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Abstract This paper presents a multi-view acquisition sys-
tem using multi-modal sensors, composed of time-of-flight
(ToF) range sensors and color cameras. Our system captures
the multiple pairs of color images and depth maps at mul-
tiple viewing directions. In order to ensure the acceptable
accuracy of measurements, we compensate errors in sen-
sor measurement and calibrate multi-modal devices. Upon
manifold experiments and extensive analysis, we identify
the major sources of systematic error in sensor measurement
and construct an error model for compensation. As a result,
we provide a practical solution for the real-time error com-
pensation of depth measurement. Moreover, we implement
the calibration scheme for multi-modal devices, unifying the
spatial coordinate for multi-modal sensors.

The main contribution of this work is to present the thor-
ough analysis of systematic error in sensor measurement
and therefore provide a reliable methodology for robust er-
ror compensation. The proposed system offers a real-time
multi-modal sensor calibration method and thereby is appli-
cable for the 3D reconstruction of dynamic scenes.
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1 Introduction

Upon the advancement in 3D display technologies, we envi-
sion that the next move in the display industries gears toward
autostereoscopy for multiple users. Such a new shift de-
mands the framework for modeling and visualizing a real 3D
scene at arbitrary viewing directions. As one of candidates
for future 3D sensing technology, time-of-flight (ToF) depth
camera receives a great attention from various researchers
and has been adopted in several topics such as novel view
synthesis, 3D scene modeling, gesture recognition, human-
computer interaction, etc. In this paper, we present a multi-
view acquisition system for the 3D visualization of a dy-
namic scene, using multiple depth and color cameras.

A variety of multi-view acquisition and processing tech-
niques has been proposed in the field of computer vision
and computer graphics. In general, existing techniques can
be classified into either a single-modal sensor-based ap-
proach (using color cameras only) or multi-modal sensor-
based approach. Single-modal sensor-based approaches
have adopted for light field imaging [1], stereo vision [2],
photometric stereo [3], shape from X [4] and many oth-
ers. Possible by the rapid progress in camera manufacturing
technology, color cameras are suitable for capturing and pro-
cessing a dynamic scene. However, they either require an ex-
cessive number of cameras (from tens to hundreds), hardly
reproducible in practice [1], or may suffer from ambiguity
in shape reconstruction [2–4]. As alternatives, multi-modal
sensor-based approaches shall serve a compact system con-
figuration, requiring much less devices than single-modal
sensor-based approaches, and free from ambiguity in 3D re-
construction. Multi-modal sensors are typically composed
of color cameras to capture the texture of scene and ad-
ditional depth sensors; range scanner [5], structured light
[6], time-of-flight (ToF) [8], etc.; to acquire the geometry of
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scene. Yet, many of multi-modal sensor-based approaches
are not suitable for handling the dynamic scene [5, 6]. In
fact, the applicability for capturing the dynamic scene is de-
termined by the principle of depth sensor.

Among existing depth sensors, ToF depth sensor is suit-
able for recording the dynamic 3D scene. Thus, we employ
three pairs of ToF sensors and color cameras for compos-
ing our multi-view acquisition system. Lately, several tech-
niques have been proposed to integrate ToF sensors into the
multi-view acquisition system. However, their results pre-
sented the shape misalignment inherent by the error in sen-
sor measurement. Although the ToF depth camera achieved
the quality improvement in depth measurement during past
years, it still produces the substantial errors, yielding lack in
precision. Addressed by the previous work, the accuracy of
sensors exhibits a significant dependency on environmental
conditions as well as internal properties. These sources of
error ask a complex non-linear compensation so to ensure
the acceptable accuracy in 3D reconstruction. Although is-
sues in measurement error are reported in previous work,
the thorough analysis and study have not been conducted in
sufficient depth so to be applicable for a practical system.

