
Lagrangian Vortex Sheets for Animating Fluids

Tobias Pfaff
ETH Zurich

Nils Thuerey
ScanlineVFX

Markus Gross
ETH Zurich

Figure 1: A dense cloud subject to buoyancy forces and interaction with a moving obstacle is simulated. We use a Eulerian solver to compute
a base flow, as shown on the left. Small-scale detail is synthesized directly on the interface of the cloud. An adapted turbulence model provides
details from obstacle interaction (middle left), while small-scale buoyancy effects are calculated using vortex sheet dynamics (in the middle
right). The picture on the right shows the combined model.

Abstract

Buoyant turbulent smoke plumes with a sharp smoke-air interface,
such as volcanic plumes, are notoriously hard to simulate. The sur-
face clearly shows small-scale turbulent structures which are costly
to resolve. In addition, the turbulence onset is directly visible at the
interface, and is not captured by commonly used turbulence models.
We present a novel approach that employs a triangle mesh as a high-
resolution surface representation combined with a coarse Eulerian
solver. On the mesh, we solve the interfacial vortex sheet equations,
which allows us to accurately simulate buoyancy induced turbu-
lence. For complex boundary conditions we propose an orthogonal
turbulence model that handles vortices caused by obstacle interac-
tion. In addition, we demonstrate a re-sampling scheme to remove
surfaces that are hidden inside the bulk volume. In this way we
are able to achieve highly detailed simulations of turbulent plumes
efficiently.

CR Categories: Computer Graphics [I.3.7]: Animation—;

Keywords: Turbulence, Fluid Simulation

Links: DL PDF WEB

1 Introduction

When we look at fluid simulations in movies, arguably the visually
most interesting scenes are those in which a lot of turbulent detail
is visible. Smoke plumes from volcanoes, explosions or collapsing
buildings are examples of highly turbulent flows, and the structure
of the developing turbulent eddies is clearly visible at the sharp
interface of the thick smoke and the air. At the same time, the thick
clouds typically hide everything that is happening further inside the
volume. Unfortunately, such scenes are numerically expensive to
simulate, and quickly spend large amounts of computation on detail
inside the cloud that will never be visible.

One way of dealing with the complex details of turbulent fluid sim-
ulation is turbulence modeling, which has increasingly been studied
in computer graphics over the recent years. These methods are able
to model and synthesize detail smaller than the simulation resolu-
tion, leading to faster run-times. However, even with a turbulence
model the synthesized detail has to be represented in the simulation,
and using a volumetric representation resolving the small-scale de-
tails requires immense storage capacity.

In our model, we therefore chose to explicitly discretize and track
only the smoke-air interface. This greatly reduces the amount of in-
formation we need to store. In addition, this representation is a very
suitable basis for turbulence methods. Instead of unnecessarily cal-
culating detail that is hidden inside the smoke volume, we restrict
synthesizing turbulence purely to the visible smoke interface.

The phenomena mentioned above exhibit another interesting effect:
turbulence production in such flows mainly stems from buoyancy,
which induces a vortex sheet at the smoke-air interface. This sheet
reinforces small-scale surface instabilities, which then develop into
turbulence. This means that the transition region where the turbu-
lence is created is clearly visible, and this turbulent onset strongly
influences the visible shape of the interface. However, the simu-
lation resolution is typically too limited to directly capture these
small-scale buoyancy effects. Furthermore, most turbulence mod-
els assume fully-developed homogeneous turbulence, which means
they are valid inside the bulk smoke volume, but not at the inter-

http://doi.acm.org/10.1145/2185520.2185608
http://portal.acm.org/ft_gateway.cfm?id=2185608&type=pdf
http://graphics.ethz.ch/publications/papers/paperPfa12.php

Figure 2: The continuous vorticity field around a surface can be
represented in terms of a vortex sheet strength or circulation. Both
are stored per surface triangle, and are equivalent representations.
Vortex strength is a vector value, while circulation consists of three
scalar rotation values around the edges of the triangle.

face. Here, the turbulence generation process is highly anisotropic
and model-dependent in nature. This means it is not well described
using the statistical approaches that are the basis for most turbu-
lence methods.

Our method addresses this problem by directly tracking the vor-
tex sheet at the smoke-air interface. This allows us to compute
buoyancy effects at scales independent of an underlying grid, and
accurately model the turbulence generation process due to buoy-
ancy. Traditionally, correct handling of obstacles is very difficult
for vorticity based methods. Our model handles basic interaction
with static or moving obstacles using a Eulerian solver, and we cap-
ture the turbulence they induce with a model specifically tailored to
our needs. We will ensure that the turbulence model for obstacles
is orthogonal to our buoyancy approach, which makes it possible to
use both in combination or separately as needed.

In summary, we propose an algorithm with the following contribu-
tions:

• A local evaluation scheme for vortex sheets which allows us
to efficiently capture detailed buoyant and obstacle based tur-
bulence effects.

• A turbulence model for obstacles that is able to estimate wall-
induced turbulence and is orthogonal to buoyancy based tur-
bulence.

• A mesh resampling technique for efficiently pruning invisible
detail to reduce mesh complexity.

We use an adaptive triangle mesh to simulate non-diffusive smoke
surfaces, and couple it to an Eulerian solver which captures the
large-scale motion of the flow. We will demonstrate that this rep-
resentation is very suitable for vorticity based methods and that it
produces highly detailed visuals efficiently.

2 Related Work

For large parts, fluid simulation in computer graphics falls into the
categories of Eulerian solvers with semi-Lagrangian advection as
introduced by Stam[1999], and Lagrangian approaches, such as
Smoothed-Particle Hydrodynamics methods, e.g. [Müller et al.
2005]. Our representation of vortex sheets is independent of the
solver type, but we will focus on grid based solvers due to their
wide-spread use.

