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Abstract. This paper introduces a method to predict and analyse stu-
dents’ mathematical performance by detecting distinguishable subgroups
of children who share similar learning patterns. We employ pairwise clus-
tering to analyse a comprehensive dataset of user interactions obtained
from a computer-based training system. The available data consist of
multiple learning trajectories measured from children with developmen-
tal dyscalculia, as well as from control children. Our online classification
algorithm allows accurate assignment of children to clusters early in the
training, enabling prediction of learning characteristics. The included re-
sults demonstrate the high predictive power of assignments of children
to subgroups, and the significant improvement in prediction accuracy
for short- and long-term performance, knowledge gaps, overall training
achievements, and scores of further external assessments.

Keywords: feature processing, pairwise clustering, prediction, learning,
dyscalculia.

1 Introduction

Recently, computer-assisted learning has entered different fields of education.
Computer-based therapy systems for learning disabilities have gained particular
attention. Such systems present inexpensive extensions to conventional one-to-
one therapy by providing an adaptive and fear-free learning environment. The ef-
fectiveness of computer-based therapy programs has been proven by several user
studies targeting children with dyslexia [3,6,13] and developmental dyscalculia
(DD) [11,12,15]. To improve diagnostics and intervention outcomes, knowledge
of performance profile, knowledge gaps and learning behaviours of the student
as well as an accurate performance prediction are essential. This is particularly
important for students suffering from learning disabilities as the heterogeneity
of these children requires a high grade of individualization. Current tutoring
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systems use approaches such as Bayesian networks [16], knowledge tracing [4],
and performance factors analysis [19] to assess the knowledge of the student.

Given the high diversity of students using a tutoring system, training individu-
alization proves highly beneficial and has been the focus of recent improvements.
Clustering is a family of approaches which are useful to detect small and homoge-
neous groups of learners. In fact, clustering [22] and co-clustering [23] approaches
successfully improved post-test score predictions. The precision of a knowledge
tracing model can be increased using clustering [18] and multiple classification
models can also improve performance prediction within a system [5]. Further-
more, ensemble methods offer a way to increase prediction accuracy by training
different types of student models [2,17]. Clustering can also be used to gain
insight on learning characteristics of the students. Bootstrap aggregated clus-
tering [14] identified different subtypes of children with dyslexia. Other authors
used offline clustering followed by online classification to analyse and predict the
students’ input behaviours [1,10].

The present study aims at predicting and analysing children’s mathemati-
cal performance on the basis of distinguishable learning patterns extracted from
similar subgroups of students. Our approach is articulated in two steps: In a first
step, we cluster children according to individual learning trajectories. Compared
to previous approaches, we use the subgroup information not only to improve
prediction accuracy, but also to provide a valuable tool for experts to analyze
individual learning patterns. The second step consists of a supervised online clas-
sification during training, enabling prediction of future performance. Whereas
existing contributions address the task of predicting short-term performance and
external assessment results, we introduce a method which also predicts learning
characteristics such as knowledge gaps and overall training achievement. The
reported results demonstrate that the prediction accuracy of several learning
characteristics can be significantly improved by taking subgroup information
into account. They allow for a further training individualization and thus con-
tribute to a better support for children with learning difficulties.

2 Method

Our model uses online and offline cluster information. Firstly, we cluster chil-
dren after the complete training to identify subgroups with similar mathematical
learning patterns. Secondly, we classify children to a particular subgroup after
each training session to predict future performance. In the following, we first
describe the experimental setup and specify the extracted features as well as
the feature processing pipeline used for clustering and classification. We then
explain clustering, classification and performance prediction in detail.

Experimental Setup. The training environment consists of Calcularis [11,12],
a tutoring system for children with DD or difficulties in learning mathematics.
The program transforms current neuro-cognitive findings into the design of dif-
ferent instructional games, which are classified into two parts. Part A focuses on
the training of different number representations, while part B trains addition and
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Fig. 1. Feature processing pipeline (top) and processing modules employed on feature
f (F in case of a set feature) (bottom). The modules can be combined arbitrarily.

subtraction at different difficulty levels. All games in A and B are played in the
number ranges 0-10, 0-100 and 0-1000 (A10, A100, A1000, B10, B100, B1000). The
employed student model is a dynamic Bayesian network, consisting of a directed
acyclic graph representing different mathematical skills s and their dependen-
cies. The controller acting on the skill net is rule-based and allows forward and
backward movements (increase and decrease of difficulty levels).

