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Abstract—Sparse linear systems are commonly used in video
processing applications, such as edge-aware filtering or video
retargeting. Due to the 2D nature of images, the involved problem
sizes are large and thus solving such systems is computationally
challenging. In this work, we address sparse linear solvers for
real-time video applications. We investigate several solver tech-
niques, discuss hardware trade-offs, and provide FPGA architec-
tures and implementation results of a Cholesky direct solver and
of an iterative BiCGSTAB solver. The FPGA implementations
solve 32K×32K matrices at up to 50 fps and outperform software
implementations by at least one order of magnitude.

I. INTRODUCTION

Many algorithms in computer vision and video processing
boil down to finding a solution to a large-scale sparse linear
system. The corresponding matrices typically have non-zero
elements only on the main diagonal and a small set of
off-diagonals. Examples of visual computing problems that
encounter this particular sparse form of matrix are image
domain warping (IDW) applications such as video retarget-
ing [1], stereo mapping and stereo to multiview conversion
[2]; computational photography problems [3] such as high-
dynamic range compression and edge-aware filtering; and
computer vision problems such as in-painting [4].

Although a multitude of algorithms for solving general
linear systems have been reported, the application to real-time
video processing has not been addressed thoroughly. The main
difficulty lies in the involved problem size, resulting in a huge
number of floating-point operations (FLOPs), as well as in
huge memory and bandwidth requirements. While these linear
systems can often be solved on lower resolution discretization
grids without noticeable quality loss, the current trend towards
ever higher frame-rates and image resolutions poses significant
challenges on solving such systems in real-time.

In this work, we address FPGA architectures of sparse
linear systems for computer vision and video processing.
Common solver techniques are revisited regarding compu-
tational efficiency at the example of IDW applications. To
achieve high computational power, we design custom FPGA
architectures for an iterative solver (bi-conjugate gradient sta-
bilized (BiCGSTAB)) and a direct solver (CHOLESKY). We
compare the two FPGA implementation results and discuss the
general trade-offs of iterative and direct solvers on FPGAs in
terms of hardware resources, memory bandwidth, and on-chip
storage requirements. Furthermore, we compare our FPGA
implementations to software implementations. In contrast to
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Fig. 1. Discrete-grid problems in video processing. Left: image structure with
grid positions i and unknowns fi. Right: the corresponding matrix system
Af = b. Constraints are represented by the black bars and black rectangles.

programmable hardware (CPUs, GPUs), our dedicated hard-
ware architectures are more energy-efficient and can achieve
very high resource utilization, since the hardware resources
can be matched to the specific algorithm.

Related FPGA architectures discuss solvers for application-
independent sparse matrices with considerably lower dimen-
sions. Morris et al. [5] use a Jacobi solver, which does not
converge for our applications. Sun et al. [6] use a direct
Cholesky decomposition with a mixed-precision format to
reduce computations, which does not scale with problem
size and can therefore not be applied to large-scale video
processing applications. In addition, they perform the final
solve step on a CPU and finally also apply an iterative solver
step to compensate for precision losses.

II. LINEAR SYSTEMS IN VIDEO PROCESSING

A large class of image processing algorithms can be formu-
lated as energy minimization problem [7]

min
f

(E(f)) = min
f

(Edata(f) + Esmooth(f)) (1)

where E(f) is a quadratic energy functional and f an unknown
function, discretized on a 2D grid. The energy expression
E(f) originates from quadratic constraints on known sampling
points (Edata(f)) and from smoothness constraints that prop-
agate the known information through the image (Esmooth(f)).
For example, in IDW applications, f describes a spatially-
varying deformation grid that has some known grid positions
and requires an interpolation in between these positions. Other
applications include high-dynamic range compression (tone
mapping), optical flow, disparity estimation, and edge-aware
filtering [3]. The solution to (1) is obtained by solving a
linear system obtained from the application-specific data and
smoothness constraints, introduced in the following.