In this paper, we investigate and develop the practical
pipeline for compensating errors in sensor measurement and
calibrating multi-modal devices. For the error compensa-
tion, we first identify the sources of error. Upon the experi-
mental validation, we conclude that the scene depth and the
intensity of reflected infrared image (referred to as an am-
plitude image) are the major sources of error. Then, we con-
struct the error model parameterized by two sources of error
and use it to correct the depth measurement. More specifi-
cally, we generate a look-up-table (LUT) to perform the real-
time error compensation for sensor measurement, which is
essential for processing video inputs.

Because the ToF sensor only outputs the geometric infor-
mation of scene, we use additional color cameras to capture
the radiometric information of scene. We implement a new
calibration scheme between ToF sensors and color cameras
for better fitting onto the proposed system. As a result, we
present a real-time 3D scene acquisition system, applicable
for the 3D reconstruction of dynamic scene.

2 Related work

A number of techniques for ToF sensor calibration has been
discussed in recent years. Previous work considered a pin-
hole imaging model for the ToF sensor and solved for in-
trinsic and extrinsic parameters for calibration. Zhang [7]
has suggested the intrinsic calibration method for the ToF
sensor. Given by the measurement points and their ground
truth positions, the author computed intrinsic parameters
by applying conventional algorithms such as Calde/Callab,

Matlab-Toolbox, or OpenCV. To enhance the accuracy in
estimation, Kahlmann et al. [8, 9] proposed to use a cali-
bration pattern consisting of filled white circles on a black
background. For error compensation in sensor measurement,
they introduced a look-up-table (LUT) to correct the depth
measurements. Their LUT considers the depth dependency
and the exposure time for model construction. Recently,
Fuchs et al. in [10, 11] computed intrinsic parameters using a
conventional checkerboard pattern and reported the reason-
able accuracy for estimating intrinsic parameters. Their ex-
trinsic calibration of range sensors used a specialized hard-
ware, an industrial robot. Such a robot-based system shall
not be suitable for most practical applications.

A general system of calibrating multi-view ToF sensors
has been presented by Kim et al. [12]. The authors applied
a three-step calibration algorithm in order to remove the
systematic bias in depth measurement: a rigid transforma-
tion, polar angular correction and a constant depth bias. Our
calibration method is different from them in that we ex-
haustively analyze an error distribution and derive an em-
pirical model for compensating the systematic error. Guan
et al. [13] have presented a method to calibrate a network
of camcorders and ToF cameras using a spherical calibra-
tion object. They assume predetermined intrinsic parame-
ters, which require additional calibration objects. Moreover,
they do not consider the error compensation, yielding a lack
in precision. In [14], same authors combined multi-modal
data, color images and depth maps. They used standard
calibration techniques [15] based on a checkerboard pat-
tern. Also, they compared the estimated position of plane
with depth measurements to derive the error compensation
model. As a result, their model accounted a constant bias,
ray discrepancy and depth dependent bias into their com-
pensation model.

This paper presents an effective calibration technique for
the error compensation of sensor measurement as well as
the extrinsic calibration of multi-modal sensors. Upon the
extensive experiments and analysis, we derive the practical
solution for error compensation, the LUT-based real-time er-
ror compensation. We identify the measured depth and the
amplitude image as the major sources of error by empiri-
cal analysis. In addition, we suggest a modified technique
for the extrinsic calibration method for ToF sensors. Instead
of computing the intrinsic parameters of ToF sensor, we di-
rectly use depth measurements for calculating extrinsic pa-
rameters. In this way, we avoid the lack in precision for in-
trinsic parameter estimation.

3 System specification

As shown in Fig. 1, the proposed system consists of three
device pairs which are rigidly mounted onto a rig. Each
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Fig. 1 Experimental setup. Left: setup with three camera pairs, middle: frontal view of color camera attached to the ToF sensor, right: side view
of the pair

pair combines a time-of-flight (ToF) depth sensor from the
MESAT M Swissranger 4000 (SR4000) with a color camera
from the PointGrey Research Flea2. These pairs of sensors
stay 1 m (or more) apart and have an overlapping field of
view. We merge the combined depth and color data from all
sensors into a single, consistent 3D scene for free viewpoint
rendering.

