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Figure 1: Given a target shape (a), we use experimentally-acquired material properties (b) to compute and fabricate an optimal
balloon shape (c). Upon inflation, the optimized balloon closely approximates the target (d), whereas inflating a small version
of the target (e) results in poor approximation.

Abstract
This paper presents an automatic process for fabrication-oriented design of custom-shaped rubber balloons. We
cast computational balloon design as an inverse problem: given a target shape, we compute an optimal balloon
that, when inflated, approximates the target as closely as possible. To solve this problem numerically, we propose
a novel physics-driven shape optimization method, which combines physical simulation of inflatable elastic mem-
branes with a dedicated constrained optimization algorithm. We validate our approach by fabricating balloons
designed with our method and comparing their inflated shapes to the results predicted by simulation. An extensive
set of manufactured sample balloons demonstrates the shape diversity that can be achieved by our method.

1. Introduction

Inflatable balloons are fascinating objects that attract the at-
tention of both children and adults. Especially rubber bal-
loons enjoy a high popularity, be it for advertisement and
decoration or simply as toys. Inflating a rubber balloon is
a unique experience, but the diversity of existing balloon
shapes is rather deflating: ellipsoids, wavy tubes, and coarse
approximations of hearts and bunnies constitute a nearly ex-
haustive catalogue. The reason for this monotony is clearly
not a lack of shapes that would make for exciting balloons.
Indeed, computer graphics offers a large variety of tools
and techniques for manipulating and synthesizing shapes
through geometric design, real-world capture or physical
simulation—we are inspired by the idea of leveraging this
wealth for designing custom-shaped rubber balloons.

The fabrication process for standard rubber balloons is
relatively simple: a positive mold, similar in shape to the in-
flated balloon, is briefly dipped into liquid rubber. The bal-
loon is then cured, removed from the mold, and ready to

deploy. Although this process would allow for more com-
plex shaped molds, manually designing a mold that yields a
desired inflated shape is a formidable task. By contrast, bal-
loons made of plastic or aluminum foil can have more com-
plex shapes, but they are more difficult to fabricate and do
not stretch noticeably when inflated. Nevertheless, the large
deformations observed during inflation are essential for the
unique character of rubber balloons.

The goal of this work is to develop a method for de-
signing balloons that, once fabricated, can be inflated into
as complex shapes as foil balloons but are as deformable
and as easy to manufacture as conventional rubber balloons.
Solving this challenging problem requires knowledge and
technologies from different fields, primarily constrained op-
timization, physical simulation, and computational material
design. While our research would fit into any of these spe-
cific areas, computer graphics is actively contributing to all
of them and thus, we believe, provides the best context for
this work.
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There are essentially two options for controlling the in-
flated shape of a balloon: varying its material properties lo-
cally and modifying its rest shape. Arbitrarily varying the
material properties is technically very difficult, but control-
ling the stiffness by locally adapting the thickness of a homo-
geneous material seems feasible. Though promising at first,
we found through experiments that this technique alone can-
not provide sufficient shape variation. Furthermore, varying
the thickness will most likely require a closed mold, which
significantly complicates the fabrication process. In optimiz-
ing the rest shape, however, we can approximate a wide
range of targets with constant-thickness material. Moreover,
this process is amenable to dip molding fabrication. This to-
gether, we believe, is the enabling technology for practical
fabrication of custom-shaped rubber balloons.

Overview & Contributions In this paper we present a
method for automatic design and easy fabrication of bal-
loons that can be inflated into desired shapes. We demon-
strate on an extensive set of examples that our method is
able to create balloons with a wide range of complex shapes.
While the uninflated balloons produced by our method re-
semble their target shapes to some extent (see, e.g., Fig. 1),
they are not mere down-scaled versions thereof and are very
difficult to design manually. Our main contributions can be
summarized as follows:

• We describe a complete process for designing and fabri-
cating custom-shaped rubber balloons, including parame-
ter acquisition, computational modeling, shape optimiza-
tion and physical fabrication.
• We cast balloon shape optimization as a constrained mini-

mization problem, combining strict enforcement of phys-
ical consistency with optimal shape approximation.
• We validate our method on a set of test cases and demon-

strate its capabilities on a number of challenging balloon
shapes.

2. Related Work

Computer graphics and related fields in physics and engi-
neering have extensively studied the physical behavior of
elastic materials and thin structures. In the following sec-
tion, we only describe a small subset most relevant to the
computational design of rubber balloons.