A. Constraints
In the following, consider a 2D grid of size W × H and

a linearized 1D grid index i, i.e., a point i is neighbored by
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points i+ 1 and i+W (see Fig. 1). Data constraints enforce
function values at specific locations

∀i : Cid := si(fi − pi) = 0, (2)

where si are the constraint weights and pi are the required
function values. Typically, the majority of grid points does
not have a data constraint (si = 0). Smoothness constraints
try to propagate these properties to the rest of the image
by defining the relative behavior with respect to neighboring
function values

∀i : Cis,x := sxi (fi+1 − fi − dxi ) = 0

Cis,y := syi (fi+W − fi − d
y
i ) = 0. (3)

The parameters dxi and dyi are the smoothness constraint values
and sxi , syi are weights indicating the relative importance of the
constraints. Since the number of constraints is typically larger
than the number of unknowns, the constraints are squared and
summed up to form the energy expression (1)

E(f) =
∑
i

(Cid)
2 +

∑
i

(Cis,x)
2 + (Cis,y)

2. (4)

Minimizing this energy expression yields a least-squares so-
lution that approximatively satisfies all constraints.

B. Linear system

In the following we show that finding the global minimum
of (4) can be obtained by solving a linear system. To simplify
notation, we use the placeholder Cγ to denote any of the
constraints Cd, Cs,x, Cs,y . First, we arrange the constraints
into Ciγ := [Aγf − bγ ]i, where Aγ and bγ are a matrix and
a vector, respectively. The energy expressions can then be
reformulated as

Eγ(f) :=
∑
i

(Ciγ)
2 = ||Aγf − bγ ||2. (5)

The global minimum is achieved if d/dfE(f) = 0; with

d/dfEγ(f) = 2ATγ (Aγf − bγ)

we obtain the final linear system:

(
∑
γ

ATγAγ)f =
∑
γ

ATγ bγ .

In practice, one avoids to first construct Aγ and bγ and
calculate the products and transpositions. Rather, by noting
that ATγ bγ = −d/dfEγ(f)|f=0 and ATγAγ = d2/df2Eγ(f),
one can deduce expressions for ATγAγ and ATγ bγ directly
by analytically deriving the constraints. The combination of
smoothness and data energies leads to a symmetric (non-
strictly) diagonally dominant (SDD) matrix. The matrix is
highly sparse and contains at most five non-zero entries per
row: the diagonal plus four off-diagonals (Fig. 1). Note that,
when downsampling data constraints onto a lower-dimensional
grid, four additional diagonal neighbors appear (grey points
in Fig. 1), which results in a similar matrix structure where
each of the two outmost off-diagonals are surrounded by two
additional diagonals, i.e., eight off-diagonals in total.

In video applications, we have an additional temporal di-
mension, leading to a temporal constraint relating fi(t) and
fi(t − 1), where t indicates the temporal dimension. Since
fi(t − 1) is a known constant at time instance t, temporal
constraints are analogous to data constraints.

C. Linear Systems for IDW Applications

One example for an IDW application is video retargeting,
which is concerned with content-aware aspect ratio resizing. In
video retargeting, the smoothness constraint tries to retain the
aspect ratio in visually important regions, whereas the distor-
tions are moved to visually unimportant regions. The weights
si are thus describing a visual importance (saliency) map [8].
The unknown values fi describe the new pixel coordinates. In
order to reduce the computational complexity, the problem is
usually solved on a lower grid resolution instead of solving the
problem for each pixel individually. Hence, problem sizes of
1/10 of the image dimensions are realistic (e.g., 190×110≈20k
problem size for full HD). Further constraints can include
line and edge constraints, temporal constraints, or, for stereo
applications, disparity constraints (see [1], [2] for details).

III. SPARSE LINEAR SOLVERS

There exists a variety of algorithms for solving linear
systems [9], [10]. Selecting the best solver algorithm depends
on the matrix structure as well as on different trade-offs such
as computational complexity, memory bottlenecks, conver-
gence properties, and numerical behavior. In the following,
we summarize and compare some of the most widely used
algorithms, with a particular focus on dedicated hardware and
linear systems for video processing.

A. Classification

1) Direct methods: Direct solvers apply a matrix de-
composition technique such as Gaussian elimination or
LU/Cholesky/QR decomposition to calculate an exact solution.
Unfortunately, the run-time is prohibitively large for general
large-scale problems, since the complexity is in the order of
O(n3) for a quadratic n × n matrix. Also, memory require-
ments and numeric stability pose significant challenges for
general large-scale problems.

Sparse matrices do not significantly reduce the complexity
of direct solvers due to so-called fill-ins: zero elements in the
initial matrix are replaced by non-zeros in the decomposed
matrix. However, for the particular class of band matrices in
our application, the fill-ins only appear in between the main
diagonal and the outermost side diagonal. The computational
complexity then reduces to O(nW 2), where W is the grid
width and hence the offset to the outermost diagonal.

