
IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS 1

Implicit Incompressible SPH
Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner

Abstract—We propose a novel formulation of the projection method for Smoothed Particle Hydrodynamics (SPH). We combine
a symmetric SPH pressure force and an SPH discretization of the continuity equation to obtain a discretized form of the pressure
Poisson equation (PPE). In contrast to previous projection schemes, our system does consider the actual computation of the
pressure force. This incorporation improves the convergence rate of the solver. Furthermore, we propose to compute the density
deviation based on velocities instead of positions as this formulation improves the robustness of the time-integration scheme. We
show that our novel formulation outperforms previous projection schemes and state-of-the-art SPH methods. Large time steps
and small density deviations of down to 0.01% can be handled in typical scenarios. The practical relevance of the approach is
illustrated by scenarios with up to 40 million SPH particles.

Index Terms—Physically-based simulation, Fluid dynamics, Smoothed Particle Hydrodynamics

F

1 INTRODUCTION

THE SPH method [1] has proven to be effective at
generating compelling water effects in computer

graphics. Enforcing incompressibility in SPH is im-
portant for the visual quality of a simulated scenario
and this paper contributes to that topic.

Standard SPH (SSPH) uses an equation of state (EOS)
to compute pressure that results in forces penalizing
the current compression [1]. Pressure is computed
from locally evaluated compression weighted with a
user-defined stiffness value. The straightforward com-
putation of pressure values makes SSPH well suited
for efficient simulations of compressible fluids, e.g. [2],
[3]. For weakly compressible fluids (WCSPH), e.g. [4],
[5], a rather stiff EOS is used that imposes a severe
time step restriction limiting the overall performance.

The performance of SSPH has been significantly im-
proved by EOS-based predictor-corrector schemes,
e.g. PCISPH [6] and local Poisson SPH [7]. Pressure
forces are modeled as constraint forces that resolve
compression induced by non-pressure forces. The re-
spective pressure values are computed by iteratively
predicting and correcting the particle positions based
on an EOS. The approaches still rely on local informa-
tion, but in contrast to SSPH and WCSPH, the EOS
does not contain a user-defined stiffness parameter.
PCISPH and local Poisson SPH handle time steps that
are up to two orders of magnitude larger compared
to WCSPH, while the overall speed-up with respect
to WCSPH can be up to 55 or 23, respectively [6], [7].

• M. Ihmsen, J. Cornelis and M. Teschner are with the Department of
Computer Science, University of Freiburg.

• B. Solenthaler is with the Department of Computer Science, ETH
Zürich.

• C. Horvath is with Pixar Animation Studios, Emeryville, California.

As an alternative to EOS approaches with locally
computed penalty forces, projection schemes, also
referred to as splitting [8], can be used to compute
the pressure field in SPH. First, intermediate velocities
are predicted without considering the pressure forces.
Then, a PPE is solved to compute pressure such that
the resulting pressure forces correct the intermediate
velocities to a divergence-free state. This is a stan-
dard technique in grid-based approaches, e.g. [8], [9],
[10], but a detailed discussion of grid-based variants
is beyond the scope of this paper. In Lagrangian
approaches, projection schemes can be distinguished
with respect to the source term in the Poisson formu-
lation. Here, either the divergence of the intermediate
velocity field, e.g. [11], [12], the compression due to
the intermediate velocity field, e.g. [13], [14], [15],
or a combination of both, e.g. [16], [17], are used.
As incompressibility is an important ingredient for
realistic fluid animations, the compression formula-
tion seems to be preferable in SPH. As discussed for
SPH in [11] and for the Moving Particle Semi-Implicit
method (MPS) in [12], only using the divergence term
tends to result in perceivable compression.

The numerically challenging approximation of the
Laplacian with SPH is a major issue in SPH projection
schemes. Directly discretizing the Laplace operator
with second-order kernel derivatives is known to
be sensitive to the sampling. This is discussed in,
e.g. [18], [11], where approximations are proposed. In
order to avoid the SPH discretization of the Laplacian,
some authors propose to compute the pressure field
on a background grid at a different, typically lower
resolution, e.g. [19], [17], [20]. After transferring the
pressure values from the grid to the particles, particle
pressure values can be refined, e.g. using an EOS as
in [20].

SPH projection schemes, also referred to as incom-
pressible SPH (ISPH) methods, are currently consid-



IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS 2

Fig. 1. A cargo ship in highly agitated water. Up to
30 million particles are processed in 44 seconds per
simulation step with a time step of 0.004 seconds and
a compression of less than 0.1%.

ered impractical in the context of computer graphics.
As stated in, e.g. [11], [21], the performance of ISPH
does not scale well with the problem domain and
is particularly an issue for large-scale scenarios. Our
work addresses this point. We propose a discretization
of the PPE that significantly improves the convergence
of the solver and the stability of the time-integration
scheme. This results in a significant speedup not only
compared to previous ISPH approaches, but more im-
portantly compared to PCISPH, the current state-of-
the-art. Large time steps and small density deviations
of down to 0.01% can be handled in typical scenar-
ios. In contrast to previous projection schemes, the
approach scales well with the simulation domain. This
is demonstrated on a number of large scale scenarios
with up to 40 million fluid particles computed on a
16-core desktop PC, e.g. Figure 1.

2 IMPLICIT INCOMPRESSIBLE SPH (IISPH)

SSPH computes the density of particle i as ρi(t) =∑
jmjWij(t), where mj denotes the mass of particle

j and Wij(t) = W (xi(t) − xj(t)) is a kernel function
with finite support. Pressure pi(t) is computed with
an EOS [4] as

pi(t) =
κρ0

γ

((
ρi(t)

ρ0

)γ
− 1

)
, (1)

where ρ0 is the rest density of the fluid, κ and γ
control the stiffness. As proposed in [1], momentum-
preserving pressure forces are computed as

Fpi (t) = −mi

∑
j

mj

(
pi(t)

ρ2
i (t)

+
pj(t)

ρ2
j (t)

)
∇Wij(t). (2)

Pressure forces in SSPH penalize compression, but do
not guarantee an incompressible state at time t+ ∆t.