Simulating deformable surfaces has been a primary focus
of computer animation ever since the early work of Ter-
zopoulos et al. [TPBF]. Subsequent research has led to an
abundant body of literature, of which we can only mention
a few immediately related works. Wu et al. [WDGT01] sim-
ulate nonlinear membranes using finite elements. Volino et
al. [VMTF09] use a membrane model derived from contin-
uum mechanics for simulating cloth material. Grinspun et
al. [GHDS] describe a discrete model for simulating thin
shells. The mechanics of inflatable membranes have been

studied extensively in engineering (see [BWMH00] and ref-
erences therein). In the context of computer vision, a sim-
plified balloon model has been used for shape recovery and
tracking [MT93]. However, fabrication-oriented design of
balloons requires an accurate modeling of the material be-
havior of inflatable membranes. To our knowledge, this has
not be considered in graphics before.

Modeling and Fitting Materials is crucial for accurate
simulations. In the context of computer graphics, approaches
were presented for estimating linear elastic material parame-
ters [BT07], or nonlinear heterogeneous materials [BBO∗b].
For deformable surfaces, Wang et al. [WOR] recently pre-
sented a parameter acquisition system for cloth.

Rest Shape Optimization is a highly relevant problem in
various areas. In biomechanics, the effect of gravity and
deformations induced by the scanning process has to be
compensated to obtain an accurate model for simulation
[PCG09]. In computer animation, artists create geometry al-
ready accounting for the effect of gravity. Derouet-Jourdan
et al. [DJBDT] fit the parameters of a 2D dynamic rod model
to match the shape of a given input curve. Twigg et al. [TKA]
optimize the rest shape of mass spring systems to obtain
sag-free simulations. Our application exhibits significantly
larger deformations and external (pressure) forces that de-
pend on the deformed geometry, making it a highly challeng-
ing optimization problem. In order to achieve art-directable
solid simulations, Martin et al. [MTGG] introduce an addi-
tional elastic potential whose rest shape is chosen dynami-
cally from a space of example poses.

Fabrication-Oriented Design has recently gained an in-
creasing interest in graphics. Closely related is the design
of foil balloons [FUM∗] which are usually made out of alu-
minum. Compared to their rubber counterparts, foil balloons
stretch very little and the inflated shapes are thus much eas-
ier to predict. In the broader context, various approaches
for designing and fabricating plush toys [MI], paper craft
models [MS], and burr puzzles [XLF∗] have been presented.
But also more general material properties such as appear-
ance [HFM∗, WPMR] and deformation behavior [BBO∗a]
have been investigated.

3. A Computational Model for Balloons

Our goal is to fabricate rubber balloons that, when inflated,
assume a given target shape. To this end, we modify the rest
shape of the balloons and use physical simulation to predict
the resulting inflated shapes. This requires an adequate com-
putational model, which is described in this section.

3.1. Mechanics

Rubber balloons can be inflated to several times their initial
volume and still return to their original rest shape upon de-
flation. This observation suggests an elastic material model
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and, due to the large deformations that are observed during
inflation, we turn to nonlinear continuum mechanics.

The geometry of balloons, which are essentially thin lay-
ers of rubber, motivates a surface-centered representation.
Accordingly, we describe the middle surface of the bal-
loon in its undeformed and deformed configurations by the
mappings x̄ : Ω ⊂ R2 → R3, respectively x : Ω→ R3 with
Ω ⊂ R2 denoting the surface’s parametric domain with co-
ordinates (u,v).

During inflation, balloons undergo both stretching and
bending deformation. But unlike typical thin shell materi-
als the in-plane deformation is extremely large such that the
resulting forces can be assumed to overrule all bending con-
tributions. Hence, the curvature of the surface is not impor-
tant and only the stretching, i.e., the membrane deformation
needs to be quantified. For this purpose, we start by intro-
ducing tangent vectors on the undeformed surface

āu =
∂x̄
∂u

, and āv =
∂x̄
∂v

, (1)

and analogously define tangents au and av on the deformed
surface. The inner products of the tangents give rise to the
metric (or right Cauchy-Green) tensors C̄ and C, which are
symmetric 2×2 tensors whose components are defined as

C̄uv = āT
u āv , respectively Cuv = aT

u av . (2)

For simplicity, we will assume that the parameterization for
the undeformed configuration is isometric such that āu and
āv are orthonormal and C̄ is the 2×2 identity matrix, C̄ = I.
This allows us to recover the familiar Green strain