The ToF sensor produces a depth map and an amplitude
image at every frame and their resolutions are 176 × 144.
The depth map provides the 3D position of scene points
with a floating-point precision and the amplitude image con-
tains the intensity values of the reflected infrared light cor-
responding to the depth map. SR4000 offers three modula-
tion frequencies for infrared light; 29 MHz with a range of
5.17 m, 30 MHz with a range of 5.0 m and 31 MHz with a
range of 4.84 m. Notice that higher modulation frequencies
are of high interest for practitioners as it provides a dense
depth resolution. Besides, the color camera runs 30 fps at
1032 × 776 and its field of view is around 43.6◦ × 34.6◦.

4 Time-of-flight sensor calibration

As noted in the literature, the ToF sensor has the system-
atic bias, yielding distorted depth maps. In the following
sections, we first identify the sources of error (Sect. 4.1)
and then carry out the empirical analysis to derive an error
model that accounts for all sources of error simultaneously
(Sect. 4.2).

Based on the information from the manufacturer, the pre-
vious work and our own experiences, we have selected the
potential sources of error for the SR4000 ToF sensor. They
are; scene depth, amplitude image, temperature, lens dis-
tortion and spatial interference. For each component, we
analyze its characteristics and evaluate whether the error
is present, relevant, and possible to be integrated into our
model for error compensation.

It is important to note that, ideally, we should analyze
each source of error from depth measurements only affected
by the corresponding source of error. However, actual mea-
surements are the result of multiple error sources and it is
difficult to separate each source of error in practice. Hence,
it is impossible to measure the error corresponding to a sin-
gle source alone.

Therefore, instead of modeling each source of error, we
first identify the major sources of error by proving or dis-
proving a hypothesis of each source being the significant
source of error. Then, we build the error compensation
model that accounts for all the major sources of error si-
multaneously.

4.1 Sources of errors

In this section, we will list the potential sources of error and
eliminate the term if it does not possess the systematic na-
ture. In this way, we will arrive at two major sources of error;
the scene depth and the amplitude image.

4.1.1 Scene depth

Upon our experiences, we found that the error in depth mea-
surements depends on the actual depth of scene. Our hypoth-
esis is that the error can be modeled by a non-linear warp
function, which is parameterized by the measured depth. To
prove or disprove the presence of depth warp, we carry out
the following experiment.

As depicted in the left of Fig. 2, we design a calibration
object using two planar bodies attached orthogonally to a
connection. Then, we capture amplitude images and depth
maps of this object at multiple scene depths, covering the en-
tire operating range of ToF sensor. From each captured am-
plitude image, we manually select the region at each plane
(blue and red rectangle in Fig. 2). Then, we apply RANSAC
[17] for fitting the corresponding 3D points of the frontal
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Fig. 2 Left: illustration of our calibration object (two planar objects
are attached orthogonally to a connection and have a 1 m distance to
each other), middle: blue rectangle includes the foreground part in the

calibration object and red rectangle includes a region in the farther
away plane of the calibration object, right: 3D points for the selected
regions in the middle image

Fig. 3 Left: deviation from
ground truth (1 m) over multiple
shots using the calibration
object in Fig. 2, right: results
from another camera

Fig. 4 Left: amplitude image of
a calibration object for
amplitude variation. (Red
rectangle: regions for acquiring
the ground truth, blue rectangle:
regions for the measurement)
right: depth deviation within the
selected gradient pattern

plane into the plane equation. We perform the same oper-
ation on the back plane and then calculate the orthogonal
distance between two planes. Figure 2 illustrates these steps.

The depth warp does not exist if both conditions satisfy:
(1) the measured distance between two fitted planes is very
close to the ground truth, (2) this value stays consistent at
the different scene depth. Based on our experiments, nei-
ther of them were true and therefore we conclude that the
depth warp is present (see Fig. 3). We observe the maximum
amount of error up to 3 cm within the operating range.

