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Figure 1: Our method augments hand-crafted character animations such as this sumo wrestler with high-quality secondary motion, using an
efficient rig-space simulation method.

Abstract

We present an efficient method for augmenting keyframed charac-
ter animations with physically-simulated secondary motion. Our
method achieves a performance improvement of one to two orders
of magnitude over previous work without compromising on qual-
ity. This performance is based on a linearized formulation of rig-
space dynamics that uses only rig parameters as degrees of free-
dom, a physics-based volumetric skinning method that allows our
method to predict the motion of internal vertices solely from de-
formations of the surface, as well as a deferred Jacobian update
scheme that drastically reduces the number of required rig evalua-
tions. We demonstrate the performance of our method by compar-
ing it to previous work and showcase its potential on a production-
quality character rig.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

Keywords: physically-based simulation, animation control

1 Introduction

Creating believable and compelling character motions is arguably
the central challenge in animated movie productions. While man-
ually posing a character for each animation keyframe allows artists
to create very expressive animations, this process is tedious when
it comes to creating secondary motion such as the bulging of mus-
cles or jiggling of fat. Hahn et al. [2012] recently presented rig-
space physics, a method to augment keyframed animations with
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automatically computed secondary motion. The basic idea of rig-
space physics is to use physics-based simulation in rig-space, the
character’s space of motion. As a key advantage over conventional
physics-based simulation, the results of these simulations are ani-
mation curves that can be easily edited by artists. But while rig-
space physics can automatically generate secondary motion with
high visual quality, it entails a significant computational burden that
slows production and prohibits its use in interactive environments.

In this paper, we present a method that offers a significant compu-
tational improvement over the work of Hahn et al. [2012] while
maintaining the same level of quality. This advance is made possi-
ble by three main contributions:

• a linearized formulation of rig-space dynamics using rig pa-
rameters as the only degrees of freedom,

• a physics-based volumetric skinning method that allows our
algorithm to compute the position of internal vertices solely
from the surface vertices, and

• a deferred Jacobian evaluation scheme that significantly re-
duces the number of required rig evaluations.

Taken together, these contributions allow a performance improve-
ment of one to two orders of magnitude over the original rig-space
physics method on production-quality rigs, as shown in Fig. 1.

2 Related Work

Designing and animating digital characters is a central problem in
computer graphics. We refer the interested reader to the recent sur-
vey by McLaughlin et al. [2011] for an overview of the many chal-
lenges involved in this task. Here, we focus on existing work related
to the problem of creating secondary motions.



Rigging and Keyframe Animation Before characters can be an-
imated, they first have to be modeled and rigged. During mod-
eling, artists define the surface mesh of a character, and the rig-
ging stage requires artists to specify how this surface mesh deforms
as a function of a relatively small number of rig parameters. The
map between the rig parameters and the deformation of the surface
mesh can be defined using a variety of different techniques: linear
blend or dual quaternion skinning [Magnenat-Thalmann et al. 1989;
Kavan et al. 2008], wire deformations [Singh and Fiume 1998] or
blend shapes [Lewis et al. 2000; Sloan et al. 2001], to name a few.
Many of these techniques are complementary, and there is no sin-
gle best solution for all applications. Furthermore, the choice of
which of the techniques are eventually used also depends on other
factors such as personal preference. In order to afford a maximum
level of generality, we follow Hahn et al. [2012] and do not make
any assumptions about the underlying rig. Consequently, we eval-
uate the rig and its derivatives through function calls to the model-
ing/animation software.

Deformable Models Physics-based simulation is a natural choice
for creating secondary motion effects such as flesh and fat jiggling
as a character moves. Since the pioneering work of Terzopoulos et
al. [1987], many simulation methods that can potentially be used
for this purpose have been introduced. A comprehensive review of
these works is outside the scope of this manuscript, but the survey
article of Nealen et al. [2006] provides more details on this topic.

