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Automated Aesthetic Analysis
of Photographic Images

Tunç Ozan Aydın, Aljoscha Smolic, and Markus Gross

Abstract—We present a perceptually calibrated system for automatic aesthetic evaluation of photographic images. Our work
builds upon the concepts of no-reference image quality assessment, with the main difference being our focus on rating image
aesthetic attributes rather than detecting image distortions. In contrast to the recent attempts on the highly subjective aesthetic
judgment problems such as binary aesthetic classification and the prediction of an image’s overall aesthetics rating, our method
aims on providing a reliable objective basis of comparison between aesthetic properties of different photographs. To that end our
system computes perceptually calibrated ratings for a set of fundamental and meaningful aesthetic attributes, that together form
an “aesthetic signature” of an image. We show that aesthetic signatures can still be used to improve upon the current state-of-
the-art in automatic aesthetic judgment, but also enable interesting new photo editing applications such as automated aesthetic
analysis, HDR tone mapping evaluation, and providing aesthetic feedback during multi-scale contrast manipulation.

Index Terms—Image aesthetics assessment, aesthetic signature, aesthetic attributes.
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1 INTRODUCTION

R ECENT advancements in image acquisition and
visual computing made technology cheaper and

easily available, consequently putting more power
into the hands of an average user. High quality
cameras, either standalone or integrated into mobile
devices, as well as advanced image editing tools are
more commonly used than ever. From the user’s point
of view, these new technologies create the expectation
of more appealing images. But obtaining appealing
results requires not only advanced tools, but also the
knowledge and execution of basic aesthetic principles
during acquisition and editing. The problem is that
the average user does not always have the necessary
training and experience, nor the interest in acquiring
them. Thus, modeling aesthetic principles and build-
ing systems that give automatic aesthetic feedback is
a research area with high practical relevance.

The interest in obtaining aesthetically pleasing re-
sults with minimal effort is evident from the fact that
simple and effective photo editing tools like Insta-
gram are very popular among casual photographers.
Similarly, Fujifilm’s Image IntelligenceTM framework
that utilizes multiple systems (such as light source
recognition, face detection, etc.) to improve image
aesthetics, Sony’s Party-shotTM technology where a
rotating platform adjusts the camera for best photo-
graphic composition, and the Smile ShutterTM where
the camera releases the shutter when people smile,
are all examples for integration of models of ba-
sic photographic principles with the current imaging
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technologies. These developments in the industry are
also paralleled by the research community with the
recently increasing amount of publications on two-
fold classification of image sets into aesthetically ap-
pealing or not, and automatic aesthetic judgment by
predicting an overall aesthetic rating (discussed in
detail in Section 2).

While automatic aesthetic judgment is useful for
many practical purposes, such judgments the in form
of a yes/no answer, or a percentage score do not
explain why the evaluated image is aesthetically pleas-
ing or not. This is because when designing such
systems, understandably the image features are se-
lected based on their classification performance of
overall aesthetics, but not necessarily on how well
they correlate with the aesthetic attribute they claim to
evaluate. As an example, it is often not discussed if a
“clarity” feature actually corresponds to what people
consider as the photographic clarity rule, or is some
abstract heuristic that happened to result in accurate
classification. While this approach is perfectly fine
for predicting a single-dimensional outcome, a multi-
dimensional aesthetic analysis based on ratings of
meaningful aesthetic attributes requires a different
approach and poses additional challenges.

The first challenge is finding a set of image at-
tributes that are simple enough to be expressed as
computer programs, but at the same time are closely
related to some fundamental photographic attributes.
Once these attributes are defined, another challenge is
designing and executing a subjective study through
which one can reliably determine ground truth at-
tribute ratings on a set of real world images. Once
the subjective data is obtained, the final challenge is
the design, implementation and calibration of metrics
that predict a rating for each aesthetic attribute.
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Fig. 1. What are the aesthetic differences between the original and edited images? Given a single image our
method automatically generates a calibrated “aesthetic signature” as a compact, objective representation of its
aesthetic properties. A comparison of the aesthetic signatures reveals that the editing greatly enhanced tone
and depth of the under-exposed original image at the cost of slight decreases in sharpness and clarity. Images
courtesy of Wojciech Jarosz.