4.1.2 Amplitude image

The amplitude image is the amount of infrared light that has
been reflected back from the scene. We observe that there is
also a depth error introduced by varying amplitude values.
The amount of reflected light is influenced by various fac-
tors in the scene, such as material properties and the surface
orientation. Also, the attenuation factor of light would be
inversely proportional to the square of the traveling distance
of light.
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Fig. 5 Depth measurement over the running time (second). Ground
truth depth is located at 1.5 m

To see if the error in depth measurements is sufficiently
correlated with the amplitude image, we observe the depth
values at varying amplitude values. To simulate the variation
in amplitude image, we use a gray scale gradient pattern at-
tached on top of the planar board as a calibration object (see
the left of Fig. 4). Then, we record the amplitude image and
the depth map of this calibration object. From the amplitude
image, we select the plain-colored region (red rectangle) of
the object and compute the plane position from the selected
points. This serves the ground truth for the plane position.
After that, we measure the depth over the gradient area (blue
rectangle) and compare the measured depth with the ground
truth in the right side of Fig. 4.

As shown in Fig. 4, we observe that the depth measure-
ments deviate from the real depth values. Upon the exper-
iment, the error introduced by the amplitude reaches up to
4 cm.

4.1.3 Temperature

The temperature of sensor is another source of error in the
depth measurements. [16] and [8] explain the underlying
physical principle of this phenomenon in detail.

To simulate the changes in temperature, we power up the
device and measure the depth within the first 30 minutes. By
turning on the power, we expect the temperature of device is
increased gradually over the time. By fixing all other condi-
tions, we record the depth value of the same object, a white
plane, over the time and plot them accordingly (see Fig. 5).

As a result, the maximum amount of error by the tem-
perature changes is roughly 0.3 cm within 20 minutes, rel-
atively small compared to other sources, and its distribution
is stabilized after 10 minutes. Hence, we decide to ignore
the temperature from the sources of error. Instead, we en-
sure, for every experiment, the device having been powered
up for at least 20 minutes before the usage.

4.1.4 Lens distortion

Similar to the conventional color camera, the ToF sensors
also present the optical distortion. The ToF sensor consists
of a set of LEDs emitting the modulated infrared light, and
the lens receiving the reflected infrared light from the scene.
To cover the wide range of the scene, the lens of ToF sensor
has a large field of view, approximately 43.6◦ × 34.6◦. On
the other hand, the lens diameter is small in order to keep
the sensor size being reasonably small. This sensor configu-
ration yields the severe lens distortion in the measurements.
One common approach to model the lens distortion is sug-
gested by [18], combining radial distortion and tangential
distortion. That is,

x̃ = x + x
[
k1r

2 + k2r
4] + [

2p1xy + p2
(
r2 + 2x2)],

ỹ = y + y
[
k1r

2 + k2r
4] + [

2p2xy + p2
(
r2 + 2y2)].

{x̃, ỹ} are the distorted coordinates, {k1, k2} represent the
radial distortion parameters, {p1,p2} stand for the tangential
distortion parameters and r2 equals to x2 + y2.

In fact, the manufacturer (SwissRanger) provides univer-
sal distortion parameters using the above distortion model,
meaning the same parameters for every device. Hence, we
attempt to derive optimal distortion parameters per device
and see if the measurement accuracy is enhanced. Our esti-
mates on distortion parameters and the universal distortion
parameters by the manufacturer are listed in Table 1. From
these experimental results, we find that the default parame-
ters are the valid approximation to optimal parameters per
device. That is, our estimates for each device are sufficiently
close to manufacturer’ parameters. Differences for {k1, k2}
are in the order of 10−11.

Finally, we conclude that the radial distortion exists in the
raw data (amplitude image and the depth map). However,
the default parameters are sufficiently accurate and thereby
the additional distortion model is not necessary. As a result,
the additional factor for the lens distortion can be discarded
from the sources of error.