Most of the methods for simulating volumetric objects require the
simulation domain to be spatially discretized into tetrahedrons [Irv-
ing et al. 2004]. The characters used in animation environments
are typically represented by surface meshes only, but there are
many well-established tools such as Tetgen, NetGen, and gmsh
for generating tetrahedral meshes from boundary representations.
A more fundamental difference between physics-based simulation
and character animation is that simulations endow each vertex of
the mesh with individual degrees of freedom. To the extent that
the motion must obey physics, the vertices are thus free to move
independently from each other. This setup is in stark contrast to
character animation, where the high-resolution surface mesh is con-
strained to deform only in the subspace defined by the rig. This rep-
resentational mismatch typically implies that simulation must take
place at a later stage of the animation pipeline and that results can-
not easily be edited by animators.

The rig-space physics method of Hahn et al. [2012] was specifi-
cally designed to bypass this challenge, but it still needs to com-
pute the motion of the internal vertices. This entails the solution of
large systems of equations and, consequently, leads to high compu-
tational costs. Although there are simulation methods that do not re-
quire a volumetric representation, these are not without limitations.
Shell models [Grinspun et al. 2003], for instance, can, in principle,
be used to compute secondary motions on the character’s surface.
However, shell models lack volume preservation by definition and
thus cannot account for the natural bulging of flesh and other soft
tissue. As another alternative, the boundary element method [James
and Pai 1999] condenses a volumetric problem to one with degrees
of freedom only on the surface. However, this method only works
well for linear problems and is therefore not attractive for modeling
the highly nonlinear deformations exhibited by production-quality
characters.

To alleviate these limitations, we aim to formulate an explicit, linear
map that returns the position of interior vertices as a function of the
configuration of the surface mesh. In effect, the deformation of the
rig is automatically propagated everywhere in the interior of the
simulation mesh, allowing for a very efficient implementation of
subspace physics.

Subspace Physics Reduced model methods for deformable ob-
jects are typically used to improve simulation speed. The un-
derlying idea is to formulate the equations of motion in a low-
dimensional subspace onto which the full-dimensional simulation
model is projected. These subspaces can be defined by applying
dimensionality reduction on sequences of meshes obtained through
full simulations [James and Fatahalian 2003], by embedding ob-
jects in low-resolution lattices [Faloutsos et al. 1997], by analyzing
the vibration modes of an object [Barbič et al. 2009], or by us-
ing dual quaternion skinning to express the deformation of an ob-
ject as a function of a small number of reference frames [Gilles
et al. 2011]. While these methods are typically optimized for ef-
ficiency, rig-space physics is designed to operate in the deforma-
tion subspaces defined by arbitrary animation rigs. This generality,
however, comes at a heavy computational price, which we aim to
significantly lower with the method we propose.

Skinning One of the key contributions of our method is that it
enables the use of a deformation energy defined on a volumetric
mesh, but without the need for additional internal degrees of free-
dom. We construct an explicit, example-based linear map that out-
puts the configuration of the internal vertices as a function of the
surface mesh of the character. This approach is inspired by exist-
ing methods that compute skinning weights to map the motion of a
set of coordinate frames onto a surface mesh [Magnenat-Thalmann
et al. 1989]. There are many methods that aim to improve the qual-
ity of skinning. Multi-linear methods [Wang and Phillips 2002] use
additional weights to improve the quality, as does the recent method
of Jacobson et al. [2012]. Kavan et al. [2008] show that nonlin-
ear skinning formulations can also lead to better quality, but our
goal is to construct a linear map between surface and internal ver-
tices. Another group of methods improves skinning using example
shapes [Lewis et al. 2000; Sloan et al. 2001; Kry et al. 2002], while
other methods automatically compute skinning weights by optimiz-
ing for smoothness properties [Baran and Popović 2007; Jacobson
and Sorkine 2011]. The recent method by Kavan et al. [2012] auto-
matically computes optimized skinning weights by minimizing an
elastic energy, which is similar in spirit to our approach. However,
our skinning method does not try to alter the deformation of the
surface mesh but defines the behavior of the interior.

Other research [James and Twigg 2005; Hasler et al. 2010; Kavan
et al. 2010; Le and Deng 2012] specifically targets the problem of
skinning animations, which entails finding transformations and cor-
responding skinning weights to best approximate a sequence of de-
forming meshes. Our work is closely related to these approaches.
We first obtain a set of example deformations for the tetrahedral
mesh by using physics-based simulation on a small number of
artist-generated character poses. We then optimize for a sparse set
of skinning weights that best explains the behavior of the internal
vertices through the surface deformation.