In this work we tackle these challenges and present
a system that computes an aesthetic signature from
a single image, that comprises calibrated ratings of
meaningful aesthetic attributes and provides an ob-
jective basis for aesthetic evaluation (Figure 1). In the
paper we introduce these aesthetic attributes (Sec-
tion 3), discuss the experimental procedure through
which we obtain subjective ratings for each aesthetic
attribute (Section 4), and propose metrics that predict
aesthetic attribute ratings and calibrate them using
subjective data (Section 5). We also present exemplary
applications of our system to automated aesthetic
analysis, HDR tone mapping evaluation, and multi-
scale contrast editing (Section 6).

In the next section we review the previous work
on automated image aesthetics, image quality assess-
ment and subjective evaluation of high level visual
attributes. We also briefly discuss the general limits
and scope of computational aesthetic judgment.

2 RELATED WORK

There are multiple sources on the basic guidelines
of photography (refer to Freelan’s work [1] as an
example). These publications often describe a set of
photographic principles that should be taken into
consideration for shooting aesthetically pleasing pho-
tographs. At a high level, the task of the photographer
can be seen as evaluating the shot in terms of these
photographic principles and seeking the optimal bal-
ance between different aesthetic attributes that leads
to an aesthetically pleasing result.

Computational aesthetic judgment methods follow
a workflow similar to the photographer’s. Aesthetic
judgment has often been approached as a learning
problem on image features obtained from a large set of
images (see Savakis et al. [2], Datta et al. [3] and Joshi
et al. [4] for an overview), where the task is a binary
classification between aesthetically pleasing and not
pleasing images. Datta, et al. [5] proposed a linear
SVM classifier that uses 15 image features selected
among the initially proposed 56 features based on

classification performance. A similar approach for
video has been presented by Moorthy et al. [6]. Ke
et al. [7] proposed using image features based on
common-sense photography and utilize a naı̈ve Bayes
classifier based on their observation that the interac-
tions between the aesthetic attributes are not linear.
The two-fold classification accuracy of all these meth-
ods on subjective data is in the 70% range. More recent
work along these lines evaluated the use of generic
image descriptors for aesthetic quality assessment [8].
Luo and Tang [9] reported a significant improvement
in accuracy by extracting a rectangular image win-
dow that contains most of the high frequency de-
tails, and formulating features that take into account
this two-fold segmentation. Other work in this area
includes [10], [11], [12], [13]. Similarly, segmentation
using a saliency map [14] and face detection [15]
has been explored in the context of automated image
aesthetics. Unlike the binary classification methods,
acquine is a popular online aesthetic rating engine [16]
that predicts an overall aesthetic percentage rating.
Recent work has also been focused on more specific
sub-problems such as photographic composition [17],
[18], [19], [20], view recommendation [21], color com-
patibility [22], [23], [24], and candid portrait selection
from videos [25], as well as the use of more specialized
features like sky-illumination attributes and object
types in the scene [26]. Finally, a large data set with
associated meta-data has been published to facilitate
further image aesthetics research. [27] Our work takes
inspiration from the great body of previous work in
this area, with the main difference being our emphasis
on the novel aesthetic signature concept.

Image quality assessment methods seek to estimate
“image quality” without requiring user involvement.
Given a test image with some imperfections, quality is
either defined as the fidelity to a reference image [28],
[29], or by the absence of certain types of distor-
tions such as compression, ringing [30], blur [31],
and banding [32]. The latter, no-reference type of
quality assessment is significantly more challenging
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because such quality metrics do not utilize a reference
image, but instead rely on their internal model of
distortions. There have been also some attempts on
building more general no-reference metrics by com-
bining the individual contribution of image features
an distortions [33], as well as utilizing natural image
statistics [34]. An interesting recent work on image
completion combines concepts from image aesthetics
and quality prediction [35]. At a conceptual level,
our method is influenced by such generalized no-
reference quality assessment methods. However, our
work is fundamentally different in that our metrics
predict the magnitude of a set of aesthetic attributes
instead of predicting the visibility of distortions.
Moreover, as its outcome our method provides a
basis for aesthetic analysis rather than assessing image
quality.

Subjective evaluation of visual attributes has been
performed through psychophysical experiments with
the goal of determining a mapping from objectively
computable values to perceptually meaningful units.
A classic example is Whittle’s luminance difference
discrimination experiment [36] that reveals the non-
linear perception of luminance contrast. More re-
cently, similar experimental methods have been used
to derive models of “visual equivalence” of objects
with different material properties, geometry and il-
lumination [37], the discriminability of aggregates of
objects [38], the effects of global illumination approxi-
mations on material appearance [39] among others.
Our experimental method is analogous to this line
of research, in that we investigate the perception of
aesthetic attributes and seek to design and calibrate
metrics whose predictions match subjective ground
truth ratings.