4.1.5 Spatial interference

The spatial interference indicates the error influenced by the
position (2D coordinates) of a pixel. It is correlated to the
propagation delay when the CCD is read out [11, 19]. To val-
idate the presence of error, we measure the depth of a planar
object and compute a depth deviation from the ground truth.

As a result, the computed deviation is ignorable; the stan-
dard deviation is about 2 mm. We compute the statistics of
the pixel dependent error and present it in Table 2. Since the
overall deviation is sufficiently small, we decide to discard
it from the final error model.
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Table 1 Lens distortion
parameters Camera Set k1 k2 p1 p2 cx cy

Camera 1 Manufacturer 7.82 × e−10 2.01 × e−9 0 0 87.5 71.5

Our estimates 7.82 × e−10 2.01 × e−9 0 0 91.88 71.5

Camera 2 Manufacturer 7.82 × e−10 2.01 × e−9 0 0 87.5 71.5

Our estimates 7.89 × e−10 2.03 × e−9 9.64 × e−5 −6.77 × e−5 88.27 72.13

Camera 3 Manufacturer 7.82 × e−10 2.01 × e−9 0 0 87.5 71.5

Our estimates 7.82 × e−10 2.01 × e−9 1.49 × e−4 −1.24 × e−5 89.5 71.64

Fig. 6 Amplitude dependent error model. Right: plots for depth samples (blue) and the fitted model (green) of error, left: plots for amplitude
corrected samples and the ground truth

Table 2 Statistics of pixel dependent error

Values in meter Pixel dependent error statistics

Mean 2.62 × 10−19 (m)

STD 1.9 × 10−4 (m)

VAR 3.98 × 10−6 (m)

4.2 Error compensation model

Based on the faithful experiments and analysis in Sect. 4.1,
we identify two major sources of error; the scene depth and
the amplitude image. Knowing two major components, we
construct a global error model for compensating the depth
error dependent on amplitude image and depth measure-
ment.

On the left side of Fig. 6, we visualize the amplitude
dependent error distribution. By observing these measure-
ments, we find that the measured data points fit well into an
inverse quadratic function. Thus, we propose a parametric

model to represent the error distribution upon the changes in
amplitude. That is,

E(r) = α

( r
β

+ γ )2
+ δ. (1)

The input value r is the amplitude value, the parameter
α is the scaling factor, β is constant and set to 16000, γ

shifts the function along the abscissa and δ is the offset of
the function. We have measured the error distribution upon
the amplitude changes at several different distances. By ob-
serving multiple error distributions, we empirically find that
the parametric model shown in (1) matches well with mea-
surements.

This formula is capable of representing the character-
istics of error distribution at a fixed depth value. Key to
our model is that we constitute the global error model by
expanding this amplitude dependent error model upon the
changes in depth values.

At the fixed scene depth, we fit the model into the data by
non-linear optimization and compute the model parameters
{α,γ, δ}. Considering the depth dependency in error, we cal-
culate the model parameters at every depth value within the
operating depth range. In practice, it is impossible to cal-
culate the model parameters for all possible depth values.
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Fig. 7 Left: plots for the measurements, Right: LUT. Z-axis: ground truth depth, Y -axis: amplitude values at a measured depth, X-axis: measured
depth

Hence, we compute the model parameters at discrete depth
samples and use them from the adjacent depth to interpolate
the model parameters for in between depth.

Precisely, we sample the depth by positioning the sensor
at every 10 cm within the operating range. Then, at every
depth sample, we record the gradient pattern attached to the
white wall for acquiring the error distribution upon the am-
plitude changes. Finally, we compute the model parameters
{α,γ, δ} at every depth sample.