Other methods to compute skinning weights create a low-resolution
cage from the surface mesh and compute, for each internal vertex,
the harmonic [Joshi et al. 2007], mean-value [Ju et al. 2005] or
Green coordinates [Lipman et al. 2008]. While these methods lead
to smooth deformation fields, they are not without drawbacks. Be-
sides the fact that an artist needs to model and rig the cage, har-
monic coordinates are expensive to compute, mean-value coordi-
nates can lead to non-conformal interpolation, and the geometry
interpolated using Green coordinates is not guaranteed to remain
inside the control cage, which, for our problem setting, would result
in inverted tetrahedrons. In addition, the deformation fields gener-
ated with these methods are disconnected from the elastic model
used to represent the characters. We therefore resort to an example-
based skinning method whose resulting deformation fields reflect
the nature of the underlying material.



3 Foundations

The input to our method is a rigged character, which is defined by
a surface mesh with ns vertices s = (s1, . . . , sns)t and an abstract
mapping

p→ s(p) (1)

from a set of rig parameters p to corresponding deformed surface
positions s(p).

As a basis for simulating secondary motion in rig space, we assume
that the character can be modeled as an elastic solid. We represent
this solid by a volumetric mesh with ne tetrahedral elements and nv

vertices, each of which carries a mass mi. The deformed and un-
deformed positions of the vertices are stored in vectors x ∈ R3nv ,
respectively X ∈ R3nv . We furthermore decompose the deformed
positions into sets of ns surface vertices si whose positions are di-
rectly controlled by the rig, and ni internal vertices qi.

The behavior of the solid is governed by an elastic energy
W (X,x), whose precise form is defined by a deformation mea-
sure and a material law. Letting xe = (xe

1, . . .x
e
4) and Xe =

(Xe
1, . . .X

e
4) denote the deformed, respectively undeformed posi-

tions of a given tetrahedral element, we compute its deformation
gradient as F = dD−1, where d and D are (3×3) matrices whose
columns hold deformed and undeformed edge vectors xe

i − xe
1, re-

spectively Xe
i −Xe

1 for 2 ≤ i ≤ 4. Using a modified St. Venant-
Kirchhoff material as described by Martin et al. [2011], the elastic
energy density per element is obtained as

W e(xe) = 1
2
µ||E||F + λ

(
1− V e

V e
0

)
, (2)

where || · ||F is the Frobenius norm, E = 1
2
(FtF− I) is the Green

strain, V e and V e
0 are the deformed respectively undeformed vol-

umes of the element, and µ, λ are material parameters. The elas-
tic energy of the entire solid is obtained by summing up elemental
contributions as W =

∑
eW

e · V e
0 . With the undeformed config-

uration fixed, the elastic energy is a function of only the deformed
surface and internal vertices, W = W (s,q).

Assuming that a subset ps of the rig parameters is scripted over
time as part of an input animation, the goal is to automatically
compute the motion of the remaining rig parameters. Adopting the
implicit Euler method, Hahn et al. [2012] solve time-stepping by
minimizing the nonlinear functional

H(p,q) =
h2

2

(
at
sMsas + at

qMqaq

)
+W (s(p),q) (3)

with respect to the free rig parameters pf and internal vertex posi-
tions q. In the above expression, Ms and Mq are diagonal mass
matrices and the nodal accelerations are defined as

as = 1
h2 (s(p)− 2sn + sn−1) , aq = 1

h2 (q− 2qn + qn−1) ,

where the subscripts refers to the time step index.

As demonstrated by Hahn et al. [2012], the above formulation
affords high-quality simulations of secondary motion and other
physics-based detail in rig-space. However, the resulting algorithm
is computationally intensive for two primary reasons. First, mini-
mizing (3) with a Newton-Raphson scheme requires first and sec-
ond derivatives of the rig s with respect to its parameters p. Since
the rig is generally not available in analytic form, these derivatives
have to be estimated using finite differences for each iteration of
the solver. Second, the dimension of the resulting system is com-
paratively high, considering that only the free rig parameters are
required. In the next section, we describe a method that greatly
accelerates computations without compromising quality.