The scope of our model is limited to the ”gen-
eralist” part of aesthetic judgment. More specifically,
Immanuel Kant asserts two necessary properties of an
aesthetic judgment:(1) subjectivity (being based on a
feeling of pleasure and displeasure, rather than being
empirical), and (2) universality (involving an expec-
tation or claiming on the agreement of others) [40].
The contradicting nature of these properties lead to
the ”Big Question” of aesthetics: whether it is even
possible for a subjective judgment to be universal [41].
The big question is the subject of an ongoing debate,
where the generalist view holds that there exist general
reasons for aesthetic judgments, and the particularist
view denies that aesthetic judgments rely on general
reasons.

The practice seems to be somewhere between both
views: ”each to their own taste” does apply to aes-
thetic judgments, but there is also a notable degree
of agreement between judgments of different people
in support of the generalist view. Subscribing to the
generalist view enables a computational model of
image aesthetics, but also draws the limits of such
a model by ignoring artistic intention as well as

Fig. 2. Artistic intention: focusing the camera on the
subject is a common practice for shooting appealing
photographs (eagle - left), but a photographer can
intentionally break this common rule for artistic expres-
sion (bubbles - right). The generalist view of aesthetics
captures only the former case. Images courtesy of
Marina Cano (left) and Jeff Kubina (right)

previous knowledge and contextual information (Fig-
ure 2). Especially for the ultimate goal of correctly
predicting a numeric overall aesthetic rating, this in-
herent limitation of automated image aesthetics poses
an obstacle. Consequently, while we show that our
method performs better than the state-of-the-art in
predicting an overall aesthetics rating (Section 5.4), the
focus of this work is on the design, computation and
calibration of a meaningful aesthetic signature that
summarizes representative photographic properties of
an image.

3 AESTHETIC ATTRIBUTES

One of the main challenges of automated image aes-
thetics is identifying a set of aesthetic attributes that
can be expressed algorithmically, and are closely re-
lated to photographic principles they claim to model.
Since it is practically impossible that a computational
system accounts for every photographic rule, one
needs to determine some guidelines for choosing
some aesthetic attributes over others. In this work, we
considered the following criteria while determining
the set of aesthetic attributes:

• Generality: while sharpness is relevant in every
photograph, a more specific attribute such as
facial expression is only useful for photographs
with people. We chose not to limit our work to a
specific type of photographs, and accordingly we
selected among the more general attributes.

• Relation to photographic rules: from a mod-
eling point of view it may be desirable that
the aesthetic attributes are orthogonal to each
other. However this would also require to invent
new, artificial attributes that are not necessarily
meaningful to humans, since in reality the pho-
tographic rules are not always orthogonal. In this
work our main goal was to compute a multi-
dimensional human interpretable aesthetic signa-
ture, and accordingly we chose to closely follow
the photographic rules at the cost of possibly
correlated attributes.
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• Clear definition: in photography literature pho-
tographic rules and practices are often communi-
cated through examples rather than mathematical
formulas or concrete statements. For the purpose
of automating image aesthetics we selected at-
tributes that can be defined as clearly as possible.
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Fig. 3. From photographic rules to concretely defined
aesthetic attributes: the 1D luminance (left) obtained by
taking a slice from an abstract image (right) is used to
build an intuition on how to express photographic rules
in computational terms.

In the rest of this section we discuss the photo-
graphic rules selected based on the above principles,
that form the foundation of the aesthetic attributes we
use in our system. Using the 1D luminance profile in
Figure 3-left obtained from the abstract image (right),
we also investigate each rule in image processing
terms to form a basis for our discussion later in Sec-
tion 5.2. During our discussion of each photographic
rule we highlight the relevant image features such as
the spatial frequency of the in-focus region (a) and the
background (b), the contrast magnitude of the in-focus
region (c) and the background (d), and the luminance
difference between the two regions (e) as depicted
in Figure 3-left. The aesthetic attributes we discuss
do not cover all aspects of image aesthetics, but
are still expressive enough to enable multiple novel
applications (Section 6). Moreover our framework can
possibly be extended with other aesthetic attributes by
following the workflow discussed in Sections 4 and 5.

(a)
(a)

(c) (c)

Fig. 4. A visual comparison between a sharp (left) and
out-of-focus (right) photograph. Photographs courtesy
of Muhammad Mahdi Karim.