An intrinsic problem associated with fluid simulation is the repre-
sentation of detail without having to resort to costly high-resolution
simulations. In particular, this problem is due to damping of the
velocity field and all other data represented on the grids. A popular
approach to alleviate this problem is to use higher order advection
schemes such as MacCormack advection [Selle et al. 2008], or the
commonly used FLIP [Zhu and Bridson 2005] model. In addition,

Mullen et al. [2009] introduced an integration scheme that preserves
energy. While these methods help to reduce the numerical dampen-
ing, the detail that can be represented is still inherently limited by
the underlying grid resolution.

One possible solution is to adaptively refine the simulation grid, as
was done, e.g. in [Losasso et al. 2004], or more recently in [Chen-
tanez and Mueller 2011]. These methods can pay off when the
detail is confined to small parts of the computational domain. For
liquids, particle level sets [Enright et al. 2002] increase the reso-
lution of a level set using Lagrangian markers, while Bargteil et
al. [2006] and Wojtan et al.[2010] use a triangle mesh to represent
liquid-air interfaces. Particles are another popular choice, but large
numbers are usually necessary to represent dense surfaces without
noise. While the Lagrangian markers in these methods allow for
the detailed representation on sub-grid scales, the dynamics are still
limited by the grid resolution of velocity field. Similar in spirit to
our approach, Brochu et al. [2009] use a triangle mesh to represent
detailed smoke structures, however, without leveraging this repre-
sentation to compute additional dynamics.

Turbulence models obtain small-scale dynamics by modeling, in-
stead of simulating it. Early methods synthesized a divergence-free
turbulence field using the Kolmogorov spectrum, e.g, in [Stam and
Fiume 1993], and [Rasmussen et al. 2003], while recent methods
measure the turbulent energy spectrum [Kim et al. 2008] or model
turbulent energy transport to obtain spatially correct turbulence dis-
tributions [Narain et al. 2008], [Schechter and Bridson 2008], [Pfaff
et al. 2010]. These approaches work well to model fully developed
turbulence in the bulk flow. However, due to their nature they can-
not capture turbulence transition and the onset of turbulence, which
are important effects that are clearly visible at the interface of a
dense cloud.

Vortex methods, on the other hand, use the vorticity formulation of
the Navier-Stokes equation to compute fluid dynamics. This has
the advantage that detailed, turbulent motion is well described by a
vorticity formulation. In vortex methods for graphics, this vorticity
is usually stored with sparse Lagrangian elements. Vortex particles
[Selle et al. 2005], [Pfaff et al. 2009] can be used to augment a grid-
based fluid simulation with turbulent detail. Angelidis et al. [2006]
use vortex filaments to control a fluid simulation, while Weissmann
and Pinkall [2010] propose a simulation driven entirely by sparse
filaments. With these approaches, re-meshing sparse particles and
filaments such that the turbulence characteristics are preserved is
hard.

In contrast to our approach, none of the methods deals with
buoyancy-driven vorticity, or baroclinic vorticity, as it is commonly
called in literature. Kim et al. [Kim et al. 2009] use a vortex sheet
formulation to reinforce the breakup of liquid sheets. However,
they discretize vorticity on the grid, and synthesize motion using
Eulerian vorticity confinement. In summary, few existing methods
in graphics are suitable for simulating the turbulence transition ob-
served in turbulent, buoyant smoke, as they usually focus on fully-
developed turbulence and do not model sub-grid baroclinity.

Vortex methods for simulating turbulent flows are a common re-
search topic in the CFD community. While a large part of these
works focus on the more traditional vortex particle representation,
as introduced by Rosenhead [1931], and filament methods [Leonard
1980], vortex sheet methods have become increasingly popular in
recent years. Vortex sheet methods operating on connected trian-
gles or quad representations similar to our approach include [Brady
et al. 1998], [Stock et al. 2008] and [Lozano et al. 1998], to mention
a few examples from the growing body of work. Similarly, baro-
clinic generation has been studied for engineering applications in
[Meng 1978] and [Tryggvason and Aref 1983].

Figure 3: A buoyant plume is simulated without evaluation cutoff
(left), with a cutoff of 10 cells (middle) and 5 cells (right, our default
setting). While details are different due to accumulation of small
differences over time, the visual quality is comparable.

Our work is inspired by mesh-based vortex sheet methods from
CFD, but differs in several important aspects. While methods such
as [Stock et al. 2008] are highly suitable to accurately capturing
small-scale phenomena, they focus on the ideal case of pure buoy-
ancy driven flows and cannot handle scenes with static walls or
moving obstacles, such as Fig. 9 or Fig. 1. In addition, we will
later on show that even for pure buoyancy driven flows our approach
yields a significant speedup over the a classical vortex sheet method
thanks to its local evaluation.

In the following section, the established theory on vortex sheets will
be introduced in more detail, while we will focus on our extended
model in the subsequent sections.

3 Vortex Sheet Methods

Fluid solvers in graphics typically use the velocity formulation of
the Navier-Stokes (NS) equations to obtain the fluid motion. How-
ever, when considering turbulence the vorticity formulation of the
NS equations is advantageous. The vorticityω corresponding to the
velocity field u is given by ω = ∇×u. The inviscid NS equations
without external forces therefore transforms to

Dω

dt
= ω · ∇u +

1

ρ
∇ρ ×

(
g +

1

ρ
∇p
)

(1)

with density ρ, pressure p and gravity g. The total derivative on
the left-hand side includes vorticity advection, while the right-hand
side consists of the vortex stretching term and the often neglected
baroclinity term. This formulation does not require solving a Pois-
son problem to make the velocities divergence free. Instead it re-
quires additional work to reconstruct the velocity u from the vor-
ticity.