E = 1
2 (C− I) ,

which is a 2× 2 tensor describing the deformation of the
balloon’s middle surface. Although this measure does not
explicitly account for deformations in the thickness direc-
tion, we can infer this information by introducing two kine-
matic assumptions [BWMH00]: First, the surface should
not exhibit transverse shearing, and second, the deforma-
tion should be volume-preserving. The first requirement is
part of the Kirchhoff-Love assumptions for thin shell mod-
els, while the second one accounts for the incompressible
nature of rubber materials. Based on these assumptions, we
construct a 3×3 metric tensor as

Ĉ =

 Cuu Cuv 0
Cvu Cvv 0

0 0 J−1

 , (3)

where J = det C is the determinant of the two-dimensional
Cauchy Green tensor. This canonical strain representation
is amenable to standard elastic material models, which are
often described in terms of the first three invariants of Ĉ,

I1 = tr(Ĉ) , I2 =
1
2

[
I2
1 − tr(ĈT Ĉ)

]
, I3 = det Ĉ . (4)

Assuming incompressibility, we have I3 = 1 and can write
the balloon’s strain energy density Ψ due to a given defor-
mation Ĉ as

Ψ(Ĉ) = Ψ(I1, I2) . (5)

As part of our shape optimization process, we need to com-
pute the equilibrium configuration that a balloon assumes
under a certain internal pressure. If the air pressure inside
the balloon is higher than on its outside, there is a resulting
normal force density fp acting in the outward direction of
the balloon’s surface. Neglecting gravity, static equilibrium
implies that elastic and pressure force densities cancel out in
every point on the surface, i.e.,

∂Ψ(x)
∂x

=−fp(x). (6)

3.2. Discretization

We use a finite element method for discretizing (6) in space
and, following the assumptions of plane stress and negligible
bending forces, settle for flat membrane elements, so called
constant strain triangles (see, e.g., [Bat95]).

As a starting point, we approximate the geometry of a
balloon with a closed triangle mesh with n vertices whose
deformed and undeformed positions we denote by xi respec-
tively x̄i for 1 ≤ i ≤ n. Let x̄e

k and xe
k, 1 ≤ k ≤ 3, denote the

vertex positions pertaining to a given element e and define
corresponding edge vectors ēi j = x̄e

j− x̄e
i and ei j = xe

j− xe
i .

We endow the undeformed configuration with an orthonor-
mal material frame T̄ = [ū v̄ d̄] ∈ R3×3, where

ū =
ē12
|ē12|

, d̄ =
ū× ē13
|ū× ē13|

, v̄ = d̄× ū , (7)

such that ū and v̄ span the plane of the element and d̄, the
director, is its unit-length normal vector. Note that when us-
ing isotropic materials as in our case, the choice of the frame
ū, v̄ is not important and that frames do not have to be con-
sistently oriented across elements. Consequently, there is no
need for constructing (and tracking) a parametrization of the
rest shape.

Since the deformation is assumed to be constant across
each triangle, the geometry of a given deformed element is
described by a single linear mapping Fe ∈ R3×3, the de-
formation gradient. We can conveniently integrate the kine-
matic assumptions from Sec. 3.1 into the definition of Fe by
constraining the deformed director d as

d =
e12× e13
|e12× e13|2

. (8)

This requires the deformed director to be normal to the de-
formed element (no transversal shear) and to be stretched
such as to balance the change in area (incompressibility). We
can now express the element’s deformed geometry in terms
of its undeformed state as

[e12 e13 d] = FeT̄−1 [ē12 ē13 d̄
]
, (9)

c© 2012 The Author(s)
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from which we obtain the deformation gradient as

Fe = [e12 e13 d]
[
ē12 ē13 d̄

]−1 T̄ . (10)

See Fig. 2 for an illustration of these transformations. Note
that the multiplication by T̄ aligns the material frame of the
element such that the first two columns of Fe describe in-
plane deformation while the third column corresponds to the
thickness direction.

Figure 2: Transformations between deformed (left), unde-
formed (right) and material (middle) domains for a mem-
brane element.

From the deformation gradient Fe we directly obtain the
discrete Cauchy Green tensor Ce = (Fe)T Fe. Note that, by
construction, Ce has the same special structure as its con-
tinuous counterpart in (3). Following the Total-Lagrangian
finite element formulation [Bat95], we compute the elastic
energy of a deformed element by integrating Ψ over the un-
deformed domain. Since Ce is constant, we simply have

W e(Ce) =
∫

V̄ e
Ψ(Ce) dV = Ψ(Ce) ·hĀe , (11)

where Āe is the area of the undeformed element, h the thick-
ness of the balloon and V̄ e = hĀe. The total elastic energy of
the balloon is obtained by summing up elemental contribu-
tions as W = ∑e W e.