In contrast to SSPH, the proposed IISPH method com-
putes pressure by iteratively solving a linear system.
To build the system with unknown pressure values,

we mainly employ a discretized form of the conti-
nuity equation and the projection (splitting) concept,
e.g. [8]. Additional assumptions, approximations or
simplifications are avoided. The linear system can be
solved efficiently with a matrix-free implementation.

2.1 Derivation

IISPH is based on a semi-implicit form of the density
prediction using the time rate of change of the density.
The formulation is obtained by directly discretizing
the continuity equation Dρ

Dt = −ρ∇ · v at time t using
a forward difference for the time derivative of the
density ρi(t+∆t)−ρi(t)

∆t and the SPH concept for the
divergence of the velocity ∇·vi = − 1

ρi

∑
jmjvij∇Wij ,

which yields

ρi(t+ ∆t)− ρi(t)
∆t

=
∑
j

mjvij(t+ ∆t)∇Wij(t). (3)

This specific discretization introduces unknown rela-
tive velocities vij(t+∆t) = vi(t+∆t)−vj(t+∆t) that
depend on unknown pressure forces at time t which
are linear in unknown pressure values at time t.

Using a semi-implicit Euler scheme for position and
velocity update, the velocity in (3) can be rewritten
as: vi(t+ ∆t) = vi(t) + ∆t

Fadv
i (t)+Fp

i (t)

mi
with unknown

pressure forces Fpi (t) and known non-pressure forces
Fadvi (t) such as gravity, surface tension and viscosity.
Following the projection concept, we consider inter-
mediate (predicted) velocities vadvi = vi(t)+∆t

Fadv
i (t)
mi

which result in an intermediate density

ρadvi = ρi(t) + ∆t
∑
j

mjv
adv
ij ∇Wij(t). (4)

We now search for pressure forces to resolve the
compression ρ0 − ρadvi :

∆t2
∑
j

mj

(
Fpi (t)

mi
−

Fpj (t)

mj

)
∇Wij(t) = ρ0 − ρadvi .

(5)

Note, that (5) corresponds to (3) with ρi(t+ ∆t) = ρ0.
Using (2) in (5), we get a linear system A(t)p(t) =
b(t) with n equations for n unknown pressure values
p(t) =

(
p0(t), . . . , pn−1(t)

)T and b(t) corresponding to
the right-hand side of (5), i.e. bi(t) = ρ0 − ρadvi . For
each particle, we finally have an equation of the form∑

j

aijpj = bi = ρ0 − ρadvi , (6)

where we have skipped the time index t to improve
the readability. This is also done in the following.



IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS 3

2.2 Discussion

Equation (4) corresponds to the prediction step of the
projection, while (5) is the PPE that is used for the
pressure computation. The respective pressure forces
are applied in the correction step of the projection
scheme: vi(t + ∆t) = vadvi + ∆tFpi (t)/mi. The source
term states the density invariance condition which
we prefer over the alternative divergence term. The
divergence term tends to result in problematic com-
pression as discussed in, e.g. [11], [12]. Thus, our
approach is closely related to ISPH schemes which
employ density constraints, e.g. [13]. However, our
formulation significantly improves the convergence
of the solver and the stability of the time-integration
scheme due to two novel aspects discussed in the
following.

Discretization of the Laplacian. Our discretization
of the PPE differs from previous formulations that
employ additional approximations for the Laplace
operator, e.g. [11], [13], [14], [16]. These ISPH meth-
ods start with a continuous form of the PPE. Then,
they discretize the Laplacian and the source term.
The resulting system does not consider the pressure
force that is finally derived from the pressure field.
Thus, there is no distinguished form of the pressure
force with a special relation to the computed pres-
sure field. In contrast, our derivation considers the
relation between pressure and pressure force. First,
we do not start with a continuous PPE, but with the
continuous continuity equation which is discretized.
The main goal of this discretization is the introduction
of v(t+∆t) which is expressed with the pressure force
term used in the final velocity update. Thereby, we
can finally apply the particular form of the pressure
force that has been considered in the computation
of the pressure field. This incorporation improves
the convergence rate and the overall performance as
shown in comparisons to ISPH in Sec. 5.

Source term. In previous ISPH implementations and
in predictive-corrective EOS solvers, ρi(t + ∆t) is
computed based on predicted positions as

ρi(t+ ∆t) =
∑
j

mjW (x∗i − x∗j , h), (7)

where x∗i equals xadvi in ISPH and the predicted
positions during iterations in predictive-corrective
EOS solvers. However, solving (7) implies a re-
computation of the neighborhood. In PCISPH, this
overhead is avoided by only updating distances for
the current neighborhood. This introduces an error
which gets more significant for larger displacements
∆xi = ∆tvadvi + ∆t2Fpi /mi.