For accurately discretizing the vorticity form of the NS equations
on our surface meshes we make use of three different representa-
tions. Apart from the aforementioned vorticity ω we will introduce
a vorticity confined to surfaces: the vortex sheet strength, and the
circulation, which is vorticity confined to lines. The differences are
illustrated in Fig. 2. During discretization, we will use each repre-
sentation where it is most suitable.

Vortex sheet strength Apart from external sources, the only vor-
ticity source in Eq. (1) is the baroclinity. In a system of two fluids
with different densities ρ1 and ρ2 we will therefore observe vor-
ticity forming due to the density gradient at the interface of these
two fluids. To track this vorticity, we can use an explicit represen-
tation of their interface. On this vortex sheet, vorticity associated
with the density gradient accumulates. A vortex sheet is defined
by the vortex strength γ which relates to vorticity as ω = γ δ(n)
with Dirac’s delta function δ around the surface n. We can now

formulate Eq. (1) in terms of this vortex strength [Wu 1995]

Dγ

dt
= γ · ∇u− γ(P · ∇ · u)− 2β n̂× g . (2)

The first term on the right-hand side is the familiar vortex stretch-
ing, while the second term describes changes in vortex strength
due to elongation in the direction of γ. Here, P = I − n̂n̂ is
the tangential projection operator with the surface normal n̂. The
last term represents baroclinity with the Boussinesq approxima-
tion[Meng 1978] which is proportional to the Atwood ratio β. The
Atwood ratio relates the densities of the two fluids to each other,
and is defined as β = (ρ1 − ρ2)/(ρ1 + ρ2). Note that β allows
for an easy way to artistically control the strength of the forma-
tion of baroclinic turbulence. Although this value is constant in our
scenes, it would be easy to track spatially varying values on the
mesh. These values could, e.g., be painted on the initial surface by
an animator. It should also be noted that the Boussinesq approx-
imation in Eq. (2) assumes a small Atwood ratio, and is valid for
e.g. hot/cold air, but not air/water interfaces. To summarize, vortex
sheets are very suitable for describing fluid phenomena dominated
by baroclinic generation, as the vorticity stays concentrated at the
density interface.

Velocity integration To evolve the flow with Eq. (2), we need to
obtain the velocity field u. Here, we use the free-space solution to
the rotation operator, the Biot-Savart law, to integrate the velocity
field induced by the vortex sheet γ:

u(x) =
1

4π

∫
γ(x′)× x− x′

|x− x′|3
dx′ . (3)

Discretization To solve the vorticity dynamics equations, it is
necessary to have a discretization of the interface. For this we use
a mesh consisting of triangles, where each triangle i has a corre-
sponding vortex strength γi. The evolution of γi over time is cal-
culated by integration of Eq. (2) over time. However, for the evalua-
tion of vortex stretching and elongation it is advantageous to switch
to a formulation based on the circulation. The scalar-valued circu-
lation Γa defines a rotation around the axis of edge a. According to
Stock et al. [2008], the circulations around the 3 edges e1,2,3 of a
triangle with area A uniquely relate to its vortex sheet strength as

γ =
1

A

3∑
i=1

Γi ei . (4)

On the other hand, to obtain circulation from vortex strength, the
overdetermined linear system

[
e1 e2 e3

1 1 1

]Γ1

Γ2

Γ3

 = A

(
γ
0

)
(5)

is solved. We now take advantage of the fact that the vortex stretch-
ing and elongation terms in Eq. (2) are implicitly handled in circu-
lation notation. In other words, for a system without baroclinity, the
evolution equation for circulation reduces to DΓ/dt = 0. We there-
fore solve the advection of the vortex sheet in terms of circulation,
and switch back to the vorticity formulation for adding the baro-
clinity term, and the integration of velocities. As the translation is
performed on a per-triangle basis, the three circulation values Γ1...3

are stored for each triangle in addition to the vortex strength. 1

1We note that Γ retains the closedness condition during the simulation,
i.e.

∑
i Γi = 0 for all triangles.

Figure 4: We simulate the dynamics of a dense fluid in water with
pulsed inflow conditions. The buoyancy leads to complex surfaces
in the downstream region to the right.

4 Local evaluation

Using the vortex strength γ, we are able to obtain the buoyancy-
induced velocity update by integrating Eq. (3). However, this ve-
locity field only describes the effect of ideal buoyancy in free space,
while most practical scenes have a nontrivial underlying flow due
to obstacle interaction and boundary conditions. Also, the evalua-
tion of Eq. (3) is very costly for large meshes. We therefore split
our simulation into two parts: first, a Eulerian solver which com-
putes a consistent flow field from obstacle interaction, inflows, and
the large-scale effects of buoyancy. Second, a surface mesh which
is used for front tracking of the smoke cloud and the simulation of
detail due to small-scale buoyancy effects and obstacle turbulence.

Coupling Eulerian and Lagrangian Buoyancy For computa-
tion of the the large-scale flow, we use a standard grid-based solver
[Stam 1999] with second order semi-Lagrangian advection as de-
scribed in Selle et al. [2008]. Our vortex sheet approach enables
us to use low grid resolutions, as details will be computed directly
on the Lagrangian mesh. In the grid-based solver, a density field is
tracked which is then used to compute coarse-scale buoyancy forces
on the velocity field.