Pressure The forces due to an enclosed pressurized gas tend
to increase the volume of its container. Since the pressure is
constant throughout the container, the resulting normal force
density is the same everywhere on its surface. In the contin-
uous setting, the pressure can be defined via the total forces
fA acting on a surface element dA with normal n as

p = lim
dA→0

dfA ·n
dA

. (12)

This expression allows us to derive discrete nodal pressure
forces as

fp
i = ∑

j∈Ti

wi j · p ·A jn j , (13)

where Ti is the set of triangles incident to vertex i, n j and
A j are the area and normal of triangle j and wi j are weights.
We use constant weights of wi j = 1/3, which is equivalent to
computing the pressure forces from area-weighted normals.

As an aside, we note that the process of inflating a balloon
is not a simple increase in pressure, but rather an increase in

the number of gas molecules inside the balloon. The differ-
ence becomes clear when writing the ideal gas equation as

pV = NRT , (14)

where N is the amount of gas contained in volume V , T is
the temperature and R is the gas constant. Clearly, increasing
the amount of gas (through pumping) increases the product
of pressure and volume but neither of them has to increase
monotonically.

Numerical Solution As part of our shape optimization
(Sec. 5) and parameter fitting (Sec. 4) methods, we have to
compute the deformed shape that a balloon assumes under a
given inflation pressure. This is a static equilibrium problem
which we solve by requiring nodal force balance, i.e.,

fmem
k + fp

k = 0 k ∈ 0 . . .3n , (15)

where fmem
k = −∇xW (xk) are elastic membrane forces and

fp
k denote the pressure forces as defined in (13). We solve

(15) with a Newton-Raphson procedure coupled with line
search and incremental loading on the pressure term for im-
proved stability. This expressions for the membrane forces
and their Jacobian (tangent stiffness matrix) are generated
automatically using a computer algebra package.

4. Modeling Balloon Material

Rubbers generally show a nonlinear stress-strain response.
However, the extreme deformations observed during bal-
loon inflation lead to a particularly complex behavior which,
as shown below, most conventional material models cannot
properly reflect. But whatever the material model, it is cru-
cial to determine its parameters experimentally in order to
obtain accurate agreement with physical reality.

4.1. Measurements and Fitting

Measurements Similar to the system described by Treloar
[Tre44], we fix a rubber membrane to the supporting plane
of a base apparatus using a clamp with a circular opening of
6cm diameter (see Fig. 1 b). Two holes on the back of the
supporting plane allow us to connect a valve and an off-the-
shelf pump for inflation as well as a digital manometer. The
measurement process for a given sample membrane consists
of 10 loading steps in each of which we inject an additional
(predefined) amount of air, record the resulting pressure and
capture the deformed geometry using a standard laser scan-
ner. We then determine the spatially averaged extension ratio
ρ

avg
i for step i from the area of the reconstructed geometry

Ai as ρ
avg
i =

√
Ai/A0.

Our method is not restricted to a particular type of rub-
ber, but for practical reasons (see Sec. 6), we exclusively
used silicone for fabrication. We performed tests for silicone
membranes with four different thicknesses (0.25, 0.5, 0.75

c© 2012 The Author(s)
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and 1.0mm), using three samples per thickness value to ac-
count for fabrication tolerance. Fig. 3 shows the measured
data (blue spades) for a thickness of 0.5mm averaged over
the three samples.

Fitting With this set of measurements, we then determine
the material coefficients of our computational model by
minimizing the difference between simulated and captured
shapes, using the optimization algorithm described in Sec. 5.
Doing this simultaneously for all measured pressure values,
we obtain material coefficients that provide the best average
match for the entire deformation range of the experiment.

4.2. Evaluation

As can be seen from Fig. 3, the measurements reveal an un-
usual deformation behavior. The average extension ratio first
increases almost linear with respect to the pressure. At a cer-
tain point, however, there is a clear inflection in the curve
indicating a second deformation regime of the material. In a
third regime, the material stiffness increases again.

Inflated balloons will in general exhibit inhomogeneous
deformations, most likely covering all three regimes. If good
approximations are to be obtained, then this particular be-
havior must be reproduced by the material model. We will
discuss some candidates in the following and, in order to
facilitate comparison, we provide stress-strain curves for all
models considered in Fig. 3. The interested reader is referred
to the textbook by Bonet and Wood [BW97] for details.