In contrast, IISPH predicts the density based on ve-
locities (4). As known values ∇Wij(t) are preferred
over unknown values ∇Wij(t+ ∆t) without affecting
the error order of the discretization, the approximative

Algorithm 1 IISPH using relaxed Jacobi. l indicates
the iteration.

procedure PREDICT ADVECTION
for all particle i do

compute ρi(t) =
∑
jmjWij(t)

predict vadvi = vi(t) + ∆t
Fadv

i (t)
mi

dii = ∆t2
∑
j −

mj

ρ2i
∇Wij(t)

for all particle i do
ρadvi = ρi(t) + ∆t

∑
jmj

(
vadvij

)
∇Wij(t)

p0
i = 0.5 pi(t−∆t)

compute aii (12)
procedure PRESSURE SOLVE

l = 0
while ρlavg − ρ0 > η ∨ l < 2 do

for all particle i do∑
j dijp

l
j = ∆t2

∑
j −

mj

ρ2j (t)
plj∇Wij(t)

for all particle i do
compute pl+1

i (13)
pi(t) = pl+1

i

l = l + 1

procedure INTEGRATION
for all particle i do

vi(t+ ∆t) = vadvi + ∆tFpi (t)/mi

xi(t+ ∆t) = xi(t) + ∆tvi(t+ ∆t)

update of the neighborhood is avoided. According to
our observations, (4) tolerates significantly larger time
steps and, thus, improves the robustness of the time-
integration scheme.

On the other hand, the system contains a significantly
larger number of non-zero entries compared to previ-
ous projection schemes. As (6) contains a nested sum,
the coefficients aij are non-zero for the neighbors j
of particle i and for neighbors of neighbors of i. Typi-
cally, a particle has 30-40 neighbors [22]. Nevertheless,
the system can be solved very efficiently in a matrix-
free way as presented in the following.

3 SOLVER

The system can be solved in various ways. For simi-
lar systems, grid approaches commonly apply SOR,
e.g. [23], Conjugate Gradient, e.g. [9], or multigrid
solvers, e.g. [10], while SPH approaches often employ
Conjugate Gradient for PPEs, e.g. [11]. We have imple-
mented and evaluated relaxed Jacobi and Conjugate
Gradient to solve our formulation. Multigrid solvers
have not been considered due to their involved setup
for irregular samplings.

For the proposed system, the relaxed Jacobi solver is
more practical than Conjugate Gradient. We therefore
describe implementation details of the relaxed Jacobi
solver first in Sec. 3.1, followed by a discussion of
possible reasons for that outcome in Sec. 3.2.



IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS 4

3.1 Relaxed Jacobi

Employing relaxed Jacobi, we iteratively solve (6) for
the individual pressure values pi as

pl+1
i = (1− ω)pli + ω

ρ0 − ρadvi −
∑
j 6=i aijp

l
j

aii
, (8)

where l denotes the iteration index and ω is called the
relaxation factor.

In order to compute (8), we need to determine aii
and

∑
j 6=i aijp

l
j which can be efficiently computed. For

extracting the coefficients, the displacement caused by
the pressure force is rewritten as

∆t2
Fpi
mi

= −∆t2
∑
j

mj

(
pi
ρ2
i

+
pj
ρ2
j

)
∇Wij

=
(
−∆t2

∑
j

mj

ρ2
i

∇Wij

)
︸ ︷︷ ︸

dii

pi +
∑
j

−∆t2
mj

ρ2
j

∇Wij︸ ︷︷ ︸
dij

pj ,

(9)

where diipi denotes the displacement of i due to
pressure values pi and dijpj the movement caused
by the pressure value pj of neighboring particle j.
Plugging (9) into (5) and denoting the neighbors of
j with k yields

ρ0 − ρadvi =∑
j

mj

(
diipi +

∑
j

dijpj − djjpj −
∑
k

djkpk

)
∇Wij .

(10)

Note that
∑
k djkpk includes pressure values pi since

i and j are neighbors. In order to separate pi in this
sum, we write∑

k

djkpk =
∑
k 6=i

djkpk + djipi. (11)

Taking these considerations into account, the right-
hand side of (10) can be split up into parts that contain
pi values and other parts that contain pressures pj and
pk as

ρ0 − ρadvi = pi
∑
j

mj (dii − dji)∇Wij+∑
j

mj

(∑
j

dijpj − djjpj −
∑
k 6=i

djkpk

)
∇Wij .

Now, we can compute the coefficients aii as

aii =
∑
j

mj (dii − dji)∇Wij , (12)

and evaluate the pressure pl+1
i with

pl+1
i = (1− ω)pli + ω

1

aii

(
ρ0 − ρadvi −

∑
j

mj

(∑
j

dijp
l
j − djjp

l
j −

∑
k 6=i

djkp
l
k

)
∇Wij

)
.

(13)

3.1.1 Implementation

In our implementation, dii and aii are precomputed
and stored. The coefficients dij are computed to get
aii, but not stored. In each iteration, two passes over
the particles are required to update pl+1

i . The first
pass computes and stores

∑
j dijp

l
j . The second pass

computes pl+1
i using the stored

∑
j dijp

l
j and djj . The

sum
∑
k 6=i djkp

l
k is computed as

∑
k djkp

l
k − djip

l
i,

where the term
∑
k djkp

l
k can be accessed at the

particle, while dji is computed. Thus, an explicit com-
putation of the non-diagonal elements aij is avoided.
Alg. 1 summarizes the simulation update using the
proposed relaxed Jacobi pressure solve.

IISPH performs two loops over all particles per itera-
tion (PCISPH requires three loops). Moreover, the two
loops do not contain data dependencies. Accordingly,
the method is well suited for parallel architectures.
While an equation for a particle contains up to 402

non-zero coefficients, the implementation only stores
seven scalar values per particle, namely aii, dii and∑
j dijp

l
j .

We observed an optimal convergence for the relax-
ation factor ω = 0.5 in all settings. The convergence is
also optimized by initializing p0

i = 0.5 pi(t−∆t). While
grid-based projection schemes commonly initialize
p0
i = 0, e.g. [8], using p0

i = pi(t−∆t) would be intuitive
in our Lagrangian approach. In our experiments, how-
ever, we observed that the coefficient 0.5 generally
provides a close to optimal convergence. The right-
hand side of (13) can be rearranged to compute the
density at t+ ∆t including pressure forces. Thus, the
compression of the fluid can be predicted in each iter-
ation. By terminating the iterations for a compression
below a pre-defined value η, the user can control the
compression.