4 Efficient Rig-Space Physics

Our goal is to develop a formulation of rig-space physics that af-
fords the same level of quality but is significantly faster. We achieve
this target by establishing a linearized formulation, eliminating the
internal degrees of freedom using volumetric skinning, and using a
deferred Jacobian evaluation.

4.1 Linear Rig Approximation

We start by linearizing the rig at the beginning of every time step as

s(p) ≈ s(pn) + J(pn) · (p− pn) , (4)

where J = ∂s
∂p

is the Jacobian of the rig. This simplification is rem-
iniscent of the semi-implicit Euler scheme described by Baraff and
Witkin [1998], which relies on linearized forces. However, an im-
portant difference of our approach is that we linearize the rig but not
the elastic forces and, as a result, the equations of motion remain
nonlinear. Using nonlinear as opposed to linearized elastic forces
leads to improved stability and requires only a few evaluations of
elastic energy gradients and Hessians, which is significantly faster
than evaluating J. As a direct computational advantage of the rig
linearization, we need to evaluate the Jacobian only once per time
step and, moreover, second order derivatives of the rig vanish alto-
gether.

4.2 Physics-based Volumetric Skinning

In the original rig-space physics method, the problem variables con-
sist of the rig parameters and the position of the internal vertices.
Besides the fact that the internal vertices contribute significantly
more degrees of freedom than the rig parameters (≈ 100 rig param-
eters vs. several thousand internal vertices), the internal vertices
serve only a helper role in the computation of the internal energy
for a given set of rig parameters. They are not visible in the re-
sulting animation and of no interest to the artist. We would like to
establish a formulation in which only the truly relevant variables,
namely the rig parameters, are exposed as degrees of freedom.

To this end, we start by assuming that the positions of the internal
vertices are always defined by the boundary vertices through static
equilibrium conditions:

q(p) = arg min
q̃

W (s(p), q̃) . (5)

While this formula defines a unique mapping from rig parameters to
internal vertices, the corresponding function is implicit: it requires
minimizing the elastic energy and thus solving a set of nonlinear
equations. Since doing so would be computationally expensive, our
goal is to approximate this implicit nonlinear map by an explicit
linear function.

One option is to use cage-based deformation techniques such as
Harmonic coordinates [Joshi et al. 2007] or Green coordinates [Lip-
man et al. 2008] that are used for deforming a high resolution em-
bedded surface with an enveloping mesh. There are, however, two
drawbacks with these approaches. First, an artist needs to design
and rig a cage since there are no reliable automatic methods for this
task. Second, while the deformation field inside the cage is smooth,
the corresponding vertex positions will generally be far from their
equilibrium positions as dictated by the underlying elastic material.
This disparity leads to an overestimation of the elastic energy and,
in turn, severely affects the dynamics of the character.

In contrast to typical cage-based modeling problems, we have ex-
plicit knowledge about how the internal deformation field should



Figure 2: An impulse vector applied along the horizontal image
axis results in a swinging motion for the elephant’s trunk, provid-
ing us with a sequence of surface deformations and corresponding
internal deformations.

evolve as a function of the surface mesh. Namely, for every sur-
face configuration, we can compute the internal vertex positions by
minimizing a nonlinear elastic energy. This observation motivates
an example-based approach in order to compute an optimal linear
approximation to the internal deformation field. We first describe
how to generate a set of example poses and then explain how to
compute the linear map.

Generating Example-Poses We assume that there is a small set
of about five to ten artist-generated poses that are representative of
the typical range of motion during animation. In a production envi-
ronment, such poses are typically created as a means of testing the
character during the rigging stage and are referred to as calisthen-
ics. Given these basic poses, we generate an augmented example
set by applying a small number of impulse vectors to the surface
of the character. Each of the impulse vectors defines initial veloci-
ties for the character that we use to perform a few steps of dynamic
simulation by solving (3) for the free rig parameters as well as the
corresponding equilibrium positions of the internal vertices. The
result of this process, which we refer to as shaking, is a sequence
of surface positions and corresponding internal deformation which
we add to the example set. In this way, we can generate a wider
range of poses that also reflects the influence of the simulated rig
parameters pf on the internal vertices (Fig. 2).