2) Iterative methods: Iterative methods provide an approx-
imate solution to the linear system and reduce the approxima-
tion error in each iteration if the system is converging. Each
iteration is computed at much lower complexity than direct
solvers. Furthermore, there is no fill-in issue since the initial
matrix structure is left unchanged during the iteration process.
The most simple iterative method, the Jacobi method, has com-
putational complexity O(n) per iteration, however, it shows
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Fig. 2. Arithmetic operations for a multiview synthesis problem without (left) and with (center) diagonal pre-conditioning, and (right) memory accesses.
The relative residual is defined as ||Ax− b||/||b||. The operations are split into addition/multiplications (solid lines) and division/square-root (dotted lines).

very slow or even no convergence. More advanced iterative
methods, such as the Krylov-subspace methods, show much
better convergence but also higher computational complexity
per iteration.

The condition number of matrix A directly impacts the
speed of the iteration convergence, and often a pre-conditioner
is applied to A to decrease its condition number. However,
choosing a good pre-conditioner is a hard task [9] and very
specific to the particular problem.

B. Evaluation

Fig. 2 compares the number of arithmetic operations and
memory accesses of the most common solvers [9], [10] in the
context of IDW applications. For the iterative methods, BICG
always performs slightly worse than BiCGSTAB, whereas
CG is slightly more efficient in terms of operations. The
multi-scale (MS) approach considerably improves all iterative
methods, as illustrated by BiCGSTAB for example. Note that
Jacobi did not converge for our problem. The inverse diagonal
pre-conditioner (PRE) noticeably reduces the computational
burden. More advanced pre-conditioners can further reduce
the number of iterations but at the price of more complex
pre-conditioning architectures.

The banded Cholesky decomposition is computationally
more challenging than the iterative methods, but it remains
in the same order of magnitude for low error tolerances.
One big advantage of the banded Cholesky decomposition
regarding hardware efficiency is its data locality: iterative
methods require all available data in each iteration, direct
methods sequentially work through the matrix once. This
makes it possible to devise a local buffering architecture which
significantly reduces external bandwidth for the direct method
(see Fig. 2), which is not possible for iterative methods.

IV. ITERATIVE SOLVER FPGA ARCHITECTURE

In this section a hardware architecture for MS-PRE-
BiCGSTAB is discussed (BiCGSTAB shows better conver-
gence than CG, in general [9]). The BiCGSTAB algorithm
is summarized in Fig. 3 and consists of a sequence of
matrix-vector operations, vector additions, and scalar products.
The algorithm starts with an initial solution x0 which can
be random, or, for video processing, the solution from a
previous frame. The algorithm works on the residual vector
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Fig. 3. BiCGSTAB algorithm represented as data flow graph. The algo-
rithm is partitioned into three groups (indicated by the background color)
corresponding to the employed hardware resource sharing (see Section IV-A).
Regular, small letters denote scalars, bold, small letters denote vectors, and
bold, capital letters denote matrices.
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Fig. 4. Simplified top level view of the BiCGSTAB architecture. The
architecture implements one third of the data flow graph Fig. 3 (resource
sharing) and thus processes one iteration in three phases.

r = Ax − b and produces several intermediate vectors
p,p′,v,y and scalars α, β, ρ, ω. See [9] for more details. The
pre-conditioner matrix is Ad = diag(A)−1, where diag(A) is
a matrix with only the diagonal elements of A. The multi-scale
approach is performed by first solving a similar problem on a
lower resolution and then using the upsampled version of the
solution as initial solution on the finer grid. The upsampling
is computed with bilinear interpolation.

A. Architecture

Fig. 4 provides a block-diagram of the FPGA architecture.
Essentially, the architecture is a direct mapping of the data flow
graph in Fig. 3, with two key architectural differences. First,
the graph is divided into three parts. Each part is mapped onto
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the same hardware using resource sharing (illustrated in Fig. 3
and Fig. 4). This is motivated by the presence of the scalar
products, which form a bottleneck: subsequent operations will
stall until the full product has been processed. Together with
the iterative nature of the algorithm, pipelining across scalar
products is impossible, and the throughput is decreased by the
number of scalar products. Our resource-shared architecture
retains this throughput but reduces the area by roughly a factor
of three and thus increases AT-efficiency.