By enforcing ρi(t + ∆t) = ρ0, pressure forces induce
a positive change of density for particles with a
predicted density smaller than the rest density, i.e.
ρadvi < ρ0. In this case, pressure forces act as attraction
forces [24]. Although this might be interpreted as
surface tension, we consider the induced cohesive
effect as too exaggerated, e.g., splashes are noticeably
absorbed (Figure 2, left). In EOS solvers, attracting
pressure forces are prohibited by clamping negative
pressures to zero. We adopt the same concept and
clamp negative pressures in each iteration.



IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 2. Exaggerated surface tension by attracting pres-
sure forces (left). Distorted alignment of surface parti-
cles (right) caused by clamping bi = min(0, ρ0 − ρadvi ).
Particles are color coded with respect to velocity.

Fig. 3. A two-scale simulation with IISPH. The radii
of the pink low-resolution and the blue high-resolution
particles are 0.004m and 0.002m, respectively.

Finally, in contrast to hybrid particle-mesh solvers,
the proposed method builds purely on SPH. Thus, it
can be integrated into sophisticated SPH frameworks,
e.g. [25], as demonstrated in Figure 3.

3.2 Conjugate Gradient

We have implemented Conjugate Gradient (CG)
with a diagonal pre-conditioner. Although CG shows
promising convergence rates, we experienced two
issues which are highlighted in the following.

Symmetry. The coefficient matrix is not symmetric
as each aij is scaled by mi/ρ

2
i . Symmetry can be

enforced by assuming that ρi = ρj = ρ0 and mi = mj

for all particles. While this symmetrization works for
uniform masses, it is invalid for settings with non-
uniform masses such as adaptively sampled SPH,
e.g. [3], [26], or multi-phase simulations, e.g. [27].
Note that non-symmetry is not an issue for relaxed
Jacobi.

Negative Pressure. Using relaxed Jacobi, we propose
to clamp negative pressures in order to eliminate ex-
aggerated cohesion effects. For CG, however, clamp-
ing in between the iterations leads to invalid states.
We also observed instabilities in case of any change in
the final pressure field, such as clamping of negative
pressure values or disregarding pairwise-attracting
pressure forces. Intuitively, we could disallow a pos-
itive change of density due to pressure by clamping

Fig. 4. Subsequent frames of a resting fluid pillar
of 5 meters height, simulated at low resolution. The
convergence criterion is set to a maximum density
error of 1%. This leads to oscillations in the pressure
field and, thus, the free surface. Pressure values are
color coded.

bi to negative values with bi = min
(
0, ρ0 − ρadvi

)
. Un-

fortunately, this adaptation causes implausible align-
ments of single particles at the fluid surface for CG
and Jacobi as demonstrated in the right-hand side of
Figure 2.

4 BOUNDARY HANDLING

IISPH does not impose special requirements on the
boundary handling. All boundary handling schemes
that work with PCISPH or ISPH, can also be used
with IISPH. This section describes the combination
of IISPH with an exemplary boundary handling ap-
proach presented in [28] that is used in all experi-
ments.

The rigid-fluid coupling [28] employs rigid bound-
ary particles bi that contribute to the density of a
fluid particle i. This contribution scales with the local
number density δbi ≡

∑
bj
Wbibj and is defined as

Ψb(ρ0i
) = ρ0i

/δbi . Incorporating this method, the
density estimation (3) is extended to

ρi(t+ ∆t) =
∑
j

mjWij +
∑
b

Ψb(ρ0i
)Wib

+ ∆t
∑
j

mjvij(t+ ∆t)∇Wij

+ ∆t
∑
b

Ψb(ρ0i)vib(t+ ∆t)∇Wib. (14)

For a weak coupling, we assume a constant rigid ve-
locity vb throughout the pressure iterations. Therefore,
we can estimate the density without pressure forces



IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS 6

Fig. 5. Breaking dam with 100K particles.

as

ρadvi =
∑
j

mjWij +
∑
b

Ψb(ρ0i
)Wib

+ ∆t
∑
j

mjv
adv
ij ∇Wij

+ ∆t
∑
b

Ψb(ρ0i
)
(
vadvi − vb(t+ ∆t)

)
∇Wib.

Pressure forces correct the density field such that

ρi(t+ ∆t) = ρadvi +
∑
j

mj

(
∆t2

Fpi
mi
−∆t2

Fpj
mj

)
∇Wij

+
∑
b

Ψb(ρ0i
)

(
∆t2

Fpi
mi

)
∇Wib

In [28], boundary particles b do not have an individual
pressure, but exert a pressure force which is depen-
dent on the fluid pressure pi as

Fpi←b = −miΨb(ρ0i
)
pi
ρ2
i

∇Wib (15)

Thus, the displacement due to pressure is computed
as

∆t2
Fpi
mi

=
∑
j

−∆t2
mj

ρ2
j

∇Wij︸ ︷︷ ︸
dij

pj+

−∆t2
∑
j

mj

ρ2
i

∇Wij −∆t2
∑
b

Ψb(ρ0i
)

1

ρ2
i

∇Wib


︸ ︷︷ ︸

dii

pi.

Accordingly, the pressure update with relaxed Jacobi
reads

pl+1
i = (1− ω)pli + ω

1

aii

(
ρ0 − ρadvi

−
∑
j

mj

(∑
j

dijp
l
j − djjp

l
j −

∑
k 6=i

djkp
l
k

)
∇Wij

−
∑
b

Ψb(ρ0i
)
∑
j

dijp
l
j∇Wib

)
. (16)

Fig. 6. Blender scenario with 90K particles.