Evaluation of the small-scale buoyancy effects is performed using
the vorticity of the mesh. To avoid duplication of buoyancy forces
between grid and mesh, we remove the large-scale component of
the baroclinic vorticity from the mesh. We first apply a Gaussian
smoothing kernel on the vortex sheet strength γ. The kernel width
σ is set to match the grid cell width ∆x to obtain the smoothed,
grid-scale vortex strength component γ̄. The difference γ′ = γ−γ̄
now represents the details below grid scale, which are evaluated on
the mesh.

By removing the mean only the high-frequency variations γ′ re-
main, whose effect decays very quickly in the far field. This cor-
responds to the formation of small vortices, which act locally. We
are therefore able to introduce a cutoff radius rC to the evaluation.
Only triangles within this radius have to be evaluated in the sum-

1: // Grid-based Fluid solver
2: Semi-Lagrangian density and velocity advection
3: Add grid-based buoyancy
4: Pressure projection
5:
6: // Turbulence model
7: Compute production: Pwall = 2νT |∇ ×U− ωg|2
8: Update ωg based on Eq. (10) and advect
9: Update k, ε based on Eq. (11) and advect

10:
11: // Mesh dynamics
12: Integrate baroclinity: γi ← γi −∆t 2β n̂× g
13: Compute Gaussian filtered vortex strengths γ̄i
14: Small-scale vortex strength: γ′i ← γi − γ̄i
15:
16: Compute circulations Γi ⇐ γi , Eq. (5)
17: for each mesh vertex i do
18: ui ⇐ Integrate Eq. (8) for sources γ′i within rC
19: Advect vertex with ui and grid velocity field
20: Advect vertex with synthesized curl noise uT =

√
ηky

21: end for
22: Compute vortex strengths γi ⇐ Γi , Eq. (4)
23:
24: Perform mesh surface smoothing
25: Perform edge collapses and triangle subdivision

Figure 5: Pseudo-code for the simulation loop of our algorithm.

mation of Eq. (8). As we can rely on the grid solver to capture
the large scale buoyant motion, the effects of this approximation
are negligible. A comparison of a full evaluation versus two differ-
ent cutoff radii can be seen in Fig. 3. As the cutoff approximation
introduces small differences which accumulate over time, the re-
sulting surfaces differ. However, the visual quality is comparable
for all three simulations, while the processing time is five times
faster using rC = 5∆x. We use this value for all following sim-
ulations with our model. The position update for the mesh nodes
is performed based on the Eulerian velocity field, and by applying
a per-node velocity update for the small-scale structures, which is
described next. The complete simulation loop for our combined
solver is summarized in pseudo code in Fig. 5.

Regularization To obtain the small-scale velocity update for the
mesh, Eq. (3) is discretized, using the residual vorticity γ′ as a
source. As this equation is singular for points on the interface, we
chose to regularize the equation analogous to the vortex blob regu-
larization for vorticity particles [Chorin and Bernard 1973]

ureg(x) =
1

4π

∫
S

γ′(x′)× freg(x− x′)dx′ (6)

freg(r) =
r

(|r|2 + α2)
3
2

. (7)

The regularization parameter α effectively controls the minimal
size of the generated vortices. We therefore set α proportional to
the mesh resolution, as will be explained in § 6. To discretize this
equation, we use Gaussian quadrature. If Gj(r) is the Gaussian
quadrature of freg for triangle j, Eq. (6) becomes

ui =
1

4π

m∑
j=1

ajγ
′
j ×Gj(ri) . (8)

For each mesh node i, we therefore evaluate a sum over all trian-
gles j = 1 . . .mwhich lie within the cutoff radius rC . In our exam-
ples, we use three-point quadrature, and refer the reader to [Cowper
1973] for details on how to compute the integration weights.

Figure 6: To separate the sources of buoyancy and wall-based tur-
bulence, buoyant vorticity is tracked over time. The total vorticity
of a snapshot from Fig. 1 is shown in the middle picture, while the
difference to the tracked buoyant vorticity is shown to the right. The
gray circle marks the position of the cylinder. We observe that de-
spite a small residual halo, our model tracks the area of obstacle
influence behind the cylinder very well.

5 Wall-based Turbulence Model
Our mesh representation also allows us to evaluate turbulence gen-
erated from interaction with obstacles directly on the interface. The
turbulence model we propose in the following is orthogonal to the
buoyancy model of the previous sections, and both models can be
used independently or in combination. We first model the spatial
and temporal distribution of turbulent kinetic energy k using an en-
ergy transfer model, and then synthesize turbulent detail on the sur-
face using frequency-matched curl noise. Below, we will briefly
outline the theory used, and explain our modifications. For a more
in-depth account of turbulence modeling we refer the reader to the
book of Pope [2000].

Modified Energy Model We compute the energy dynamics based
on the commonly used k–εmodel. It consists of two coupled PDEs
that describe the evolution of a turbulent energy k and dissipation
ε. Details of the model can be found in the Appendix A. The model
can also be solved on the high-resolution surface mesh, but this did
not yield a significant difference in our experiments. The reason
for this is that the variables k and ε are averaged properties, and
spatially vary smoothly due to turbulent diffusion. In the following,
we assume the PDEs of Eq. (11) are solved on a grid for simplicity.