The second architectural choice is to increase throughput on
a finer level by parallelizing the different arithmetic operations
(scalar-vector, matrix-vector, scalar products). Further, each
matrix-vector unit can process one row-vector multiplication
per cycle, since we assume a fixed and small number of entries
per row. Matrix A and vector b are generated on the fly
from the constraints to reduce memory bandwidth. All other
intermediate result vectors need to be buffered due to the scalar
product. In total eight vectors (such as x or r) need to be stored
intermediately either on-chip or off-chip.

B. Implementation Aspects

All arithmetic primitives (add, mult, div) are implemented
as highly-pipelined floating-point operations. The required re-
sources of the prototype implementation are shown in Table I.
Each iteration takes approximately

titer =
3WH

fclkp
[s]

where p is the number of parallel calculation units. The
factor ’3’ comes from the iterative decomposition and fclk
is the operating frequency. The nominal memory bandwidth
and required memory size are

BW = 32 · 8pfclk[bit/s] size = 32 · 8WH[bit]

for 32-bit single precision words and 8 different vectors
required per iteration. Thus, we have a nominal bandwidth
requirement of almost 6 GB/s for p = 1 and more than
50 GB/s for p = 8, assuming a clock frequency of 200 MHz.

Increasing the amount of parallelism in the matrix-vector
and scalar-vector units increases the throughput, but also
increases the bandwidth linearly as numerous intermediate
results also need to be accessed in parallel. The required
memory size only depends on the problem (grid) size. In our
current implementation, we opted for on-chip SRAM blocks,
as these can provide a very high bandwidth but very limited
overall storage space. Alternatively, off-chip memory could be
used for larger storage at the price of much lower bandwidth. A
hybrid solution (caching) is of limited use in this case, since
the complete vector data needs to be addressed linearly in
each iteration. External memory bandwidth against internal
memory size is therefore the most prominent design decision
for iterative solvers, see Fig. 5 for a quantitative illustration.

V. DIRECT (CHOLESKY) SOLVER FPGA ARCHITECTURE

The Cholesky decomposition generates a triangular matrix
L such that A = LLT (see Fig. 6) for a symmetric and
positive definite A system (as introduced in Section II).
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Fig. 5. Left: required memory bandwidth (red) and memory size (black) of
BiCGSTAB for different grid sizes for two architectures variants (1x parallel
and 8x parallel) Right: corresponding performance.

Defining y := LTx, a new system Ly = b can be efficiently
solved using forward substitution. Then x can be solved from
LTx = y with a backward substitution. The generation of L
is computationally demanding: for each element in L a scalar
product of two n-dimensional vectors is required for matrix
sizes n×n. The total complexity is thus O(n2·n). This reduces
to O(W 2 · n) for banded matrices with bandwidth W , since
all elements outside the bands remain zero.

A. Architecture

The architecture (Fig. 7) is divided into two blocks: the de-
composition and forward substitution block, and the backward
substitution. The decomposition and forward substitution share
the same hardware. Whenever a new row of L is computed, the
forward substitution for this row can already be executed. The
backward substitution has the same data flow as the forward
substitution, however, it requires the transposed matrix and
thus requires to wait for the last element of L. While the same
hardware could be shared for both substitution steps, using two
separate units allows to work in parallel on different matrices
in a time-interleaved way at high AT-efficiency. Due to the
transposition, L and y need to be collected in an external
memory before being passed to the backward block.

The datapath consists of a large amount of scalar product
operations plus relatively few divisions and square-roots. The
scalar-products are designed in a tree structure where the
degree of parallelism vs. resource sharing can be adapted based
on available FPGA resources. To provide each multiplier with
new data in each cycle we incorporate an on-chip L-cache
designed such that each multiplier has its own access port.
All the previously calculated L and y values are stored in the
cache, however, due to the matrix band-structure, the amount
of required previous values is limited by the bandwidth W .
Since L is a triangular matrix with fixed bandwidth, the cost
for calculating one new y value is limited to W − 1 old y
values and W−1 multiplications/additions, which is negligible
compared to the scalar product of the decomposition step.