5 RESULTS

We integrated the solvers into an SPH framework
which employs the cubic spline kernel and the viscous
force presented in [22]. Surface tension is modeled
with [5]. Neighborhood search and fluid update are
parallelized using the techniques described in [29].
The fluid surface is reconstructed with [30], [31].
Performance measurements are given for a 16-core
3.46 GHz Intel i7 with 64 GB RAM. Images were
rendered with mental ray [32].

5.1 Convergence Criterion

Realistic SPH simulations require low density errors
in order to avoid perceivable volume changes, i.e.,
oscillations of the free surface. While the original
PCISPH method considered the maximum density
error with a threshold of 1%, we recommend to
maintain an average density error of less than 0.1%.
Although average and maximum density error are
closely related, their ratio varies throughout a simula-
tion. I.e., if a maximum density error is preserved, the
average density error and therefore the fluid volume
might change over time. Such variations of the aver-
age density error result in oscillations of the pressure
field and in perceivable simulation artifacts such as
jumping of the free surface. This issue is particularly
perceivable in simulations with growing water depth
as illustrated in Figure 4. In this scenario, the obtained
average compression varied between 0.3% and 0.6%
when tolerating a maximum error of 1%. We found
that these artifacts can be avoided by considering the
estimated average density error with a threshold of
0.1% as the convergence criterion. Please note that this
criterion restricts the overall global volume change
of the fluid to 0.1%, but tolerates locally delimited
maximum density errors. The average density error
η, also referred to as density deviation, compression
or volume compression, is consistently used as con-
vergence criterion in all experiments with all solvers.

5.2 Performance Comparisons

We present comparisons with three existing solvers.
First, we illustrate the performance of IISPH by com-
paring to PCISPH, the current state-of-the-art pressure



IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS 7

PCISPH IISPH PCISPH / IISPH

total comp. time [s] total comp. time [s] ratio

∆t [s] avg. iter. pressure overall avg. iter. pressure overall iterations pressure overall

0.0005 4.3 540 1195 2.2 148 978 2.0 3.6 1.2
0.00067 7.2 647 1145 2.9 149 753 2.5 4.3 1.5
0.001 14.9 856 1187 4.9 164 576 3.0 5.2 2.1
0.0025 66.5 1495 1540 18.4 242 410 3.6 6.2 3.8
0.004 - - - 33.5 273 379 - - -
0.005 - - - 45.8 297 383 - - -

TABLE 1
Comparison of IISPH with PCISPH using different time steps for a breaking dam with 100K particles (Figure 5).
Timings are given for the whole simulation (300 frames). The largest ratio in the pressure computation time and
the lowest total computation times are marked bold. The maximum volume compression was set to 0.01%. The

particle radius was 0.025m.

PCISPH IISPH PCISPH / IISPH

total comp. time [s] total comp. time [s] ratio

∆t [s] avg. iter. pressure overall avg. iter. pressure overall iterations pressure overall

0.0025 4.2 416 978 2.0 106 709 2.1 3.9 1.4
0.005 15.4 688 964 4.9 132 435 3.1 5.2 2.2
0.01 - - - 13.2 182 338 - - -
0.02 – - - 78.8 510 588 - - -

TABLE 2
Comparison of IISPH with PCISPH using different time steps for the blender scene with 90K particles
(Figure 6). Timings are given for the whole simulation (1000 frames). The largest ratio in the pressure

computation time and the lowest total computation times are marked bold. The maximum volume compression
was set to 0.1%. The particle radius was 0.05m.

solver in computer graphics. Second, we illustrate the
benefits of our PPE formulation by comparing to a
state-of-the-art discretization of the PPE as used in
ISPH [13]. Third, we briefly compare to constraint
fluids [15] due to similarities in the concept.

Comparison to PCISPH

We compare IISPH to PCISPH in two scenarios with
different particle radii r and different average density
errors η to illustrate the effect of these parameters
on the time step and the convergence rate of the
solvers. Figure 5 shows a breaking dam with 100K
particles, r = 0.025m, and η = 0.01%. Figure 6 shows
a blender with 90K particles, r = 0.05m, and η = 0.1%.
The performance measurements are summarized in
Table 1 and Table 2.

Pressure solve. Compared to PCISPH, IISPH com-
putes the pressure field up to 6.2 times faster for
the breaking dam and up to 5.2 times faster in the
blender scene. These speed-ups are a combination of
an improved convergence and an improved efficiency
per iteration. Regarding the convergence, IISPH re-
quires up to 3.6 and 3.1 times less iterations compared
to PCISPH. Combined with the improved efficiency
per iteration (2 particle loops in IISPH vs. 3 particle
loops in PCISPH), a speed-up of up to 6.2 and 5.2

is obtained. Further, the speed-ups grow for larger
time steps. This indicates that the convergence of
IISPH scales better compared to PCISPH for growing
time steps. As shown in the accompanying video, the
simulation results are in good agreement.

SPH computation time per simulated frame. IISPH
computes the pressure field up to six times faster than
PCISPH. However, the overall speed-up in the com-
putation time per simulated frame also depends on
other SPH components, e.g. the neighborhood query.
The neighborhood query adds roughly constant costs
per simulation step. However, the total costs per
simulated frame for finding the neighbors decrease
with larger time steps as less simulation steps are
performed per simulated frame. Interestingly, increas-
ing costs for the pressure solve and decreasing costs
for the neighborhood search result in the fact, that
IISPH and PCISPH do not necessarily achieve their
best overall performance for the largest possible time
step. For the breaking dam, IISPH and PCISPH handle
time steps of up to 0.005s and 0.0025s, respectively.
The factor of two with respect to the maximum time
step is, however, practically irrelevant for the overall
computation time, as both solvers achieve their best
performance for time steps of 0.004s and 0.00067s,
corresponding to a factor of six with respect to the



IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS 8

Fig. 7. Average number of iterations of PCISPH, IISPH
and ISPH for different time steps in the breaking dam
scenario.

optimal time step and a factor of three with respect
to the overall performance gain. The situation in the
blender scenario is analogous.