Average 
Extension Rao

Pr
es
su
re
 [k
Pa
]

Figure 3: Experimental data for the pressure-extension be-
havior of a silicone membrane and approximations with dif-
ferent material models.

The membrane formulation described in Sec. 3 guarantees
volume preservation through geometric assumptions (thick-
ness stretch compensates change in area) and thus avoids the
numerical problems typically associated with incompress-
ible elasticity. In this setting, the simplest nonlinear material
model is the Neo-Hookean solid, which describes the strain
energy as a linear function of the first invariant I1. However,
as can be seen in Fig. 3, this model fails dramatically to ap-
proximate the deformation behavior of real rubber. The rea-
son for this is that the Neo-Hookean material has a pressure

peak at a rather small extension ratio beyond which the pres-
sure drops with increasing deformation. Visually speaking,
the peak value has to be high enough to match the pressure
values for larger extension ratios from the experimental data.
But as a result, the overall deformation behavior deviates
wildly from the experiment.

The second model that we considered is the St.Venant-
Kirchhoff solid [BW97] which, despite shortcomings [ITF],
is widely used in graphics. But while the approximation
is significantly better than for the Neo-Hookean material,
it cannot reproduce the three characteristic deformation
regimes of the experimental data. A similar behavior is ob-
served for the Mooney-Rivlin material, which is a gener-
alization of the Neo-Hookean solid that also considers the
second invariant I2 (see [BW97]). One option to improve
the approximation quality is to include higher powers of the
invariants or resort to Ogden-type models [Ogd84], which
describe the energy in terms of powers of the principal
stretches. However, each additional term entails an addi-
tional material constant, which increases the model com-
plexity and thus complicates the process of parameter fitting.

The experimental observations by Treloar [Tre44] sug-
gest that, for large strains, rubber material exhibits an en-
ergy growth which is an exponential rather than a polyno-
mial function of the invariants. The empirical model of Hart-
Smith [HS66] takes this behavior directly into account, de-
scribing an exponential strain energy function through its
derivatives as

∂W
∂I1

= G · exp(k1(I1−3)2) ,
∂W
∂I2

= G · k2
I2

, (16)

where k1, k2 and G are material constants. Visually, the de-
formation behavior for small to moderate stretches is deter-
mined by G and k2, while k1 decides how quickly the expo-
nential growth manifests. Despite the small set of material
coefficients, the Hart-Smith material is capable of accurately
reproducing the three deformation regimes observed in the
experimental data.

The elastic forces for the Hart-Smith model can be com-
puted directly from (16) as

fmem =−∂W
∂x

=−∂W
∂I1

∂I1
∂x
− ∂W

∂I2

∂I2
∂x

. (17)

The derivatives of the two invariants can be calculated by
hand when using (3) in (4) and deriving component-wise.
But since the involved expressions are rather lengthy and
thus prone to error, we opt for a computer algebra software
to compute first and second derivatives of W with respect to
current as well as undeformed positions.

5. Shape Optimization

This section explains our strategy for computing optimal
rest shapes for balloons, which we cast as a nonlinear con-
strained optimization problem. We start by formalizing the

c© 2012 The Author(s)
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problem, then proceed to its solution via constrained nonlin-
ear optimization and finally address some additional techni-
cal aspects.

5.1. Problem Setting

Our goal is to find a rest shape that, upon inflation, approx-
imates the target shape as closely as possible. We measure
closeness in terms of a distance energy Edist(x̂,x) depend-
ing on the geometries of the inflated balloon, x, and the tar-
get shape, x̂. The distance measure should capture differ-
ences in first (stretching) and second (bending) fundamen-
tals forms between the inflated balloon and the target shape.
We use a variant of the discrete shell energy by Grinspun et
al. [GHDS] for this purpose and, using x and x̂ as current
respectively rest state, define

Edist = ∑
e

[
kl(1−

le
l0
e
)2 + kb(θe−θ

0
e)

2
]

l0
e , (18)

where le and θe (l0
e and θ

0
e) denote the deformed (unde-

formed) length and dihedral angle of edge e and kl , kb are
stretching and bending coefficients. In comparison to sim-
pler measures based on pairwise vertex distance, this metric
has the advantage that the error caused by local deviations in
shape remains local and does not propagate over the model.

With this distance metric established, we seek to find the
physical solution, i.e., a configuration in force equilibrium,
which is closest to the target shape, i.e., minimizes (18).
These requirements can be formulated as a constrained opti-
mization problem with an objective function

Λ(x̄,x,λ) = Edist(x̂,x)−λ
tC(x̄,x) (19)

where C is a vector of constraints, each of which measures
the deviation from force equilibrium for a given degree of
freedom, i.e.,

C j(x̄,x) = fmem
j + fp

j j = 1 . . .3n , (20)

Note that the system is in equilibrium only if C(x̄,x) = 0.