The primary interest here is to compute source terms for driving the
model. The sources should capture the wall-induced turbulence, but
exclude turbulence induced by buoyancy. If we were to directly use
k for injecting turbulence we would include the effects of buoy-
ancy twice - once from the k–ε model, and once from the vortex
sheet model. In addition, a general turbulence model would not
be able to capture the characteristic effects of buoyancy, such as
the cloud billowing. We therefore need to guarantee orthogonal-
ity of the two methods, by excluding the effects of buoyancy from
Eq. (11), such that each model can focus on the type of turbulence
it is most suitable for. With a strain-based production term that is
commonly used for the k–εmodel, this would however imply sepa-
rating the wall induced turbulence from the total one. This is, to the
best of our knowledge, not possible for a strain based production.
There is, however, an alternative production term PR based on ro-
tation. Compared to the strain based measure, it is less accurate for
free-stream generation but still captures buoyancy and wall induced
turbulence very well. Assuming we have a measure for the current
buoyancy-induced turbulence, we can subtract it from PR to single
out the turbulence induced by obstacles. We have found that using
the rotation-based production term from Spalart [1992] and a vor-
ticity based integration of the buoyancy production allows us to do
just this.

According to Spalart [1992], the production is given by PR =
2νT

∑
i,j Ω2

ij , with the rotation tensor Ωij = 1
2
(∂Uj/∂xi −

∂Ui/∂xj) of the large-scale velocity field U. We now express

D
D

D
E

(a) (b) (c) (d)

Figure 7: To simplify mesh geometry, we collapse invisible thin
sheets. We fist identify candidate nodes in very thin sheets (a). Next,
we compute an eroded inside volume on grid in steps (b) and (c).
Finally, we check whether these cells are visible with a raycast to-
wards an enclosing sphere (d). All thin sheet nodes in the blue
region of (d) are marked for edge collapses.

its tensor norm in terms of vorticity as
∑
i,j Ω2

ij = |ωf |2. Here
ωf is simply the vorticity of the grid-based flow field given by
ωf = ∇ × U. With ωg , which denotes the buoyancy induced
vorticity strength that we will compute below, we obtain turbulence
production for purely wall-generated turbulence using the differ-
ence of the two:

Pwall = 2νT |∇ ×U− ωg|2 . (9)

For stability, we ensure that |∇ × U| ≥ |ωg|. An example from
the simulation of Fig. 1 comparing the two vorticity measurements
can be found in Fig. 6. Finally, we need to compute the accumu-
lated vorticity induced by buoyancy ωg . Applying the Boussinesq
assumption and omitting external forces, we obtain an evolution
equation for the buoyant vorticity ωg with

Dωg
dt

= ωg · ∇u +
1

ρ
(∇ρ× g) . (10)

We integrate this equation over time on the grid in combination
with the k–ε model to obtain the wall based turbulence production
Pwall as outlined in Fig. 5. Equipped with this production term we
compute the spatial distribution of the turbulent kinetic energy k
that we use to synthesize turbulent detail on the smoke surface.

Turbulence Synthesis In contrast to buoyancy induced turbu-
lence, we can make use of Kolmogorov’s famous five-thirds law
for synthesizing the turbulence triggered by our k–ε model. In this
regime energy is mainly scattered from large to small scales, so
we can approximate the velocity of the turbulent details using a
frequency-matched curl noise texture that is advected through the
large-scale velocities, as in Kim et al.[2008]. Instead of evaluating
the turbulence at each cell of a higher resolution grid, we can syn-
thesize it more accurately on the mesh. Each mesh node carries a
texture coordinate q for curl noise texture, and its turbulent kinetic
energy k is interpolated from the grid. The additional velocity per
node is then given by uT =

√
ηk y(q), where y is the turbulence

function from [Kim et al. 2008] and η is a scaling parameter that can
be used to control bulk turbulence strength. We will demonstrate
the interplay of the two turbulence models and their orthogonality
in § 7.

6 Mesh Resampling
Due to advection and buoyancy, the mesh will undergo strong de-
formations. On the other hand, Gaussian smoothing and buoyancy
integration rely on a relatively uniform mesh geometry. Therefore,
we split and collapse triangle edges to keep all edge lengths l in
the range ∆l < l < 2∆l, where ∆l is the desired minimal edge
length. Vortical forces smaller this minimal length would only be
visible as a slight noise on the surface. So we use the regularization
parameter α in Eq. (6) to enforce a minimum vortex size larger than
∆l. For our example scenes, we chose α = 2∆l. Finally, we apply

Figure 8: We compare the simulation of a buoyant plume with
isotropic turbulence modeling (left) to our method (right). While
isotropic turbulence creates unrealistic surface distortions, the tur-
bulence onset is calculated correctly using our approach.

a small amount of explicit Laplacian smoothing to the mesh [Des-
brun et al. 1999], to prevent the accumulation of small-scale noise
on the surface.

The vortical motion on the mesh interface creates vortex roll-ups,
which lead to the generation of spiral-shaped thin sheets. Since
vorticity generation is linked to the surface normal, both sides accu-
mulate almost equal amounts of vorticity, with opposing direction
vectors. As the sheets become thinner, the vorticity effect on sur-
rounding nodes therefore becomes smaller and effectively cancels
out. Also, many of these thin structures are typically hidden inside
the bulk volume of the cloud. Based on these two observations we
propose the following algorithm to identify these sheets and remove
the ones that are invisible from the outside. First, we mark nodes
on thin sheets, check which of these are far inside volume, and fi-
nally perform a visibility test to determine nodes not visible from
the outside. The process is visualized in Fig. 7.

As a first step, thin sheet nodes are identified by checking for a
vertex with opposing normal (± 20◦) within close proximity, i.e.
at a distance less than ∆l opposing the vertex normal. This can be
done efficiently using the grid as acceleration data structure. Next,
we identify the volume inside the cloud on the grid. As a coarse
representation of the outer hull, we first compute a level set for the
mesh. Since triangle size is always well below the size of a grid cell,
we can employ a simple and fast method [Kolluri 2005] to obtain
the signed distance function. We then enlarge and shrink the level
set to close small holes and cavities induced by the complex mesh
geometry. The level set is enlarged by D = 4 cells to compute
an outer interface. We rebuild the signed distance function at a
distance E = −(D + 2) from this interface, to obtain a faired
volume slightly smaller than the original one. All cells inside this
volume are marked as inside cells.