The data used in the presented analysis was collected by an on-going user
study with 88 participants (68% females). 50 participants (72% females) were
diagnosed with DD, and 38 participants (63% females) were control children
(CC). All participants were German-speaking and visited the 2nd-5th grade of
elementary school (mean age: 8.71 (SD 0.91), mean age CC: 8.06 (SD 0.48),
mean age DD: 9.21 (SD 0.85)). The children trained with the program for 6
weeks with a frequency of 5 times per week, during sessions of 20 minutes. The
collected log files contain 27 complete training sessions per child. On average,
each child solved 1430 (SD 212) tasks during the 6 weeks.

Feature Extraction and Processing.We identified a set of recorded features,
which describe local and global properties of the user’s training performance. The
set contains cumulative as well as per skill measures, and covers performance,
error behaviour and timing. Table 1 lists the features, which are evaluated after
each training session. Having continuous and discrete feature types as well as
different scales, we process the features to make them comparable (Fig. 1, top).
Depending on their nature, features are processed before calculating pairwise
similarities sij (between all samples). The resulting similarity matrices Si are
transformed into a Kernel and summed up to obtain the similarity matrix K.
Finally, K is transformed to a distance matrix D using a constant shift (D =
#features - K). The employed processing modules are listed in Fig. 1 (bottom).

Clustering. An inherent property of the controller design of Calcularis is its
adaptability. Rather than following a specified sequence of skills to the goal,
learning paths are individually adapted for each child. Form and maxima of
the network paths vary depending on the learning characteristics of a student



392 T. Käser et al.

Table 1. Extracted features and abbreviations (bold) used in the following

Feature Description

Highest Skills Indices of highest skills per part (A and B).
Number of Passed Skills Total number of skills passed.
Played Skills Indices of played skills per part (A and B). Set feature.
Pass Times Accumulated time (from start of training) in seconds un-

til passing a skill. Not passed skills are set to ∞.
Samples per Skill Number of samples needed to pass a skill. Not passed

skills are set to ∞.
Key Skills* Indices of problem skills. Set feature.
Answer Times Mean answer time per skill. Not played skills set to ∞.
Performance Per Skill Mean performance (correct trials/all trials) per skill. Not

played skills are set to 0.

* Key skill s: If a user went back to a precursor skill at least once before passing s.

(see Fig. 4). These variations suggest that clustering the children on the basis
of their trajectories identifies subgroups of children with similar mathematical
learning profiles. Furthermore, the use of the trajectory features allows for mod-
elling the development of mathematical learning over time.

Children are clustered after 27 training sessions using trajectory features.
These features take into consideration how far the children came during the
training (and how fast they arrived there) as well how they reached this point.
The selected features are PT evaluated per part and number range (6 dimen-
sions: A10, B10, A100, B100, A1000, B1000) and PS (set features for part A and
B). PT is processed using LogInv → L1 → GK which yields the similarity
matrix K1, while the pipeline JC → JK used for PS results in K2 and K3. The
combined similarity matrix K (K = K1+K2+K3) is finally transformed to the
distance matrix D (D = 3 - K) used for clustering.

As the measurements are characterized by relations, we performed pairwise-
clustering (PC) [9] on D. Through a kernel transformation, dissimilarity values
can be interpreted as distances between points in a (usually higher-dimensional)
Euclidean space. As shown by the Constant Shift Embedding transformation, PC
exhibits a cost which is equivalent to that of K-means in the Euclidean embed-
ding of the similarity data [21]. The optimal number of clusters is determined by
the Bayesian Information Criterion (BIC) [20], calculating the effective number
of parameters as the normalized trace of the kernel transformation matrix [8].