4.2.1 LUT calculation

Given the measurements (Fig. 7) and the parametric model
(1), we have optimized the model parameters {α,γ, δ} at the
corresponding depth. When the measurements are not avail-
able, we interpolate {α,γ, δ} using those of adjacent depth
values. Then, we can calculate a look-up-table (LUT) by re-
producing the measurements based on the estimated model
parameters. Note that we can use this LUT to directly com-
pensate the depth error at runtime of acquisition. That is,
having the amplitude value and the measured depth of a
given pixel, the LUT returns the corrected depth value.

The LUT is computed as follows. First, we are given
model parameters at the known depth values and a grid res-
olution of the LUT. Then, we compute the truth depth value
for each grid in the LUT and store it accordingly. We present
the measurements through the operating range on the left
side of Fig. 7 and the resultant LUT on the right side of
Fig. 7. For the actual implementation shown in Fig. 7, we
use 150 entries in each input dimension, resulting a depth
resolution of approximately 2.35 cm. In practice, we per-
form the bilinear interpolation using four adjacent values
along two dimensions; amplitude and measured depth; to
increase the precision. The execution time for error compen-
sation depends on the implementation scheme. Currently, on

our implementation, it performs roughly at 120 fps in aver-
age, which is much faster than the frame rate for acquisition.
This capability for real-time acquisition enables to model
the dynamic scene.

5 Multi-modal sensor fusion

In previous section, we have discussed our error compen-
sation approach for a single ToF sensor. In this section, we
present our calibration scheme for the multi-modal devices.
For that, we should identify the relative pose of all devices
with respect to the reference device, equivalent to solving
for extrinsic parameters in camera calibration. Standard ap-
proaches use feature points (e.g. checkerboard pattern or
similar structured pattern) and estimate the poses of color
cameras reasonably well. We employ a standard camera cal-
ibration approach, the MATLAB camera calibration toolbox
by Bouguet, for calibrating the poses of color cameras.

Finally, we need to position all devices, the ToF sensor
and color cameras, onto the same coordinate system. Hence,
we first solve for the relative poses of ToF sensors (Sect. 5.1)
and then link the poses of color cameras with respect to the
ToF sensor (Sec. 5.2). As a result, all cameras shall share the
same coordinate system.

5.1 Multiple ToF sensors

Unlike the situation of color cameras, standard camera cal-
ibration approaches are infeasible for the ToF sensor due to
its poor resolution. These errors in extrinsic parameter es-
timation cause the serious collapse in 3D scene reconstruc-
tion. Hence, we suggest a different approach for calibrating
the pose of ToF sensor.

We capture the checkerboard pattern and select more than
five points on the same plane in the amplitude image. Then,



1146 H. Shim et al.

we calculate the plane equation using the selected feature
points. During the plane calculation, we use the correspond-
ing 3D positions of selected feature points, retrieved from
the depth map. This is distinguished from existing methods
in that they match the correspondences in 2D image domain
so to estimate extrinsic parameters; minimizing the back-
projection error from 3D to 2D. We instead handle the cor-
respondences in 3D space and hence gain the precision from
the extra dimension. This effectively alleviates the short-
coming from the poor resolution of the ToF sensor.

In the next step, we set a reference camera, typically
the center camera, and compute the rotation and transla-
tion from other ToF sensors i to the reference camera j . By
fitting the selected feature points into (2), we can compute
the rotation matrix Ri,j and the translation vector ti,j , trans-
forming all pixels from the camera i to the camera j .
⎡

⎣
xj

yj

zj

⎤

⎦ = Ri,j

⎡

⎣
xi

yi

zi

⎤

⎦ + ti,j . (2)

Our method of extrinsic calibration for the ToF sensor
aim to remove the computational error sources as many as
possible. Hence, we do not estimate the intrinsic parame-
ters of low-resolution range sensors. In this way, we prevent
from the inaccurate estimate of intrinsic parameters; focal
length, the center of projection and the distortion parame-
ters; yielding to the failure in the pose estimation. Instead,
we utilize the measurement, the 3D position of features, for
directly computing extrinsic parameters.