As cells in a cavity might still be visible from the outside, we fi-
nally compute visibility for the inside cells by performing a raycast
towards target points on a sphere enclosing the surface mesh. The
cost for these tests is less than 5% for our simulations, as there are
typically few cells to be tested. All thin sheet nodes that are located
in cells identified as not visible from the outside are marked to be
collapsed during the next edge collapse step in line 25 of Fig. 5.
For the example setup of Fig. 8, this method reduces the number
of triangles by 32% at the end of the simulation, resulting in an
overall speedup of 43%. We note that this reduction based on edge
collapses could be improved, e.g., by using methods like [Wojtan
et al. 2010], but we have found it to be efficient both in terms of
stability as well as performance.

Figure 9: An expanding, turbulent smoke front is simulated. Ob-
stacle interaction is handled due to the coupling with a Eulerian
solver.

7 Results

In the following, we demonstrate the properties of our model based
on several simulations setups. For most scenes we have used a
shader that computes a transparency based on the length a ray
spends inside the mesh volume. The only exception is Fig. 9, where
we have rasterized the plume onto a grid data structure to make use
of a volumetric shader that supports multi-scattering.

Turbulence onset To demonstrate the ability of our vortex sheet
dynamics to correctly compute the turbulence onset, we simu-
lated a buoyant smoke plume as shown in Fig. 8. The setup uses
64 × 96 × 64 grid cells for the base solver, and a triangle edge
length ∆l = 0.18∆x. Without artificial disturbing forces, the base
flow remains smooth and does not show any turbulent detail. To
demonstrate the effect of standard turbulence methods, we synthe-
size turbulence using vortex particles. The vortex particles are emit-
ted at the inflow and moved along the flow with the smoke plume.
For the particles, we use a size and energy distribution based on the
Kolmogorov spectrum. This is typically a good assumption for bulk
volume flows, as isotropization drives the turbulence towards a Kol-
mogorov spectrum eventually. At the interface, however, the length
scales are model-dependent and production is highly anisotropic.
This leads to a lack of coherent features using isotropic turbulence
methods. Using our method, we observe that the generated detail
organically integrates with the large-scale flow.

Eulerian-Lagrangian coupling We demonstrate the generality
of our model by simulating two setups with more complex bound-
ary conditions. The first scene, depicted in Fig. 9, shows strongly
billowing clouds moving through a channel of irregularly shaped
obstacles. We simulate an expanding front of smoke with density
slightly above air, with a base resolution of 40×40×128. It can be
seen that the flow easily follows the geometry of the scene due to
the Eulerian simulation, while our vortex sheet model leads to the
development of the typical billowing cloud surfaces. In the second
scene, shown in Fig. 4, the interaction between water and a heav-
ier liquid is simulated. We use a base solver with 96 × 64 × 64
grid cells, and pulsed inflow conditions to simulate the injection of
multiple drops of fluid. In this case, the temporally changing in-

Setup Grid res. #tris ∆l/∆x Mesh Grid
mio. [s] [s]

Bunny Fig.1 64 × 64 × 64 0.9 / 2.6 0.2 9 / 33 0.6
Water Fig.4 96 × 64 × 64 0.8 / 3.2 0.15 12 / 40 1.3
Plume Fig.8 64 × 96 × 64 0.6 / 2.3 0.18 7 / 22 0.6
- w/o cutoff 64 × 96 × 64 0.6 / 2.4 0.18 36 / 101 0.5
- base only 64 × 96 × 64 0.2 / 0.8 0.18 1 / 6 0.5
- vortex part. 64 × 96 × 64 0.4 / 1.5 0.18 5 / 16 0.6
Street Fig.9 40 × 40 × 128 1.0 / 1.8 0.2 11 / 41 0.9
Duck Fig.10 64 × 96 × 64 0.8 / 3.1 0.2 8 / 30 0.4
- VIC 64 64 × 96 × 64 0.1 / 0.3 0.2 0.2 / 0.4 6 / 16
- VIC 256 256 × 384 × 256 0.8 / 3.8 ” 4 / 11 156 / 350

Table 1: Performance measurements for our simulation runs. Tim-
ings are mean runtime per frame. Two values with a ”/” denote the
mean and maximum values, respectively. Grid refers to all Eule-
rian operations, while Mesh represents vortex sheet dynamics. All
simulations were run on a workstation with an Intel Core i7 CPU,
a NVidia GTX 580 graphics card and 8GB of RAM.

flow leads to complex density surfaces developing over time from
the buoyant turbulence. Note that the irregular walls of the first,
and the pulsed inflow of the second example would be difficult to
realize with a simulation based on a pure vorticity formulation.

Wall turbulence In a next example, the interplay between mesh
buoyancy and our turbulence model is investigated. To this end,
we simulate a plume under the influence of buoyancy and a mov-
ing obstacle. Fig. 1 shows the orthogonality of the both models:
with only the turbulence model activated, we observe detailed struc-
tures forming in the wake of the obstacle, while the rest of the
flow remains laminar. Once the vortex sheet model is enabled, the
mesh shows small-scale deformations with correct orientation due
to buoyancy. We show that by combining the two models, we can
benefit from both the accurate prediction of source regions by the
turbulent energy model, as well as the anisotropic generation of
the vortex sheet method. This example exhibits a large number of
highly detailed swirls, many of them less than a fifth of a cell in
diameter. These surface details are not smeared out despite mov-
ing along with the fast and turbulent velocities. Representing this
detail during the course of a purely grid-based simulation would
require a large amounts of memory, and corresponding amounts of
computation for the advection step.