Classification. We classify students after each training session and use the
according cluster information for perfomance prediction. The features used for
clustering represent global measures and are thus not optimized for early clas-
sification. As all children start the training at the lowest skill level (A10), their
trajectories tend to be similar during early training and do not provide informa-
tion about future performance. Therefore, we use additional features taking into
account local differences. While HS, NPS, PS and KS are cumulative features,
PT, SS, AT and PPS are evaluated per skill. All features and their process-
ing pipelines are displayed in Fig. 2. The obtained similarity matrices Ki are
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SD GK ( = 1)σHS: K1A, K1Bf1A, f1B

L1 GK ( = 1)σNPS: K2f2

JC JKPS: K3A, K3Bf3A, f3B

LogInv L1 GK ( = 0.1)σPT: K4,1 - K4,100f4,1 - f4,100

Inv L1 GK ( = 0.1)σSS: K5,1 - K5,100f5,1 - f5,100

JC JKKS: K6f6

LogInv L1 GK ( = 0.1)σAT: K7,1 - K7,100f7,1 - f7,100

Beta L1 RK ( = 1)σPPS: K8,1 - K8,100f8,1 - f8,100

Fig. 2. Extracted features and according processing pipelines

transformed to distance matrices Di through a constant shift (Di = 1 − Ki).
Feature processing yields a set of more than 400 distance matrices. Feature selec-
tion is performed by ranking the features according to their degree of correlation
to the correct labels (of the clustering). An optimal matrix T is computed, which
is a square-matrix containing the pairwise hamming distances between the labels
of the samples: T(i, j) = 0, if the samples i and j belong to the same cluster, and
T(i, j) = 1 otherwise. For each matrix Di, we compute the distance dt to the
optimal matrix with the Frobenius norm: dt = ||(T −Di)||F . The features are
then sorted in ascending order by their distance dt. For classification, the best
combination b of the 10 features with minimal distance to the optimal matrix T
(210 possibilities) is used. The distance matrix D is obtained by adding up the
distance matrices Di of the features fi contained in b. Classification is performed
by using a k-nearest neighbours scheme on D. The best combination b and the
optimal k are found using a 9-fold cross validation. The classification accuracy
is computed on the same folds (not nested).

Performance Prediction. The cluster information can be used to predict the
student’s performance. We identified a set of interesting features (see Tab. 2)
that we like to predict. These features can be attributed to four different areas:

1. Long-term training performance (PAS, NR, HS): End level reached within
the tutoring system.

2. Short-term training performance (NSS, NSR): Prediction of student
responses.

3. Individual knowledge gaps (KS, KNR): Identification of particular deficient
areas of knowledge.

4. External test results (EPT): Prediction of external post-test scores. In the
HRT [7], children are provided with a list of 40 addition (subtraction) tasks
ordered by difficulty. The goal is to solve as many tasks as possible within
2 minutes. The mean scores were 21.4 (53% correct) for addition and 19.6
(49% correct) for subtraction. In the AT [15], children are presented serially
20 addition (subtraction) tasks and there is no time limit. The mean scores
were 16.6 (83% correct) for addition and 14.5 (72% correct) for subtraction.

Prediction of features is performed using cluster information (as described in
Tab. 2). The prediction of long-term training performance is interesting for
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Table 2. Predicted features along with error measures. fp denotes the predicted value,
ft the actual value of the feature, and CE the classification error: #(fp �= ft)/#played.

Description Error measures

PAS
Indices of passed skills during training. A skill is pre-
dicted as passed, if the cluster majority passed it.

JC

NR
Indices of passed number ranges during training. A range
is predicted as passed, if the cluster majority passed it.

JC

HS
Indices of highest skills passed by cluster majority during
training (separately for part A and B).

SD

NSS
# samples needed to pass a skill (cluster mean). Pre-
dicted only for skills passed by cluster majority.

median(L1/|ft|)

NSR
# samples needed to pass a number range (cluster mean).
Predicted only for ranges passed by cluster majority.

median(L1/|ft|)

EPT
Absolute and relative (#correct tasks/#tasks) post test
score (cluster mean): HRT+, HRT-, AT+, AT-.

