute the PCFs for this two-class distribution
of negative and positive particles, and use our multi-class synthe-
sis algorithm to generate a large distribution of arbitrary size and
resolution (Figure 12 (b)). Finally, these synthesized vortex parti-
cles act as our turbulence representation [Selle et al. 2005b], which
means they induce small-scale rotations to the flow. Figure 12 (c)
illustrates the base simulations and the synthesized flows using the
generated vortex particles. Using fingerprints recorded from differ-
ent reference simulations, we can also obtain different turbulence
strength and behavior as illustrated in Figure 12 (d).

7 Conclusions and Future Directions

We introduced novel analysis and synthesis techniques for point
distributions with general characteristics. We also presented several
experiments and example applications where our techniques can be
useful. We believe our methods can be extended in several ways
and be utilized in many other interesting applications.

Limitations A fundamental limitation of utilizing the PCF is that
it is only a second-order statistic depending on pairs of points and
hence cannot uniquely characterize a given point pattern. However,
as explained in the literature [Illian et al. 2008], statisticians and
physicists regard 2nd order statistics and in particular the PCF as
the most informative and for most distributions sufficient for unique
determination (this is called the “second order dogma” [Illian et al.
2008]). This is supported by a theorem by Boutin et al. [Boutin
and Kemper 2004; Boutin and Kemper 2007]. The theorem states
that the set of point distributions that are not uniquely determined
by their distance distributions has Lebesgue measure zero in the nd
dimensional space of point configurations, when n ≥ max(3, d +
2) for n points in d dimensions. Thus, the distribution of pairwise
distances, and hence the PCF, uniquely determines most of the point
distributions.

In practice, we observed that point distributions with highly regular
structures are harder to synthesize, as illustrated for the hexago-
nal and regular grids in Figure 13. Furthermore, the Poisson disk
radiuses [Lagae and Dutré 2008] of the generated blue-noise dis-
tributions are slightly lower than expected. For example, if dart
throwing or Balzer et al.’s algorithm [2009] is used to produce an
example distribution, the Poisson disk radiuses are in the range
[0.67, 0.75] and [0.73, 0.74] with an average of 0.7031 and 0.7352,
respectively. In comparison, the example distributions we used
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Figure 10: An example distribution and input density can be com-
bined for adaptive sampling.

have 0.7137 and 0.7765 as Poisson disk radiuses. Due to the global
nature of the PCF, our algorithms cannot precisely see the minimum
of the distances, in other words, summing many small distances re-
duces the effect of a single distance. In addition, setting a lower
limit ra due to numerical instability causes the algorithms to not see
some of the low distances. To solve this problem, a minimum dis-
tance constraint can be imposed, and estimation methods for lower
r values [Illian et al. 2008] can be utilized.

Future Directions Although we presented results based on dis-
crete marks, i.e. classes, the synthesis algorithms can also be ex-
tended to reconstruct distributions of points with continuous marks.
This will allow to reconstruct various quantitative properties of ob-
jects such as length, size or age along with their locations. Another
important direction is using space-time processes and associated
statistics [Illian et al. 2008] to learn, categorize, and synthesize
realistic movements of objects such as humans or animals along
with marks for further properties such as gazing direction. Space-
time processes can be further used to generate point samplings for
dynamic data such as videos or simulations. By approximating
the distance metric of a manifold [Wei and Wang 2011; Li et al.
2010], our methods can also be extended to curved spaces. Running
times of our algorithms can be significantly improved by integrat-
ing parallelization [Wei 2008; Schmaltz et al. 2010] or tiling [Os-
tromoukhov et al. 2004; Kopf et al. 2006] approaches. Finally, we
believe that many ideas from the point process statistics literature
can be extended and adapted for various applications in computer
graphics to help us better understand and computationally mimic
the nature.
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LAGAE, A., AND DUTRÉ, P. 2008. A comparison of methods
for generating Poisson disk distributions. Computer Graphics
Forum 27, 1 (March), 114–129.

LEWIS, J. P. 1989. Algorithms for solid noise synthesis. In Pro-
ceedings of the 16th annual conference on Computer graphics
and interactive techniques, ACM, New York, NY, USA, SIG-
GRAPH 89, 263–270.

LI, H., WEI, L.-Y., SANDER, P. V., AND FU, C.-W. 2010.
Anisotropic blue noise sampling. ACM Trans. Graph. 29, 6
(Dec.), 167:1–167:12.

LLOYD, S. 1982. Least squares quantization in pcm. Information
Theory, IEEE Transactions on 28, 2 (mar), 129 – 137.

MA, C., WEI, L.-Y., AND TONG, X. 2011. Discrete element
textures. ACM Trans. Graph. 30, 4 (Aug.), 62:1–62:10.

MCCOOL, M., AND FIUME, E. 1992. Hierarchical poisson disk
sampling distributions. In Proceedings of the conference on
Graphics interface ’92, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 94–105.

NARAIN, R., GOLAS, A., CURTIS, S., AND LIN, M. C. 2009.
Aggregate dynamics for dense crowd simulation. ACM Trans.
Graph. 28, 5 (Dec.), 122:1–122:8.
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Figure 13: Distributions with highly regular structures are harder
to synthesize.