Time step. As discussed in [6], PCISPH scales pres-
sure values by a global stiffness value δ which is time-
step dependent. So, dependent on the time step, δ
might be too large and cause overshooting, or it might
be too small and negatively influence the convergence
rate. The performance and stability of PCISPH are,
thus, heavily influenced by the time step. For IISPH,
the time step has less effect on the performance. The
influence of the time step on the number of iterations
is illustrated in Figure 7.

For the performance comparisons (Table 1 and Ta-
ble 2), we kept the time step fix for each simulation
run. However, in practice, adaptive time-stepping
schemes are desirable. For PCISPH, the coupling of
the time step size with the convergence rate and
the stability is an issue that requires sophisticated
techniques to realize adaptive time steps, e.g. [33].
In contrast, changing time steps do not negatively
affect the robustness of IISPH. The time step can just
be set according to the CFL condition, e.g. ∆t =
min

(
0.4h/

∣∣vadvi

∣∣), without rolling back the simulation
as required in PCISPH [33], [20]. In practice, this has
a positive effect on the overall performance gain of
IISPH compared to PCISPH.

Comparison to ISPH

IISPH differs from ISPH presented in [13] in the dis-
cretization of the Laplacian and the source term. Both
aspects improve the performance of IISPH. While our
discretization of the Laplacian improves the conver-
gence rate compared to [13], our source term allows
for larger time steps compared to the source term
of [13]. We first summarize the ISPH formulation
of [13], followed by an analysis of the benefits of the

Fig. 8. Convergence of IISPH and ISPH for one
simulation step of the breaking dam scenario with
∆t = 0.0025s.

proposed IISPH discretization of the Laplacian and
the source term.

ISPH [13]. Here, the Laplacian is approximated as
proposed in [11] with

∇2pi =
∑
j

mj
8

(ρi + ρj)
2

(
pijxij∇Wij

xij · xij + ε2

)
(17)

where ε = 0.1h avoids singularities. For the density
invariant scheme, the source term is computed with
(ρ0 − ρ∗) /∆t2 where ρ∗ is computed based on the
intermediate particle positions xadvi = xi(t) + ∆tvadvi

as
ρ∗ =

∑
j

mjW (xadvi − xadvj ). (18)

This yields the following discretization of the PPE

∇2pi = (ρ0 − ρ∗i ) /∆t2. (19)

Finally, pressure forces are computed with the sym-
metric pressure force (2).

Discretization of the Laplacian. IISPH takes contri-
butions of second-ring neighbors into account which
improves the convergence rate compared to ISPH.
In order to verify this, we compared the left-hand
side of (5) with the approximate discretization of
the Laplacian in ISPH (17). In this comparison, we
only vary the discretization of the Laplacian. The
source term is taken from (5) in both cases. Figure 8
illustrates the convergence of both implementations
for one simulation step of the breaking dam scenario
with equivalent initial particle configurations. IISPH
achieves an estimated compression of 0.01% after 23
iterations, while ISPH takes 231 iterations. As we
only use different discretizations of the Laplacian
in both settings, the experiment indicates that the
specific form of the Laplacian in IISPH significantly
improves the convergence rate compared to ISPH.
While Figure 8 compares the convergence for one



IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS 9

total comp. time [s]

∆t [s] avg. iter. pressure overall

0.0005 18.8 759 1588
0.00067 31.1 959 1563
0.001 55.9 1123 1535

TABLE 3
Performance of ISPH [13] for the breaking dam

scenario (Figure 5). The tolerated error was set to
0.01%.

simulation step, Figure 7 compares the convergence
rate for varying time steps using the same setup. The
experiments show in all cases that the convergence
rate of the IISPH discretization is superior to the ISPH
discretization.

Furthermore, the approximation of the Laplacian (17)
employed in ISPH does not accurately consider the
pressure force, but uses different approximations for
the pressure gradient and the Laplacian. Therefore,
the predicted level of compression when solving the
PPE might significantly differ from the real compres-
sion at time t + ∆t. For the breaking dam scene, the
obtained density error of ISPH is 0.29% for a time
step of 0.004s. In contrast, the error introduced by
the semi-implicit formulation employed in IISPH is
much smaller. IISPH could even obtain a compression
of 0.011% for the largest time step of 0.005s.

Source term. IISPH employs velocity projection in the
source term. In order to illustrate the positive effect
of this choice on the time step, we have compared
velocity projection (4) with position projection (18) as
proposed in [13]. For the comparison, we use the pro-
posed IISPH formulation in (5) for the Laplacian. For
the breaking dam scenario, the setting with position
projection could only handle time steps up to 0.001s,
whereas four times larger time steps can be handled
with velocity projection.

Performance. Finally, we compare the performance of
ISPH [13] to IISPH on the breaking dam scenario. The
timings of ISPH are given in Table 3, while the timings
of IISPH are given in Table 1. ISPH reaches the best
performance at a time step of 0.001s for the breaking
dam scenario with an overall computation time of
1535s where 1123s is represented by the pressure
computation. For the same time step, IISPH computes
the pressure field in 164s which is 6.8 times faster than
ISPH. IISPH reaches the best overall performance at a
time step of 0.004s with 379s. This is an overall speed
up of 4 compared to the ISPH formulation presented
in [13].