5.2. Numerical Solution

The problem described by (19) has a comparatively large
number of constraints (as many as degrees of freedom) and
we would like a method that can deal efficiently with this
case. The two most widely used approaches for constrained
optimization are sequential quadratic programming (SQP)
and the penalty method [NW00]. Solving the problem with
SQP breaks down to finding roots of the gradient of (19) us-
ing Newton’s method. This promises accurate constraint sat-
isfaction but also leads to large indefinite systems of equa-
tions which are costly to solve. The penalty method, by
contrast, does not increase the dimension of the system but
strict constraint satisfaction, mandatory in our case, leads to
ill-conditioned systems and thus numerical problems. As a

hybrid between SQP and penalty methods, augmented La-
grangian methods (ALMs) strive to combine the advantages
of both: they offer accurate constraint satisfaction without
ill-conditioning (unlike the penalty method) but do not entail
an increase in dimension (unlike SQP). ALMs are obtained
by augmenting the Lagrangian of the constrained minimiza-
tion problem (19) by an additional penalty term,

Λ = Edist(x̂,x)−λ
tC(x̄,x)+ µ

2
||C(x̄,x)||2 . (21)

This objective function is minimized iteratively in a se-
quence of unconstrained minimization and multiplier update
steps. In the first step of a given iteration, the Lagrange mul-
tipliers are kept fixed and Λ is minimized with respect to
the free variables x̄ and x using a standard Newton-Raphson
method with line search. Having solved the nonlinear sys-
tem, we check whether the constraints have sufficiently de-
creased, in which case we update the Lagrange multipliers
according to

λi = λi−µCi (22)

Otherwise, we increase the penalty coefficient µ and leave
the multipliers unchanged. The iterations are stopped once
the norm of the gradient (21) and the one of the constraint
vector fall below given thresholds. We refer the reader to
Nocedal and Wright [NW00] for a complete exposition of
ALM and its implementation.

Regularization The problem described by (21) is nonlin-
ear as well as nonconvex and will therefore exhibit local
minima. In particular, any region on the rest shape enclosed
by a planar curve can be mirrored without altering the in-
flated shape. In order to obtain a well-posed problem, we fa-
vor convex shapes by asking for the solution with maximum
volume. A numerical problem arises in regions with copla-
nar elements, for which the hessian of the membrane en-
ergy exhibits a null-space in the normal direction. We solve
this issue with an additional energy term based on the bend-
ing component of (18), thus penalizing curvature deviations
from the initial rest shape.

Inflation Pressure The optimization process starts with a
downscaled version of the target shape. For practical rea-
sons, we do not directly prescribe an extension ratio between
uninflated and inflated balloons but determine an inflation
pressure which achieves the desired increase in volume. To
this end, we first increase the inflation pressure in a sequence
of static equilibrium solves, until the volume of the inflated
shape matches the volume of the target shape. We then use
this pressure to compute the optimal balloon shape.

Parameter Fitting We use the optimization process de-
scribed above also for fitting material parameters to mea-
sured data, albeit with three modifications: first, we optimize
for material parameters, not for rest shape positions. Sec-
ond, we have targets described as pairs of pressure and cor-
responding geometry and we minimize the distance to all of

c© 2012 The Author(s)
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them simultaneously. Third, we use a different distance mea-
sure based on a smooth interpolation of the reconstructed
geometry using radial basis functions (RBF). We define the
corresponding energy as

Erb f (x̄) =
1
2 ∑

i
|| f (x̄i)||2 , (23)

where f (x) is the function whose zero-level set defines the
smooth RBF-surface (see Carr et al. [CBC∗]).

Rest Shape Intersections If not explicitly prevented, the
optimization process is likely to introduce intersections in
the rest shapes. We use a collision handling strategy based on
penalty forces to avoid such unphysical settings. In each iter-
ation of the optimization, we first detect all pairs of vertices
that are closer than a given threshold εc. In order to improve
runtime performance, we use a kD-tree and cull vertex-pairs
whose (approximate) geodesic distance is smaller than a
threshold value εgd . For each vertex pair (x̄i, x̄ j) returned by
the detection step, we introduce a penalty potential as

Wp(x̄i, x̄ j) = (|x̄i− x̄ j|− εc)
3 , (24)

which is active for |x̄i − x̄ j| − εc < 0 and set to zero oth-
erwise. Note that the cubic power of the potential ensures
continuity of its second derivatives. The potentials for all
points are then added to (19) such that, upon convergence,
all vertex-vertex constraints are satisfied. Although this sim-
ple approach cannot resolve all intricate collisions in gen-
eral, we found it to be sufficient for all our examples.