Example-Based Skinning The shaking process provides us with
a set of m deformed configurations xe = {se,qe}, comprising
both surface and internal vertices that correspond to different poses
of the character. For each internal vertex qj , we then seek to find
weights wj for the surface vertices that best explain the position of
the internal vertex qe

j in the m different example poses,

wj = arg min
w̃j

∥∥∥∥∥∥∥∥∥


s11 · · · s1n
...

. . .
...

sm1 · · · smn
1 · · · 1

 · w̃j −


q1
j

...
qm
j

1


∥∥∥∥∥∥∥∥∥
2

. (6)

In the above system, each row stands for three equations (x,y, and
z-components), while the last row asks that weights sum to one,
which ensures that the internal vertices transform correctly under
rigid transformations of the surface. After solving the above prob-
lem for every vertex, we obtain a linear map between surface and
internal vertices, q(s) = Ws, where

W = [w1,w1,w1, . . . ,wnq ,wnq ,wnq ]t

is the skinning matrix. Due to its similarity to linear blend skinning,
we refer to this map as physics-based volumetric skinning.

The formulation of system (6) is not yet practical. First, it allows
weights to be negative, which, as reported by James and Twigg
[2005], can lead to overfitting: large positive and negative weights
can lead to a better fit, but outside the training data, undesirable
deformations occur. Second, it assumes dense correspondences
since each internal vertex can potentially be influenced by every
surface point. This property deteriorates run-time performance and,
as shown in Sec. 5, we also found that dense correspondences give
again rise to overfitting. A practical explanation for this undesirable
behavior is that dense correspondences do not respect the inherent
locality of the problem: the position of the internal vertices is di-
rectly influenced only by a certain neighbor set of close-by surface
vertices. Despite this locality, the dense correspondence scheme
can still use remote surface vertices in order to better explain the
position of a given internal vertex if the training data so happens
to support this prediction. However, remote correspondences do
not generalize well to data outside the training set, resulting in the
aforementioned overfitting.

Ideally, we would like to choose the smallest set of close-by surface
vertices that yields a robust fit to the training data. Alas, automat-
ically computing such a neighbor set is challenging. Threshold-
ing based on Euclidean distance is difficult to implement robustly
since it is unclear how to choose the cutoff value. Internal vertices
in some regions, such as the elephant’s belly, can be much further
away from the surface than in other regions, like the arms.

Sparse Correspondences Our solution to this problem is to ask
for a sparse set of correspondences that yields a fit to the training
data with a guaranteed upper-bound on the error. To this end, we
augment system (6) with a sparse regularizer that penalizes the L1-
norm of the weight vector as described in [Schmidt et al. 2007],
thus favoring a sparse set of correspondences. In this way, we elim-
inate overfitting since only those vertices are used that are actually
required to explain an internal vertex’s behavior. At the same time,
we avoid the problem of having to heuristically determine the right
sets of neighbors a priori. As another advantage, the significantly
reduced neighbor set also speeds up computations at run-time.

Algorithm 1 Finding a sparse correspondence set for skinning
1: for all internal vertices j do
2: (wj , r0) = solveNNLS(j,S0)
3: r = r0, S = S0
4: while r < δ or r/r0 < 1.5 do
5: (S̃, w̃j) = reduceCorrespondenceSet(S,wj)

6: S = S̃
7: (wj , r) = solveL1(j,S, w̃j)
8: end while
9: (wj , rf ) = solveNNLS(j,S)

10: end for

Our method for computing sparse weights is described in Algo-
rithm 1. Starting from a conservative (or even full) set of correspon-
dences S0, we first determine the initial error r0 of the fit by solving
system (6) subject to positivity constraints for the weights using a
non-negative least squares solver (line 2) as described in [James
and Twigg 2005]. We then iteratively solve the L1-regularized ver-
sion of (6) using Newton’s method (line 7) and remove the surface
vertices with the smallest weights from the correspondence set (line
5). The iteration is stopped whenever removing an additional vertex
would lead to a residual error larger than a given threshold value δ.
We recompute the final weights by solving system (6) again without
the L1-regularizer (line 9).

The result of our sparse algorithm is small sets of surface vertices
and corresponding weights that explain the behavior of the internal



vertices in a robust and efficient way. As we show in Sec. 5, using
sparse correspondences improves both the computational efficiency
at run time and eliminates overfitting.