In photography often times the camera is either
focused to the entire scene, or to some specific scene
object. An important rule of photography is ensur-
ing that the in-focus region is sharp (Figure 4-left).
Pictures with no scene elements in focus are often
conceived as photographic errors. In fact, sharpening
the in-focus region or the entire image is one of the

very common post-processing operations to correct
out-of-focus photographs, or to enhance the aesthetic
quality of already sharp pictures. Sharpness is related
to the magnitude and frequency of the image contrast
within the in-focus region (Figures 4 and 3-a,c).

(b) (b)

(a)(a)

Fig. 5. A narrow depth-of-field significantly blurs back-
ground details (right) that would otherwise be in focus
(left). Photographs courtesy of Henry Firus.

On the other hand, increasing the depth of the
photograph through the use of specific camera lenses
is a technique often employed by professional pho-
tographers (Figure 5-right). The presence of sharp,
in-focus scene elements, together with other objects
or background elements that are blurred enhances
the depth impression of a photograph. In contrast,
pictures with a wide depth-of-field and thus less
variation in lens blur look flatter and often times less
professional (Figure 5-left). Depth is related to the
dominant contrast frequencies of the different image
regions (Figures 5 and 3-a,b).

(c)
(c)

(d)

Fig. 6. The clarity rule favors photographs with a
clearly identifiable region of interest and background
(left), rather than visually cluttered photos where iden-
tifying a background and a center of interest is not
even possible (right) Photographs courtesy of Miguel
Lasa(left) and Julio Segura Carmona (right).

The clarity rule of photographic composition states
that each picture should have a clear principal idea,
topic, or center of interest to which the viewer’s
eyes are attracted [1]. Consequently, the use of empty
regions (also called negative space) is considered as
an important photographic skill (Figure 6-left). Shoot-
ing cluttered photographs with no obvious center of
interest is one of the most common mistakes among
amateur photographers (Figure 6-right). Photographic
clarity is related both to the size of the in-focus region,
as well as the contrast magnitudes of the in-focus
region and the background regions (Figure 6 and 3-
c,d).

The efficient use of the medium’s dynamic range
is another consideration when shooting photographs.
As a general rule, if the difference in lightness be-
tween the brightest and darkest regions of a pho-
tograph is low, it can be perceived as under– or
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Fig. 7. Adjusting the camera settings to increase
global contrast (left) often produces more plausible re-
sults than not utilizing the full dynamic range available
(right). Photograph courtesy of Marina Cano.

over-saturated and “washed-out” (Figure 7-left). A
sufficient level of global contrast often results in more
plausible photographs (Figure 7-right). In fact, the
tone attribute is related to the magnitude of the global
lightness difference over the entire image (Figure 7
and 3-e).

In addition to these attributes, the chromatic in-
formation of the image also plays an important role
in image aesthetics. The colorfulness attribute can
be used to differentiate photographs with lively and
saturated colors from photographs with desaturated
colors.

During our discussion we indicate the usually pre-
ferred directions the photographic rules, but we re-
frain from making any general statements on how
each rule affects the overall aesthetics rating of an
image. Due to the “particularist” aspects of the aes-
thetic judgment process it is not uncommon that
photographs not conforming to one or more of these
rules are found aesthetically pleasing by the majority.
Figure 6-right shows such an example that definitely
violates the clarity rule, but in terms of overall aesthet-
ics is still ranked among the highest in the photo.net
dataset [3]. The next section discusses a subjective
study where we obtained ground truth ratings for
each aesthetic attribute. The ground truth data is later
used to design and calibrate the aesthetic attribute
metrics presented in Section 5.2.

4 SUBJECTIVE RATING STUDY

In this section we present an experiment where we
obtained subjective ratings for the aesthetic attributes
on a set of real world images. Using this subjec-
tive data we designed and calibrated the aesthetic
attribute metrics we describe in the next section.

Fig. 8. An illustration of our experimental setup.

Experiment During our experiment the subjects
were seated comfortably in front of two computer
displays at a distance of approximately 0.5 meters.
One of the displays showed a photographic image
from our test set, whereas the other display showed 5
simple stimuli and a short task description (Figure 8).
The task consisted of rating a single aesthetic attribute
of the photographic image among sharpness, depth,
clarity, tone and colorfulness on a 5-point scale. The
simple stimuli generated separately for each aesthetic
attribute were used to assist the subject by providing
a neutral basis for each point of the rating scale.