Performance The two most costly steps are applying the Gaus-
sian kernel to the mesh, and integrating Eq. (8). Since these oper-
ations are simple and do not depend on neighborhood information,
we evaluate them on the GPU. This leads to an average time of 10s
per frame for the example scenes shown. The majority of this time
is spent on the vortex sheet evaluation, i.e. the performance primar-
ily depends on the number of triangles in the mesh. The number of
triangles is in turn determined by two factors: the shot length, as tri-
angle numbers typically increase during the course of a simulation,
and the re-meshing resolution ∆l. The parameter ∆l can therefore
be used as a means for fine-tuning detail versus performance. The
performance numbers and statistics for all scenes can be found in
Table 1, where base only refers to the plume simulation without a
turbulence model.

To evaluate the performance of our approach compared to the
Vortex-in-Cell (VIC) scheme used, e.g., in Stock et al. [2008], we
have simulated the buoyancy only setup shown in Fig. 10. We mea-
sured computation times up to 19 times faster using our algorithm.
We note that our VIC implementation uses OpenMP, but no GPU
acceleration. We still think that this comparison is a good indicator
of the complexity of the algorithms, despite the fact that both im-
plementations are not optimized to their full extent. We found that
VIC is non-trivial to port to the GPU, while our algorithm is easily
realized in CUDA with a few short kernel functions.

Figure 10: We compare our method to Vortex-in-Cell integra-
tion. Our approach (middle) produces similar results as VIC on
a 256 grid (right), while being 19 times faster. On the other hand,
VIC with a resolution of 64 (left) has a comparable runtime to our
method, but exhibits significantly less detail.

8 Conclusion

We presented a novel algorithm for simulating buoyant, turbulent
smoke plumes. We use a Lagrangian surface mesh to track the
smoke/air interface. On this mesh, we solve the vortex sheet dy-
namics, and couple it to a low-resolution Eulerian fluid solver. This
allows us to correctly simulate the turbulence generation process on
the interface, which is important for visual coherency. On the other
hand, the coupling with Eulerian large-scale dynamics allows us to
evaluate the update of the velocity in a purely local fashion. This
greatly reduces the complexity, and enables the efficient simulation
of detailed plumes with non-trivial static boundaries or moving ob-
stacles. In addition, we have proposed an orthogonal turbulence
model for capturing turbulence production from obstacles.

A limitation of our approach is that it can lead to meshes with
large numbers of triangles. Due to re-meshing, the number of tri-
angles will often increase over time in turbulent regions for long
simulation times. Although our resampling approach reduces the
complexity of the meshes, more aggressive approaches are an in-
teresting topic for future work. In addition, accumulated integra-
tion errors and re-meshing operations can lead to self-intersecting
surfaces. We have, however, not encountered any problems when
working with the resulting surfaces. Our method is naturally not
well-suited for diffuse, hazy smoke. It would however be very in-
teresting to combine our approach with a lower-resolution volumet-
ric density representation. Sharp, detailed interfaces could then be
tracked with our method, while the developing diffuse haze around
the dense cloud could be represented on the volumetric grid. It
would also be possible to add further detail based on the texture co-
ordinates of the mesh, as we have a temporally coherent discretiza-
tion of the surface over time.

Acknowledgments The authors would like to thank the review-
ers for their comment and suggestions, and everyone at the CGL for
the valuable discussions.

References

ANGELIDIS, A., NEYRET, F., SINGH, K., AND
NOWROUZEZAHRAI, D. 2006. A controllable, fast and
stable basis for vortex based smoke simulation. In ACM
SIGGRAPH / EG Symposium on Computer Animation.

BARGTEIL, A. W., GOKTEKIN, T. G., O’BRIEN, J. F., AND
STRAIN, J. A. 2006. A semi-lagrangian contouring method
for fluid simulation. ACM Transactions on Graphics 25, 1.

BRADY, M., LEONARD, A., AND PULLIN, D. I. 1998. Regu-
larized vortex sheet evolution in three dimensions. J. Comput.
Phys. 146, 520–545.

BROCHU, T., AND BRIDSON, R. 2009. Animating smoke as a
surface. SCA posters.

CHENTANEZ, N., AND MUELLER, M. 2011. Real-time eulerian
water simulation using a restricted tall cell grid. ACM Trans.
Graph. 30, 82:1–82:10.

CHORIN, A. J., AND BERNARD, P. S. 1973. Discretization of a
vortex sheet on a roll-up. J. Comp. Phys. 13, 423–429.

COWPER, G. 1973. Gaussian quadrature formulas for triangles.
Int. J. Num. Methods 7, 3, 405–408.

DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A.
1999. Implicit fairing of irregular meshes using diffusion and
curvature flow. Proc. SIGGRAPH, 317–324.

ENRIGHT, D., FEDKIW, R., FERZIGER, J., AND MITCHELL, I.
2002. A hybrid particle level set method for improved interface
capturing. J. Comp. Phys. 183, 83–116.

KIM, T., THUEREY, N., JAMES, D., AND GROSS, M. 2008.
Wavelet turbulence for fluid simulation. ACM SIGGRAPH Pa-
pers 27, 3 (Aug), Article 6.

KIM, D., SONG, O.-Y., AND KO, H.-S. 2009. Stretching and
wiggling liquids. ACM Transactions on Graphics 28, 5, 120.

KOLLURI, R. 2005. Provably good moving least squares. In
Proceedings of ACM-SIAM Symposium on Discrete Algorithms,
1008–1018.