4.3 Deferred Jacobian Evaluation

Even when keeping the Jacobian constant per time step, its eval-
uation still constitutes a major part of the total computation time.
Yet, due to the inherent temporal coherence in animations, the Ja-
cobian often does not change significantly from one time step to the
next. Ideally, we would like to recompute the Jacobian only when
necessary. While it is, to some extent, acceptable to trade accuracy
for performance, we cannot compromise on stability. We therefore
need a robust indicator for evaluating the error incurred by keeping
the same Jacobian over multiple time steps.

In order to quantify the error of the current approximation, we com-
pare the end-of-time-step positions s̃ = s(pn)+J∆p predicted by
the linear approximation to the actual positions s(pn + ∆p). A
natural metric for this difference is the kinetic energy due to the
difference in position over the time step h,

∆Ekin = 1
2h

(s̃− s(pn + ∆p))tMs(s̃− s(pn + ∆p)) . (7)

Computing this indicator requires only one rig evaluation, but it
provides us with valuable information about the linearity of the rig
around the current set of parameters and in the direction of the char-
acter’s motion. Taking an optimistic approach, we can always reuse
the existing Jacobian to step the rig parameters forward in time. We
then evaluate the indicator and, if it signals too high a degree of
nonlinearity, we roll-back to the beginning of the step, compute the
Jacobian J(pn), and simulate again. While this approach is always
robust and efficient in many cases, animations with rapid motion
and extreme deformations can lead to an excessive number of roll-
backs, effectively undoing the advantage of deferred Jacobian eval-
uation. In order to decrease the number of such roll-backs, we use
an additional indicator that estimates the linearity of the rig (in the
relevant direction) without requiring a full simulation step: instead
of solving for ∆p first, we simply estimate the end-of-time-step
parameters p̃ using an extrapolation of past states as

p̃ = pn + 1
h

(pn − pn−1) .

As shown in Sec. 5, this indicator leads to significantly fewer roll-
backs while limiting the number of Jacobian reevaluations.

4.4 Implementation

With our physics-based skinning method, the functional (3) now
only depends on the free rig parameters: H = H(p). We per-
form time-stepping by minimizing H(p) using Newton’s method,
which requires the gradient and Hessian of H . For convenience,
we include the relevant formulas here. We emphasize again that,
while each iteration requires the reevaluation of the elastic energy
gradient and Hessian, the rig Jacobian stays constant.

The gradient of H is obtained as

∂

∂p
H(p) = Jt

(
Msas +

∂W

∂s
+ Wt

(
Mqaq +

∂W

∂q

))
,

and the Hessian follows as

∂2H(p)

∂p2
= Jt

(
1

h2
Ms +

∂2W

∂s2
+ Wt

(
1

h2
Mq +

∂2W

∂q2

)
W

)
J

+Jt

(
Wt ∂

2W

∂q∂s
+
∂2W

∂s∂q
W

)
J .

Figure 3: A visual comparison between rig-space physics [Hahn
et al. 2012] and our method for a selected frame. The aver-
age/maximum vertex error is below 0.08%/1.4% for all frames.

5 Results and Discussion

In this section, we present results of our method and compare its
performance to previous work. We also validate the physics-based
skinning method by comparing it to a state-of-the-art alternative
approach.

For a fair comparison with rig-space physics [Hahn et al. 2012], we
apply our method to the elephant walk cycle animation from the
original work, using the same parameter values as reported in the
corresponding paper. To be consistent with [Hahn et al. 2012], we
simulate the trunk and the belly of the elephant separately, which
are controlled through 13 (trunk) and respectively 36 (belly) rig
parameters. Taking the animation produced by rig-space physics
as the ground truth, we compare the simulation time as well as the
difference in geometric deformation to our method using several
different options.

The results of these comparisons are summarized in Table 1 and
a visual comparison for an exemplary frame is shown in Fig. 3.
As can be seen from these data, our linearized formulation (row
2) is already significantly faster than the reference method (row
1). Yet, our physics-based volumetric skinning and its associated
dimension reduction achieves another drastic speedup. We point
out that, despite these significant accelerations, the quality of the
animation remains the same: visually, the differences between the
original method and our approach are imperceptible, as the aver-
age/maximum difference in vertex position for the belly is below
0.08%/1.4% of the character’s height for all frames.