Nozzle Attachment We endow each balloon with a noz-
zle for inflation which we attach to the geometry of the rest
shapes. We enforce the optimization to leave the attached ge-
ometry unchanged by imposing a set of corresponding posi-
tion constraints.

6. Fabrication

The optimization method returns a triangle mesh for the bal-
loon’s rest shape. We complete the balloon mold by attach-
ing a cylindrical tube to the previously defined nozzle ver-
tices. We fabricate the mold on a 3D printer (Objet Connex
350), using a soft material to facilitate unmolding. See Fig.
1 (c) for an illustration.

Industrial balloon fabrication usually relies on latex due
to its durability and low material costs. For manual fabrica-
tion, however, we found silicone more convenient to handle:
unlike latex, it is not sensitive to temperature, cures with-
out volume loss and can be evacuated to remove air inclu-
sions. The silicone has to be mixed with an activator and
be processed rapidly. Since remains cannot be stored, a dip-
molding process is not attractive and we simply brush the
rubber onto the mold. We then put the coated mold in a vac-
uum chamber to remove air inclusions. We found that this
also leads to smoother coatings.

The coating thickness obtained by this process is in the
range of 0.25mm-0.3mm. In order to increase the durability
of the balloons we add another another layer using the same
process. Finally, the balloon needs to cure for one day before
removing it from the mold and an additional 5 to 7 days to
obtain its final material properties.

7. Results

In order to explore the capabilities of our method we exper-
imented with a variety of different target shapes. For each
example, we computed an optimized rest shape, printed cor-
responding molds and fabricated the balloons using silicone.
For comparison, we also fabricated balloons corresponding
to the downscaled target shapes. Fig. 4 shows all results in a
compact overview.

The last column clearly indicates that the downscaled tar-
gets do not lead to acceptable approximations. Indeed, the
original shape is indiscernible in most cases. By contrast, the
simulated shapes of the optimized balloons (col. 3) as well
as the fabricated counterparts (col. 4) are in good agreement
with the targets for the majority of the examples and most of
the characteristic features are clearly discernible.

Comparing the target shapes against the simulated inflated
balloons, several observations can be made. First, flat re-
gions are not accurately reproduced since the pressure forces
tend to push them outwards. This effect is clearly visible for
the faces of the cube (row 2) but can also be identified on the
legs of the elephant (row 5) and the arms of the armadillo
(row 6). Furthermore, sharp transitions such as the borders
around the bumps on the sphere (row 1) or the edges of the
cube (row 2) remain visible but are smoothed out. However,
isolated sharp features such as the corners of the cube can
be reproduced with fair accuracy since they do not have to
stretch during inflation and can thus be built into the unde-
formed shape. Finally, high frequency detail such as the fur
of the bunny is lost. This is partly due to the limited accuracy
of the fabrication process, but also owed to the fact that bal-
loons cannot have local concave features since these would
be popped out by the pressure forces. This observation also
explains why the snout of the armadillo and the ears of the
bunny (row 4) are rather roundish.

As a side note, it can be seen from the cube and the
sphere example that our method preserves the overall sym-
metry of optimized shapes for symmetric targets, even for
non-symmetric (irregular) meshes.

The inflated real balloons are in good agreement with their
simulated counterparts, only the armadillo and the hand (row
7) examples show significant deviations. Parts of this ef-
fect could be due to approximations made in the material
model, the mechanical model, and the numerics. However,
the largest factor are most likely the inaccuracies in the fabri-
cation process: the highly viscous silicone tends to accumu-
late in the troughs of the complex-shaped molds, leading to
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Figure 4: Results obtained with our method. The columns (from left to right) show target shapes, optimized balloons, simulated
inflated balloons, fabricated optimized balloons and fabricated balloons corresponding to downscaled targets.
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significant thickness variations. This effect could be reduced
by using thinned rubber and a higher number of layers, albeit
at the expense of increased fabrication times.