B. Implementation Aspects

Similar to the iterative solver, we use highly pipelined
floating point cores with single precision for the arithmetics.
Evaluations revealed that single precision is sufficient to
achieve a relative error of less than 10−3 for matrix sizes in the
order of 105×105. In fact, we could use custom floating-point
formats below single precision at limited precision penalty;



5

Li,: Lj,:

+ +Ai,j Aj,j

L

j

/ √
Lj,jLi,j

Lj,: Lj,:

- -

j

Cholesky  decomposition 

+

/

Lj,: y1:j-1

LL’x = b (L’x =y) L’x = y
Forward  sub. Backward  sub.

bj

Lj,j

yj

-

L:,j x1:j-1

yj

xj

A = LL’

+

/ Lj,j

-

Fig. 6. Cholesky decomposition algorithm represented as data flow graph.

co
ns

tr
ai

nt
s

x
+

Scalar Product

x

x

...

+

+ +

x

-

/

√

Li,j... ...

(L, y) -cache Backward SubstitutionCholesky Decomposition/ Forward Subst.

(L, y)-memory (external)

x

+

/

L,
y

x

+/-

Li,i

Lj,:

yi

Generate A, b A, b

Fig. 7. FPGA Architecture of the Cholesky decomposition.

however, due to fixed-precision multiplier units in FPGAs,
there is hardly any gain in resources. Fixed-point formats were
found to perform poorly for such large problem sizes. The time
per solve with W parallel multipliers in the scalar product is

tsolve = 1/fclkW · (WH) [s].

The L cache is implemented using on-chip FPGA SRAM
memory blocks, whereas the full L matrix of size W · n
words is stored in an external DDR2 RAM for the matrix
transposition. Due to the linear access pattern, the effective
bandwidth is close to the nominal bandwidth. In summary

BW = 32 · 2 · fclk[bit/s] size = 32 ·W (WH)[bit],

where the bandwidth is required for reading/writing L and y.

VI. RESULTS AND COMPARISONS

Interestingly, our implementations of iterative and direct
solver for banded sparse matrices are similar in terms of
hardware resources and performance. A summary of all key
figures is given in Table I. However, the main bottlenecks
are different: iterative solvers are rather memory-bandwidth
limited as vectors of the full problem size need to be accessed
in each iteration. The direct solver is computation limited, as
only vectors with length equal to the width of the matrix band
are required for each Cholesky decomposition step. Note that
BiCGSTAB typically needs several 100 iterations (10 to 100
ms/solve) for convergence, depending on the desired precision.

Thus, the most adequate solver type depends on the char-
acteristics of the available hardware. Modern FPGAs with a
large amount of on-chip SRAM and high-performance DDR
memory interfaces are the platform of choice for iterative
solvers, whereas ASICs with very high logic density and much
faster operating frequencies would favor direct solvers.

TABLE I
RESOURCE AND PERFORMANCE ON ALTERA STRATIX IV 530 GX.

BiCGSTAB Cholesky
Problem (A size n× n) 33K× 33K 33K× 33K
Entries per row 5 1 . . .W + 1
Possible grids WH ≤ n WH ≤ n, Wmax = 27

Logic (LUTs) 70k (17%) 100k (24% )
Registers (1-bit FFs) 90k (22%) 165k (41%)
SRAM (on-chip) 11 Mbit (50%) 1 Mbit (5%)
18-bit DSP slices 490 (48%) 548 (54%)
External memory BW 0 ≈ 1.5 GB/s
fclk (Worst/Best PTV) 120/203 MHz 186/268 MHz
Performance (W/B PTV) 0.1/0.06 ms/iter 23/15 ms/solve
C-code CPU [11] 35 ms/iter 250 ms/solve
MATLAB 5 ms/iter 200 ms/solve

We also compare performance numbers against MATLAB
and a C++ matrix library [11]. As shown in Table I, both
FPGA implementations outnumber the CPU implementation
by at least one order of magnitude. All timing tests have been
performed on an Intel Xeon 3.2 GHz CPU with 24 GB RAM.

VII. CONCLUSION

Linear solvers for video processing are computationally
demanding. The use of dedicated hardware offers at least one
order of magnitude speed-up against modern CPU-based com-
puting platforms. More importantly, dedicated solver hardware
can be integrated into next generation mobile devices, due to
their high energy efficiency (performance per Watt). The use
of direct or iterative solver depends on the available hardware
resources and the application: iterative solvers require a lot
of memory bandwidth and benefit from strong correlations
among frames; direct solvers are computation limited and
cannot use previous frames to speed-up calculations. A very
interesting direction for future work is to investigate recent
and upcoming graph-theory based pre-conditioner approaches
for dedicated hardware [3], [4].
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