Table 1 also indicates that our deferred Jacobian evaluation scheme
(rows 4 and 5) is very effective for the belly of the elephant, whereas
there is no speedup for the trunk. This result occurs because the
rig is mostly linear in the region of the belly and our method can
thus leverage the full potential of deferred Jacobian evaluation. For
the trunk, however, the rig is based on a nonlinear wire deformer
and its Jacobian changes significantly in virtually every step of the
animation. Deferred Jacobian evaluation is therefore not helpful
for this example, but our linearity predicator is able to detect the
nonlinearity of the rig and triggers Jacobian updates for 280 out of
360 frames. In contrast, when simulating the trunk with deferred
Jacobian updates but without the predictor, 281 frames had to be
resimulated, resulting in a severe performance penalty.

Our second example is an animation of a sumo wrestler, Sumone,
performing a characteristic foot stomp followed by vigorous head
shaking. In addition to the usual pose controls, this character also
has a total of 174 rig parameter for secondary motion, all of which
we simulate using our method. An exemplary frame of this ani-



Figure 4: An exemplary frame from an input animation without
secondary motion (left), and with secondary motion for belly, chest,
hair, and cheeks simulated using our method (right).

mation is shown in Fig. 4, but the results are best viewed in the
accompanying video, in which it can be seen that our method
achieves lively and organic-looking motion for the character’s belly,
chest, cheeks, and hair. On the performance side, simulating this
large number of parameters with rig-space physics is out of reach,
whereas our method takes less than one second per animation
frame. The timings for this animation are also listed in Table 1.
Similar to the first example, our physics-based skinning offers a
significant speedup, as does the deferred Jacobian evaluation.

Skinning In order to analyze the efficiency of our skinning
method, we compared it to the non-negative least squares (NNLS)
solver described by James and Twigg [2005]. We quantify the per-
formance of these approaches by plotting the resulting elastic en-
ergy for the individual frames of the elephant belly animation as
shown in Fig. 5.

We start by using the NNLS scheme on a large set of 500 closest
surface vertices for each internal vertex. We measure the distance
between internal and surface vertices in a geodesic sense by march-
ing along the volume mesh. In this way, we ensure that a surface
vertex on the belly is not erroneously quantified as close to an in-
ternal vertex of an arm.

As can be seen from Fig. 5, the elastic energy obtained with NNLS
weights on this large correspondence set (red curve) is significantly
higher than the ground truth (blue curve), except for the regions
around the three frames which were part of the training set. More-
over, the ground truth shows a regular saw-tooth pattern, but the
NNLS solution exhibits two pronounced spikes where the elastic
energy is approximately five times higher than the reference value.
Reducing the per-vertex correspondence set to the 20 closest sur-
face vertices even leads to slightly worse behavior (purple curve).
However, starting from the same 20 correspondences per internal
vertex, our physics-based skinning method is not only able to re-
duce the average number of correspondences to 5.56, it also leads
to a much closer tracking of the reference data. This behavior can
be explained by the fact that our sparsity-based weight computation
scheme only keeps correspondences that are actually required, thus
eliminating overfitting. As a final comparison, using NNLS with
only the 5 closest surface vertices leads to unusable behavior.

In our system, the skinning weights have to be computed only once
in a preprocessing step. For the elephant mesh (1328 interior and
761 surface vertices), we used 74 poses as training data for the skin-
ning. The initial correspondence sets of 20 surface vertices per in-
ternal vertex was reduced to an average of 5.52/5.55 in 30s/29s per

Figure 5: Elastic energy plots for 64 frames of the elephant belly
animation using static solve (blue), NNLS with 500 correspon-
dences (red), NNLS with 20 correspondences (purple), and our
physics-based skinning (green).