Comparison to Constraint Fluids

Another related approach for incompressible SPH is
presented in [15] and [21]. Similar to the proposed

avg. comp. time / ∆t

scene part. r avg. ∆t iter. pressure total

City 6M 1.000m 0.0500s 5.2 2.5s 5.7s
40M 0.500m 0.0250s 4.1 15.8s 38.2s

Island 10M 0.075m 0.0054s 13.5 6.5s 13.6s
Cargo 30M 0.050m 0.0040s 16.1 24.9s 44.2s
Street 28M 0.025m 0.0025s 17.3 23.1s 41.8s

TABLE 4
Measurements for the large scale scenarios.

Fig. 9. A city with an area of 5 · 106m2 is flooded
at low resolution (top), 6 million particles, and high
resolution (bottom), 40 million particles. Velocities are
color coded.

method, incompressibility is enforced by imposing
density constraints. In contrast to ISPH and IISPH, the
incompressibility condition is not derived from the
continuity equation, but from constraint dynamics.
Density constraints are enforced through the use of
Lagrange multipliers and not by employing standard
SPH formulations for pressure and pressure force.

In [15], a setup of a fluid pillar with 10K particles
of radius r = 0.01m is presented. For a time step of
0.0083s and a fixed number of 15 pressure iterations,
a volume compression of 17% has been reported.
We simulated this test case with IISPH using the
parameters given in [15]. For the same number of
pressure iterations per frame, IISPH enforced a vol-
ume compression of 1.2% which is 14 times less com-
pression than stated for the constraint-based method.
This indicates an improved convergence of the IISPH
pressure solver compared to [15].

5.3 Large Scale Scenarios

Poor performance scaling has been reported for all
previous global SPH methods, e.g., for ISPH in [11]
and for constraint fluids in [21]. In contrast, the per-
formance of IISPH scales well with the size of the



IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 10. A scripted island rises out of the water.
10 million SPH fluid particles. One simulation step is
computed in 14 seconds with a time step of 0.0054
seconds and a compression of less than 0.1%.

simulation domain as the convergence and the costs
per particle are invariant to the number of particles.
This is verified on a large scale scenario where a city
with an area of 5 · 106m2 is flooded at two different
resolutions (Figure 9). In the low resolution, we simu-
lated up to 6 million particles with a radius of 1 meter.
The high resolution contains up to 40 million particles
with radius 0.5 meter. The factor of 6.7 in the number
of particles instead of 8 stems from the shallow parts
of the simulation. The IISPH solver took 5.7s to update
the low-resolution simulation and 38s for the high
resolution, see Table 4. This is a performance ratio
of 6.7 which shows the perfect linear scaling of the
proposed method.

The practicability of the approach is further demon-
strated by three large-scale scenarios with particle
counts ranging from 10 to 30 million including two-
way coupling with rigid objects. Performance mea-
surements are given in Table 4.

In the Island scene (Figure 10), 10 million particles
of volume radius r = 0.075m were simulated with
an average time step of 0.0054s. On average, the
simulation update took 13.6s where the pressure solve
represents 6.5s. For the larger scenes, Street (Figure 11)
and Cargo (Figure 1), strong turbulences were gener-
ated by high-velocity inflows. The Street scene with 28
million particles and r = 0.025m was updated in 41.8s
where 23.1s were spent on solving the pressure. This
is similar to the performance of the Cargo scene, 30
million particles and r = 0.05m, where a simulation
step is computed in 44.2s with 24.9s represented by
the computation of the pressure field.

6 CONCLUSION

We presented a discretization of the PPE that can be
solved efficiently, handles large timesteps and scales
well for large-scale scenarios. The straight-forward

derivation of our scheme shows that its accuracy
and fast convergence is based on the fact that only
few approximations are employed. As our approach
is closely related to ISPH, we thoroughly discussed
similarities and differences. The paper presented de-
tailed comparisons with PCISPH, the fastest pressure
solver. It also compared to the closely related ISPH
approach [13] and to constraint fluids [15]. These
comparisons did not only show the superiority of our
approach, but also illustrated novel aspects that have
not been discussed before. E.g., when embedded in
an SPH framework, the maximum time step that can
be handled by an iterative pressure solver generally
does not correspond to the most efficient setting.

This paper mainly focused on the discretization of the
PPE, the efficient implementation of the employed re-
laxed Jacobi solver and the comparisons with PCISPH
and ISPH. While various other aspects such as neigh-
borhood search, the time-stepping scheme and the
linear solver also influence the performance of SPH
frameworks, a discussion of those aspects was beyond
the scope of this paper.

REFERENCES

[1] J. Monaghan, “Smoothed particle hydrodynamics,” Ann. Rev.
Astron. Astrophys., vol. 30, pp. 543–574, 1992.

[2] M. Müller, D. Charypar, and M. Gross, “Particle-based fluid
simulation for interactive applications,” in Proc. of ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2003,
pp. 154–159.

[3] B. Adams, M. Pauly, R. Keiser, and L. Guibas, “Adaptively
sampled particle fluids,” ACM Trans. on Graphics (SIGGRAPH
Proc.), vol. 26, no. 3, pp. 48–54, 2007.

[4] J. Monaghan, “Simulating free surface flows with SPH,” Jour-
nal of Comp. Phys., vol. 110, no. 2, pp. 399–406, 1994.

[5] M. Becker and M. Teschner, “Weakly compressible SPH for free
surface flows,” in Proc. of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2007, pp. 209–217.

[6] B. Solenthaler and R. Pajarola, “Predictive-corrective incom-
pressible SPH,” ACM Trans. on Graphics (SIGGRAPH Proc.),
vol. 28, pp. 40:1–40:6, 2009.