L1

KS
Indices of key skills. A skill is classified as key skill, if the
cluster majority has problems.

CE, Recall,
Precision

KNR
Indices of key number ranges. A range is classified as key
number range, if it contains at least one key skill.

CE, Recall,
Precision
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Fig. 3. Resulting clusters in 3 dimensions (left) and according similarity matrix (right).
High similarities are displayed in red.

analysis as the predicted features are correlated to the learning trajectories. The
identification of knowledge gaps helps to find subtypes of mathematical learning
patterns and can be used to increase the degree of individualization (e.g., putting
more emphasis on the training of key number ranges). Prediction of external test
results is especially important for model validation. The prediction of short-term
performance can be used to improve adaptation (e.g., minimizing frustration).

3 Results and Discussion

Clustering. The best BIC score was reached for k = 6 clusters. This result is
supported by the clear separability of the transformed data in three dimensions
(Fig. 3, left) and the clearly visible clusters on the diagonal of the similarity
matrix (Fig. 3, right). Furthermore, the six clusters (C1-C6) can be interpreted
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Table 3. Data per cluster (C1 - C6): Number of children NC (%), mean age AG
(SD), number of passed skills NPS, probability of having problems PP in different
number ranges of the training. + denotes the number ranges passed during training.

C1 C2 C3 C4 C5 C6

NC
all 13 (14.77) 5 0(5.68) 16 (18.18) 9 (10.23) 30 (34.09) 15 (17.05)
CC 00 0(0.00) 2 (40.00) 05 (31.25) 4 (44.40) 16 (53.30) 11 (73.30)
DD 13 (100.0) 3 (60.00) 11 (68.75) 5 (55.60) 14 (46.70) 04 (26.70)

AG
all 9.26 (0.87) 8.18 (0.42) 8.60 (0.67) 8.52 (1.29) 8.78 (0.93) 8.53 (0.87)
CC - 8.06 (0.03) 8.10 (0.49) 7.52 (0.27) 8.16 (0.53) 8.11 (0.44)
DD 9.26 (0.87) 8.26 (0.58) 8.82 (0.64) 9.32 (1.21) 9.49 (0.78) 9.67 (0.71)

NPS A, B 12, 9 12, 14 15, 12 19, 22 22, 25 22, 30

PP

A10 0.80+ 0.95+ 0.79+ 0.31+ 0.39+ 0.19+

B10 0.68+ 0.20+ 0.57+ 0.11+ 0.14+ 0.14+

A100 1.00 1.00 0.94+ 0.91+ 0.89+ 0.49+

B100 0.99 0.98+ 0.99 0.96+ 0.87+ 0.30+

A1000 x x x 0.98 0.72+ 0.56+

B1000 x x x 0.98 0.99 1.00+

regarding the characteristics and distinct learning patterns of the samples (Tab. 3),
which are reflected in the training trajectories (Fig. 4). The children assigned to
C1 have only passed the number range from 0-10. The difficulties with number
representation (part A) as well as procedural knowledge (part B) imply an early
disorder of numerical functions. All children of this group were diagnosed with
DD. Children in C2 have passed the number range 0-100 for part B, but exhibit
difficulties in part A. This learning pattern suggests problems with domain-
specific functions such as quantity comparison and symbolic representation. In
contrast to C2, children in C3 passed the number range 0-100 for part A, but
not for B. This observation indicates intact number processing, but difficulties
in understanding and executing procedures. The clusters C4 and C5 have passed
the number range 0-100 for both parts and the number range 0-1000 for part
A, respectively. C6 is the best performing cluster, with children having passed
all number ranges and thus finished the training. The performance differences
between clusters C4-C6 are probably due to differences in capacity and availabil-
ity of domain-general functions (attention, working memory, processing speed).
Notably, C4-C6 contain DD children (26.7% in C6). This fact can be attributed
to age differences: DD children in C6 attend the 4th or 5th grade of elementary
school. The interpretation of learning patterns confirms the usefulness of trajec-
tory information for clustering.