Solver Trunk
tframe sp

Belly
tframe sp

Sumone
tframe sp

RSP 7.24 ×1 46.5 ×1 — —
IV1, JE1 0.37 ×19 0.53 ×86 2.82 ×1.0
IV1, JE2 0.39 ×18 0.39 ×118 2.48 ×1.1
IV2, JE1 0.12 ×56 0.27 ×168 1.04 ×2.7
IV2, JE2 0.13 ×53 0.13 ×348 0.58 ×4.9

Table 1: Timings for the elephant walk cycle (Trunk, Belly) and
the Sumone animation on an Intel Core i7-930 4 x 2.8Ghz using
per-frame (JE1) and deferred (JE2) Jacobian evaluation, as well
as static solves (IV1) and skinning (IV2) for the internal vertices.
tframe is computation time per frame in sec., and sp is the speedup.

vertex for the trunk/belly, respectively. The Sumone mesh consists
of 967 interior and 1302 surface vertices and we used 77 poses for
skinning. The initial correspondence set of 20 surface vertices per
internal vertex was reduced to 6.87 on average in 16.5s (per vertex).

6 Conclusion

We presented an efficient method to augment artist-generated
keyframe animations with physically-simulated secondary motion.
Our method is significantly faster than the reference solution by
Hahn et al [2012], but it provides the same quality and inherits
all of its benefits. The robustness and performance of our method
are grounded on a linearized formulation of rig-space physics, a
physics-based volumetric skinning method, as well as a deferred
Jacobian evaluation scheme.

Limitations and Future Work Editing the material stiffness for
individual rig parameters is not currently supported by our method.
As a related challenge, it can be cumbersome to find material pa-
rameters that yield soft behavior around the rest state but do not
lead to excessive deformations for fast motion. A promising direc-
tion for future work involves investigating the intuitive design and
art direction of such materials. In this endeavor, our method could
provide quick feedback on the outcome.

For the examples show in this paper, we used a constant time step
size 0.01s, which is a fraction of the upper bound as dictated by
the number of frames per second. But while parts of an animation
might actually admit this maximum step size, sequences with rapid
motion and large deformations will typically require smaller steps
in order to maintain stability. An adaptive time stepping scheme
could exploit this fact, thereby increasing robustness and efficiency.



Our system currently uses a single rest state mesh and extreme char-
acter poses can potentially lead to very distorted or even inverted
elements. An interesting avenue for future work would be to inves-
tigate remeshing approaches or even meshless discretizations. Our
method seems to invite such adaptive approaches since it uses only
the free rig parameters as real degrees of freedom, making adapta-
tions to the underlying mesh a lightweight process.
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object animation using reduced optimal control. In Proc. of ACM
SIGGRAPH ’09.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
1997. Dynamic free-form deformations for animation synthesis.
IEEE Trans. on Visualization and Computer Graphics 3, 3.

GILLES, B., BOUSQUET, G., FAURE, F., AND PAI, D. 2011.
Frame-based elastic models. ACM Trans. on Graphics 30, 2.

GRINSPUN, E., HIRANI, A. N., DESBRUN, M., AND SCHRÖDER,
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MANN, D. 1989. Joint-dependent local deformations for hand
animation and object grasping. In Proc. of Graphics Interface
’88.

MARTIN, S., THOMASZEWSKI, B., GRINSPUN, E., AND GROSS,
M. 2011. Example-based elastic materials. In Proc. of ACM
SIGGRAPH ’11.

MCLAUGHLIN, T., CUTLER, L., AND COLEMAN, D. 2011. Char-
acter rigging, deformations, and simulations in film and game
production. In ACM SIGGRAPH 2011 Courses.

NEALEN, A., MLLER, M., KEISER, R., BOXERMAN, E., AND
CARLSON, M. 2006. Physically based deformable models in
computer graphics. Computer Graphics Forum 25, 4, 809–836.

SCHMIDT, M. W., FUNG, G., AND ROSALES, R. 2007. Fast
optimization methods for l1 regularization: A comparative study
and two new approaches. In ECML ’07, 286—297.

SINGH, K., AND FIUME, E. L. 1998. Wires: A geometric defor-
mation technique. In Proc. of ACM SIGGRAPH ’98.

SLOAN, P.-P. J., ROSE, III, C. F., AND COHEN, M. F. 2001.
Shape by example. In Proc. of Symp. on Interactive 3D Graphics
’01.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models. In Proc. of ACM SIG-
GRAPH ’87.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight enveloping:
least-squares approximation techniques for skin animation. In
Proc. of Symp. on Computer Animation ’02.