5.2 ToF sensors and color cameras

To combine a set of ToF sensors and color cameras, we re-
late the pose of color camera with respect to the ToF sensor.
To achieve the correspondences between the ToF and color
cameras, we select the same set of features from both the
color image and the amplitude image. Since we know the
pose of color camera from the standard approach, we can
calculate additional rotation and translation parameters that
transform the coordinate systems of color camera to the ToF
sensor or vice versa.

6 Experimental results and evaluation

We evaluate our calibration approach in two stages. First, we
evaluate the performance of our error compensation model
for the ToF sensor in Sect. 6.1. Then, we present the accu-
racy of the pose estimation in Sect. 6.2.

6.1 Error compensation

In this section, we evaluate our error compensation model
for the ToF sensor. To justify the reliability, we perform the

Fig. 8 Error distribution after the error compensation. Setting 1 (blue
cross): modulation frequency of 30 MHz and an integration time of 30,
setting 2 (red cross): modulation frequency of 40 MHz and an integra-
tion time of 70

evaluation for various camera settings. For that, we conduct
the experiments under two different camera settings; a mod-
ulation frequency of 30 MHz with an integration time of 30
(Setting 1) and that of 40 MHz with the integration time of
70 (Setting 2). Notice that the integration time introduced
in this paper is consistent to the integration time parame-
ter of SR4000. In reality, each of these numbers {30,70}
translates into {0.3 + 30 × 0.1 = 0.6,0.3 + 70 × 0.1 = 1}
millisecond. Note that we constitute our LUT for the modu-
lation frequency of 30 MHz with the integration time of 70.
Then, we use the same LUT for all other conditions. The
error compensation results are visualized in Fig. 8.

Notice that the experiment is conducted with an identical
scene and setup to Fig. 4. From Fig. 8, we find that our er-
ror compensation method performs reasonably well for both
camera settings. Based on this experiment, we also compute
the statistics of error distribution and present it in Table 3.
These results show that we successfully reduce the error by
an order of magnitude.

Finally, we present rendering results upon the error com-
pensation. Figure 9 demonstrates the significant improve-
ment in rendering, achieved by our error compensation pro-
cedure. We acquire an image of a checkerboard. The black
patches have a low amplitude and thereby they suffer from
severe error in depth, including many bumps and other arti-
facts. After the compensation, the mean deviation from the
plane is significantly subsided (right image).

6.2 Multi-modal sensor calibration

For the extrinsic calibration, existing work either rely on the
optical estimation of the pose of all the sensors or use the
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Fig. 9 Visual impact of the
error compensation. Left: before
the error compensation, right:
after our error compensation

Table 3 Results of our error
compensation approach.
(Modulation frequency:
30 MHz, Integration time: 30)

Values in meter Error without compensation Error with our compensation

Mean 1.70 × 10−2 (m) 1.36 × 10−3 (m)

STD 1.53 × 10−2 (m) 1.24 × 10−2 (m)

VAR 2.33 × 10−4 (m) 1.54 × 10−4 (m)

specialized equipment to measure their position. Often, us-
ing special hardware to position the sensors is impractical
for most practitioners. Hence, as suggested by the previous
work [12], we use the optical features for extrinsic calibra-
tion.

After positioning all sensors in the same coordinate
system, we render the complete 3D scene and present it
in Fig. 10. This figure illustrates three example scenes,
(1) checkerboard plane, (2) cushions with doll on the sofa
and (3) human sitting on the chair. Each scene is chosen to
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Fig. 10 Rendering results using the combined data (three pairs of depth map and color image). Left: checkerboard, right: multiple objects with
textures, top: rendering results at novel views, middle: three captured color images, bottom: three captured depth maps

represent the different type of scene, (1) simple geometry
with challenging texture, (2) complex geometry with de-
tailed texture, (3) complex geometry with complex texture.
To visualize the synthesized view, we choose the novel view
being different from the originally captured views and still
show the acceptable quality in rendering. For checkerboard
plane, we could produce the synthesized view with a moder-
ate quality, well-aligned checkerboard pattern. For the sofa
scene, we could reproduce the sharpness in characters and
this reflects some success in sensor calibration. Typically,
the characters will clearly be blurred out even with a small
calibration error. The example of human body includes com-
plex facial structure and crease on clothes, which is chal-
lenging both in terms of geometry and texture. Even with
the complex scene, we could show the reasonable quality
in rendering, possible by our effective calibration method.
All of them demonstrate the effectiveness of the proposed
system.