Classification. During training, we classify the children to a particular sub-
group depending on their current training status. As expected, classification
accuracy increases with the number of training sessions (Fig. 5, left). Five ses-
sions are already sufficient for the introduced method (blue) to cluster 50% of the
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Fig. 4. Example trajectories of two children from clusters C6 (left) and C1 (right). A
cross denotes a task played at the actual difficulty level while a dot denotes a random
repetition. Red stands for a wrong answer, blue for correct, green for neutral.
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Fig. 5. Classification accuracy (left) and performance prediction for selected features
(right) over time. Accuracy using offline features (red), the introduced method (blue)
and portion of children classified correctly or to a direct neighbour cluster (light blue).

children correctly (chance: 16.6̄%). Considering that some neighbouring clusters
are close to each other (for instance, C1 and C2 are statistically distinguish-
able but similar), the assignment of a child to a direct neighbour of the correct
cluster will not significantly deteriorate prediction quality. The estimation of
the percentage of children assigned to the correct cluster or its direct neighbour
(light blue) yields a success rate higher than 70% already after five sessions. The
classification with the global features used for clustering (red) performs worse
for small numbers of sessions, and equally well after 20 sessions. This behaviour
highlights the importance of using local features for classification at an early
stage in the training.

Performance Prediction. Student’s performance in the four selected areas
was predicted as described in Tab. 2. Figure 6 (left) shows the prediction er-
rors after 27 sessions (offline prediction) on one to ten clusters. Most errors
were significantly reduced (indicated by a two-sided t-test corrected for multiple
comparisons with Bonferroni-Holm) by using the cluster information (Fig. 6,
right). NSS and NSR do not show a high cluster dependency. However, as
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NSS 0.32 0.31
NSR 0.27 0.26

HRT+ 4.70 (0.12) 3.69* (0.09*)
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KS 0.24, 0.10, 0.95 0.22*, 0.33*, 0.73*
KNR 0.35, 0.90, 0.55 0.19*, 0.82*, 0.74*

* p− value < 0.01

Fig. 6. Offline prediction errors (error measures from Tab. 2) plotted by the number
of clusters (left) and listed for one and six clusters (right). For EPT features, absolute
and relative errors (in brackets) are given and the numbers for KS and KNR denote
classification error, recall and precision. The HS error is given for part A and B.

these features are predicted for skills (number ranges) passed by the cluster
majority, the number of skills (number ranges) for which we can predict NSS
(NSR) depends on PAS (NR). The high prediction accuracy of the long-term
training performance (PAS, NR, HS) shows that clustering the children based
on trajectory features is indeed meaningful. Furthermore, the accurate predic-
tion of post-test results EPT demonstrates the correlation between achievement
in external assessments and in-tutor performance and thus proves the validity
of the student model. The promising results in the identification of knowledge
gaps (KS, KNR) provide a valuable tool in the analysis of learning patterns
and allow experts to elaborate individualized learning strategies. The accurate
predictions of knowledge gaps together with the good prediction of short-term
training performance (NSS, NSR) enable a tutoring system to better adapt
the training to individual children. This, however, requires online performance
prediction. Online prediction errors for the relevant features were computed af-
ter each session. As expected, the prediction errors depend on the classification
accuracy (Fig. 5, right), i.e. prediction accuracy increases over the course of the
training (due to their cluster independency, this does not hold for NSS and
NSR). A good prediction accuracy is reached already after few trainings and
allows to draw conclusions about short-term performance and knowledge gaps.

Conclusion. In this work, clustering was applied to learning trajectories of stu-
dents to determine subgroups in a data set obtained from 88 children (50 children
with DD and 38 controls). The computed BIC score suggested that six clusters
are optimal. Moreover, the different clusters could be interpreted according to
theory about mathematical development and DD. The online classification of the
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children to a particular subgroup has shown to be an inherent problem in the
beginning of the training, but by using local features the classification accuracy
was notably improved, enabling accurate prediction of student’s future perfor-
mance. Student’s performance was predicted in four important areas. The results
have demonstrated that the prediction accuracy can be significantly increased
by taking subgroup information into account. The usefulness of clustering for the
analysis of learning pattern and further training individualization contribute to
a better support for children with learning difficulties.
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