LAUNDER, B. E., AND SHARMA, D. B. 1974. Applications of the
energy-dissipation model of turbulence to the calculation of flow
near a spinning disc. Lett. Heat Mass Transf. 1, 1031–138.

LEONARD, A. 1980. Vortex methods for flow simulation. J. Com-
put. Phys. 37, 289–335.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating
water and smoke with an octree data structure. Proceedings of
ACM SIGGRAPH, 457–462.

LOZANO, A., GARCA-OLIVARES, A., AND DOPAZO, C. 1998.
The instability growth leading to a liquid sheet breakup. Phys.
Fluids 10, 9, 2188–2197.

MENG, J. C. S. 1978. The physics of vortex-ring evolution in a
stratified and shearing environment. J. Fluid Mech., 3, 455–469.

MULLEN, P., CRANE, K., PAVLOV, D., TONG, Y., AND DES-
BRUN, M. 2009. Energy-Preserving Integrators for Fluid Ani-
mation. ACM SIGGRAPH Papers 28, 3 (Aug), Article 38.

MÜLLER, M., SOLENTHALER, B., KEISER, R., AND GROSS, M.
2005. Particle-based fluid-fluid interaction. ACM SIGGRAPH /
EG Symposium on Computer Animation.

NARAIN, R., SEWALL, J., CARLSON, M., AND LIN, M. C. 2008.
Fast animation of turbulence using energy transport and proce-
dural synthesis. ACM SIGGRAPH Asia papers, Article 166.

PFAFF, T., THUEREY, N., SELLE, A., AND GROSS, M. 2009.
Synthetic turbulence using artificial boundary layers. ACM
Transactions on Graphics 28, 5, 121:1–121:10.

PFAFF, T., THUEREY, N., COHEN, J., TARIQ, S., AND GROSS,
M. 2010. Scalable fluid simulation using anisotropic turbulence
particles. SIGGRAPH Asia papers, 174:1–174:8.

POPE, S. B. 2000. Turbulent Flows. Cambridge University Press.

RASMUSSEN, N., NGUYEN, D. Q., GEIGER, W., AND FEDKIW,
R. 2003. Smoke simulation for large scale phenomena. In Pro-
ceedings of ACM SIGGRAPH.

ROSENHEAD, L. 1931. The formation of vorticies from a surface
of discontinuity. Proc. Roy. Soc. London 134, 170–192.

SCHECHTER, H., AND BRIDSON, R. 2008. Evolving sub-grid
turbulence for smoke animation. In Proceedings of the 2008
ACM/Eurographics Symposium on Computer Animation.

SELLE, A., RASMUSSEN, N., AND FEDKIW, R. 2005. A vortex
particle method for smoke, water and explosions. Proceedings
of ACM SIGGRAPH 24, 3, 910–914.

SELLE, A., FEDKIW, R., KIM, B., LIU, Y., AND ROSSIGNAC, J.
2008. An unconditionally stable MacCormack method. Journal
of Scientific Computing.

SPALART, P. R., AND ALLMARAS, S. R. 1992. A one-equation
turbulence model for aerodynamic flows. AIAA Paper 92, 0439.

STAM, J., AND FIUME, E. 1993. Turbulent wind fields for gaseous
phenomena. In Proceedings of ACM SIGGRAPH.

STAM, J. 1999. Stable fluids. In Proceedings of ACM SIGGRAPH.

STOCK, M., DAHM, W., AND TRYGGVASON, G. 2008. Impact of
a vortex ring on a density interface using a regularized inviscid
vortex sheet method. J. Comp. Phys. 227, 9021–9043.

TRYGGVASON, G., AND AREF, H. 1983. Numerical experiments
on hele-shaw flow with a sharp interface. J. Fluid Mech., 1–30.

WEISSMANN, S., AND PINKALL, U. 2010. Filament-based smoke
with vortex shedding and variational reconnection. ACM Trans-
actions on Graphics 29, 4.

WOJTAN, C., THUEREY, N., GROSS, M., AND TURK, G. 2010.
Physics-inspired topology changes for thin fluid features. ACM
Transactions on Graphics 29,3 (July), 8.

WU, J.-Z. 1995. A theory of three-dimensional interfacial vorticity
dynamics. Phys. Fluids 7, 10, 2375–2395.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid.
Proceedings of ACM SIGGRAPH 24, 3, 965–972.

A Energy Transfer Model
The energy dynamics are described using the well-established k–ε
model by Launder and Sharma [1974]

Dk

dt
= ∇(

νT
σk
∇k) + P − ε (11)

Dε

dt
= ∇(

νT
σε
∇ε) +

ε

k
(C1P − C2ε) ,

where P , ε denote production and dissipation of turbulence, and
νT = Cµ

k2

ε
is the turbulent viscosity. Launder and Sharma specify

the model constants as σk = 1, σε = 1.3, C1 = 1.44, C2 = 1.92
and Cµ = 0.09. The k–ε model has inherent stability problems,
especially due to k in the divisor of Eq. (11) which leads to insta-
bilities for flows with low turbulence. We therefore ensure that k
and ε are always in a meaningful range where a minimal amount
of ambient turbulence is present. Bounds for k are given in terms
of turbulence intensity I as k = 3

2
U0

2I2, with the characteristic
velocity U0 which is an estimate of the velocity scale in the simula-
tion. We use Imin = 10−3, Imax = 1. We found ε is best limited
using the equation for the turbulent viscosity νT , as this parame-
ter linerly affects production. In our experiments, νmin = 10−3,
νmax = 5 are used. As starting parameters for a weakly turbulent
initial state we found νT = 0.1, k = 0.1 to produce stable results.