[7] X. He, N. Liu, H. Wang, and G. Wang, “Local Poisson SPH
for viscous incompressible fluids,” Computer Graphics Forum,
vol. 31, pp. 1948–1958, 2012.

[8] R. Bridson, Fluid Simulation for Computer Graphics. A K Peters
/ CRC Press, 2008.

[9] N. Foster and R. Fedkiw, “Practical animation of liquids,” in
Proc. SIGGRAPH 2001, 2001, pp. 23–30.

[10] N. Chentanez and M. Müller, “Real-time eulerian water simu-
lation using a restricted tall cell grid,” ACM Trans. on Graphics
(SIGGRAPH Proc.), vol. 30, pp. 82:1–82:10, 2011.

[11] S. Cummins and M. Rudman, “An SPH projection method,”
Journal of Comp. Physics, vol. 152, no. 2, pp. 584–607, 1999.

[12] S. Premoze, T. Tasdizen, J. Bigler, A. Lefohn, and R. Whitaker,
“Particle-based simulation of fluids,” Computer Graphics Forum
(Eurographics Proc.), vol. 22, pp. 401–410, 2003.

[13] S. Shao and Y. Lo, “Incompressible SPH method for simulating
Newtonian and non-Newtonian flows with a free surface,”
Advances in water resources, vol. 26, no. 7, pp. 787–800, 2003.

[14] A. Khayyer, H. Gotoh, and S. Shao, “Enhanced predictions
of wave impact pressure by improved incompressible SPH
methods,” Applied Ocean Research, vol. 31, no. 2, pp. 111 – 131,
2009.

[15] K. Bodin, C. Lacoursire, and M. Servin, “Constraint fluids,”
IEEE TVCG, vol. 18, no. 3, pp. 516–526, 2012.



IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS 11

Fig. 11. Street flood. This scene contains up to 28 million fluid particles. IISPH computes one simulation step in
42 seconds with an average time step of 0.0025 seconds and a compression of less than 0.1%.

[16] X. Hu and N. Adams, “An incompressible multi-phase SPH
method,” Journal of Comp. Phys., vol. 227, no. 1, pp. 264–278,
2007.

[17] F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw, “Two-way
coupled SPH and particle level set fluid simulation,” IEEE
TVCG, vol. 14, no. 4, pp. 797–804, 2008.

[18] J. Morris, P. Fox, and Y. Zhu, “Modeling low Reynolds number
incompressible flows using SPH,” Journal of Comp. Phys., vol.
136, no. 1, pp. 214–226, 1997.

[19] J. Liu, S. Koshizuka, and Y. Oka, “A hybrid particle-mesh
method for viscous, incompressible, multiphase flows,” Journal
of Comp. Phys., vol. 202, no. 1, pp. 65–93, 2005.

[20] K. Raveendran, C. Wojtan, and G. Turk, “Hybrid
Smoothed Particle Hydrodynamics,” in Proc. of ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
2011, pp. 33–42.

[21] M. Ellero, M. Serrano, and P. Español, “Incompressible
smoothed particle hydrodynamics,” Journal of Computational
Physics, vol. 226, no. 1, pp. 1731–1752, 2007.

[22] J. Monaghan, “Smoothed particle hydrodynamics,” Reports on
Progress in Physics, vol. 68, no. 8, pp. 1703–1759, 2005.

[23] N. Foster and D. Metaxas, “Realistic animation of liquids,”
Graph. Models Image Process., vol. 58, no. 5, pp. 471–483, 1996.

[24] H. Schechter and R. Bridson, “Ghost SPH for animating wa-
ter,” ACM Trans. on Graphics (SIGGRAPH Proc.), vol. 31, no. 4,
2012.

[25] B. Solenthaler and M. Gross, “Two-scale particle simulation,”
ACM Trans. on Graphics (SIGGRAPH Proc.), vol. 30, no. 4, pp.
72:1–72:8, 2011.

[26] J. Orthmann and A. Kolb, “Temporal blending for adaptive
SPH,” Computer Graphics Forum, vol. 31, no. 8, pp. 2436–2449,
2012.

[27] B. Solenthaler and R. Pajarola, “Density contrast SPH inter-
faces,” in Proc. of ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 2008, pp. 211–218.

[28] N. Akinci, M. Ihmsen, B. Solenthaler, G. Akinci, and
M. Teschner, “Versatile rigid-fluid coupling for incompressible
SPH,” ACM Trans. on Graphics (SIGGRAPH Proc.), vol. 30, no. 4,
pp. 72:1–72:8, 2012.

[29] M. Ihmsen, N. Akinci, M. Becker, and M. Teschner, “A parallel
SPH implementation on multi-core CPUs,” Computer Graphics
Forum, vol. 30, no. 1, pp. 99–112, 2011.

[30] B. Solenthaler, J. Schläfli, and R. Pajarola, “A unified particle
model for fluid-solid interactions,” Computer Animation and
Virtual Worlds, vol. 18, no. 1, pp. 69–82, 2007.

[31] G. Akinci, M. Ihmsen, N. Akinci, and M. Teschner, “Paral-
lel surface reconstruction for particle-based fluids,” Computer
Graphics Forum, vol. 32, no. 1, pp. 99–112, 2012.

[32] NVIDIA ARC, “mental ray 3.9 [software],”
http://www.mentalimages.com, 2011. [Online]. Available:
http://www.mentalimages.com

[33] M. Ihmsen, N. Akinci, M. Gissler, and M. Teschner, “Boundary
Handling and Adaptive Time-stepping for PCISPH,” in Proc.
VRIPHYS, 2010, pp. 79–88.