Larger Inflations The average extension ratio for the in-
flated balloons stays below 2.5 in all examples since the sili-
cone would soon rupture for larger deformations. Neverthe-
less, extension ratios of around 5 are often observed for latex
balloons. But while our particular choice of material limits
the increase in volume, this limitation is not inherent to our
approach: we simulate a standard balloon with a latex mate-
rial whose parameters we determined in the same way as for
silicone (Fig. 5, left). Using latex, we can attain extension ra-
tios larger than 5 as shown in the example on the right of Fig.
5. This also attests to the consistency of the optimization:
our method yields an optimized balloon that closely resem-
bles the original shape used to generate the inflated target.
We also performed experiments with the latex material on
more complex shapes such as the bear and obtained similar
extension ratios (see accompanying video).

Figure 5: Left: measured data for a latex membrane and
the Hart-Smith model fit. Right: the inflated shape (left) of a
standard latex balloon is used as a target in our optimization
method. The resulting balloon shape (bottom-right) is close
to the original shape (top-right).

Performance We provide computation times for all exam-
ples shown in this paper in Table 1. It can be seen that for
most balloons, our method takes less than 15 minutes to
compute optimized shapes. With slightly less than 90 min-
utes, the bunny example takes by far the longest time to fin-
ish, which is mostly due to the large number of intersections
that slow down convergence.

Accuracy & Validation In order to quantify the accuracy
of our optimization method, we measured the difference be-
tween input target shapes and simulated optimized shapes.
Fig. 6 shows an error plot for the bunny example using the
distance metric of (18). For easier interpretation, we mea-
sured for each vertex of the inflated shape the distance to
the closest point on the target surface, leading to an aver-
age/maximum error of 0.23/0.89cm (the inflated balloon has
a maximum inter-vertex distance of 14.6cm). As expected,
the regions of highest error coincide with those of minimal
mean curvature.

Figure 6: Approximation error for the bunny with green/red
indicating lowest/highest error (middle). Red/blue color in-
dicates positive/negative mean curvature (right).

To estimate the impact of the inaccuracies in the fabri-
cation process, we applied random thickness perturbations
of different magnitudes to the bunny model and investigated
the impact on the inflated shape using again the vertex-based
distance measure. A variation of 10% led to an average de-
viation of 0.22cm, whereas 20% of variation already results
in 0.52cm average error. This agrees with our observations:
small thickness variations have only little effect while larger
variations such as as those seen in the armadillo and the hand
example can lead to significant shape deviations.

We furthermore verified the importance of the material
model experimentally. In a simple test, we compared the
inflated shape of a real bunny balloon to the results pro-
duced by simulations using the Mooney-Rivlin and the Hart-
Smith material. Fig. 1 (e) shows that the Hart-Smith mate-
rial results in good approximation with clearly visible ears,
whereas these features were not discernible for the Mooney-
Rivlin material, which led to an almost spherical shape.

Finally, we analyzed the stability of the numerical solu-
tions computed by our method. Using the bear example, we
let our algorithm run on a perturbed version of the optimized
rest shape and compared the result to the original solution.
For an average vertex displacement of 0.25cm, the difference
was below 10−4cm. This indicates that minima are well sep-
arated and we found this to be true for all examples consid-
ered.

Model #vertices tstat [ms] tnwtn[ms] ttot [s] #its

Armadillo 6027 24494 5897 569 81
Bumpsphere 3265 20359 2993 201 55
Bunny 4975 61138 7212 5000 879
Cube 5153 39094 6543 243 20
Elephant 3818 26317 3031 3060 131
Gingerbread 2238 5329 1776 66 29
Hand 2253 24403 2696 3229 1137
Mouse 2633 22277 3200 627 180
Squirrel 5995 151447 7744 105 103
Teddy 3527 85936 3492 484 106

Table 1: Computation times breakdown: static equilibrium
(tstat), a single Newton step (tnwtn), total computation time
(ttot) and number of ALM iterations (#its).
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8. Limitations & Future Work

This paper presented a method for computational design of
rubber balloons with desired inflated shapes. Our approach
drastically increases the space of possible balloon shapes
and we have demonstrated its capabilities on a set of chal-
lenging examples.

Although our method is able to produce a large variety
of shapes, certain features are very difficult to reproduce, in
particular flat parts, locally-bounded concave regions, and
sharp edges. These limitations do, however, apply to rubber
balloons in general and are not specific to our method.

There are evidently shapes that can be well-approximated
by our method while others are difficult to reproduce with
satisfying quality. However, many of these difficult shapes
can be changed into models that lend themselves well to bal-
loon fabrication—see, e.g., the elephant. Currently, we rely
on artists to design geometrically similar but feasible target
shapes. For future work, we would like to develop a method
for automating this shape abstraction process.
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