During the experiments, we set the integration time
to a constant value of 70, the modulation frequency to
30 MHz (suggested by the manufacturer). The integration
time is carefully chosen to ensure the followings; the sen-
sor can operate without saturation even at the position close
enough to the wall and it has low noise levels at farther dis-
tances.

7 Conclusion

We present a multi-view acquisition system using a set
of ToF sensors and color cameras. The main contributions
of the proposed work is to provide a practical solution of
compensating the systematic error in ToF sensor measure-
ment and an effective method for the extrinsic calibration of
multi-modal devices.

The goal of systematic error compensation is to derive an
empirical model for ease use. We have identified possible
error sources, stated hypotheses of their impact, evaluated
our hypotheses, and provided a model to compensate the re-
sultant error. Based on our analysis, the amplitude depen-
dent error, the depth dependent error and lens distortion are
the sources of errors. The conclusion of our analysis makes
sense as follows. Since ToF sensors accumulate the photons
traveling back to the detector after each photon hits the sur-
face point, they inherently possess the systematic bias de-
pendent on the strength of reflected IR signal (amplitude
image), the traveling distance (actual depth value) and the
optical distortion at detector (lens distortion).

We have employed the optical features in estimating the
pose of ToF sensors and color cameras. Unlike related work,
our approach does not suffer from erroneous estimation in
intrinsic parameters for the ToF sensors. In case of color
cameras, we can estimate the intrinsic parameters reliably
and accurately because the resolution is sufficiently high.
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Finally, we could successfully combine all sensors into the
single coordinate system.

We presented a hardware and software system that ac-
quires and processes a scene for 3D visualization. The hard-
ware consists of three sensor pairs, each including one ToF
sensor and one color camera. The sensors are arranged with
a wide baseline (≥1 m) to capture scenes from different
perspectives, expanding the entire view of the scene. The
depth data are then combined and processed to generate
smooth surfaces. Finally, we successfully generate the syn-
thetic views of the combined scene. Extensive evaluation
and analysis show the effectiveness of our system, acquir-
ing and visualizing the multi-view dynamic scene.

8 Limitation and future work

Currently, we investigate the characteristics of depth sen-
sor alone for compensating the systematic error in measure-
ment. For higher accuracy, it is possible to employ the high
quality/resolution color image so to account for the error
compensation framework. Yet, it is important to note that,
depending on the application scenario, the color image may
not be a reliable cue for 3D reconstruction if the extreme
illumination and shadows appear in the scene.

From Table 3, although the proposed method success-
fully subsides the systematic bias in depth measurement, the
standard deviation of measurement error did not show the
significant improvement. Based on our analysis, the stan-
dard deviation is closely related to the measurement noise,
considered as the random noise. For now, in order to greatly
reduce the measurement noise, we need to increase the inte-
gration time. In the future, we will study an effective tech-
nique to reduce the measurement noise by exploring the spa-
tial and temporal consistency in depth map.

For the simple scene structure, similar to the checker-
board plane, ones might consider a model fitting by as-
suming that a certain structure appears in the scene; planes,
sphere, lines, etc. However, unless we have the knowledge
about the scene structure, it is hard to know whether it is
a plane, the bumpy surface or another complex structure.
In this paper, we focus on calibration technique, which is
independent on the scene context. Still, adopting the scene
context for improving the quality is attractive for the future
work.

Also, in addition to the calibration of multi-modal de-
vices, we would like to investigate the effective representa-
tion and rendering scheme, suitable for the proposed acqui-
sition system.
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