Stimuli We assembled a test set that comprised 20
different images per aesthetic attribute, all obtained
from the photo.net data set where each image had
an overall aesthetic rating assigned by a community
of semi-professional photographers (refer to Datta et
al. [3] for an analysis of the images and ratings).
The images used in our experiment were manually
selected with an effort to maximize the diversity of
the attribute ratings as well as the overall aesthetic
ratings.

A common problem of subjective rating experi-
ments in the absence of a reference is that the subject
has often no baseline for assessing the measured ef-
fect. This often causes the earlier subjective responses
to be unreliable until the subjects see the more ex-
treme cases in the experimental test set, and use
those as anchor points for their judgment during the
remaining trials. While as a counter-measure such
experiments are often preceded by a short training
session, especially for highly subjective tasks as ours,
it is highly desirable to additionally provide a base-
line for rating without biasing the subject. This task
is challenging, because one cannot simply use real-
world photographs that would represent each rat-
ing on the 5-point scale, since the contents of the
chosen photographs could invoke different reactions
in different subjects and introduce unforeseen biases
to the subjective ratings. To prevent this, we gener-
ated a set of 5 abstract images (one for each point
in the rating scale) per aesthetic attribute building
upon the abstraction in Figure 3. Our experiment was
still preceded by a conventional training session, but
additionally we used the emotionally neutral simple
stimuli as a baseline for rating at each trial of the sub-
jective experiment. Despite the presence of the simple
stimuli, our subjects were made clear to ultimately
rely on their own understanding of each attribute to
prevent constraining their judgments.

The simple stimuli consisted of a square that region
represents a foreground object, centered in a larger
square that represents the background (Figure 9).
A random texture pattern was generated separately
for the foreground and the background using Perlin
noise. The stimuli for sharpness and depth were gen-
erated by applying Gaussian blur to the foreground
texture and background texture, respectively. The clar-



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

(1) (5)(2) (3) (4)

to
ne

sh
ar

pn
es

s

Fig. 9. Simple stimuli for sharpness and tone used
in the subjective experiment to provide subjects a
baseline for ranking. See supplemental material for the
full set.

ity stimuli varied in the difference in the contrast mag-
nitude of the texture between the foreground and the
background, whereas the tone stimuli varied in the
intensity difference between both image regions. On
the other hand, the colorfulness stimuli was generated
by modulating the saturation and size of a rainbow
pattern. For all aesthetic attributes, the simple stimuli
were generated to provide 5 roughly visually equal
steps within the whole range of possible magnitudes.
Each time when the subjects were evaluating an image
in terms of an aesthetic attribute, the 5-level simple
stimuli for the corresponding aesthetic attribute were
presented on the side.

Procedure The photographs in our test set were
presented in a random order. At each trial, the 21
subjects participated in our study were asked to rate a
single aesthetic attribute of the presented image with-
out any time constraints. All subjects had near-perfect
or corrected eyesight and their ages ranged from 21 to
42. Among the subjects, 3 were asked to rate the entire
set, whereas the others rated either the test images for
sharpness, clarity and colorfulness, or the test images
for depth and tone. Each subject participated in a
training session that preceded the experiment where
they were briefed on the experiment and the aesthetic
attributes.

The results of our study is summarized in Figure 11-
left, where we show the median ratings and subjective
variation for each test image and aesthetic attribute.
The following section discusses the aesthetic attribute
metrics we designed and calibrated using the subjec-
tive ground truth data obtained in this section.

5 METRICS AND THEIR CALIBRATION

In this section we present metrics for automatic com-
putation of a subjectively meaningful rating for each
aesthetic attribute we discussed previously. We first
discuss the common components utilized by multiple
metrics (Section 5.1), then present the mathematical
formulation of each metric (Section 5.2), show the
results of the calibration process where we map each
metric’s outcome to a perceptually meaningful 5-point

scale (Section 5.3), and finally investigate the aesthetic
judgment problem where we compare the accuracy of
our metric with the state-of-the-art (Section 5.4). While
we do not claim that the metrics presented in this
section capture all the complexity of the subjective
aesthetic analysis process, our final system has suf-
ficient prediction power to enable multiple practical
applications (Section 6).

5.1 Pre-processing Steps

In this section we discuss the computation of the core
components of our system that are later utilized by
the metrics we discuss in Section 5.2. Our metric takes
an 8-bit RGB image as input, that is immediately con-
verted to double precision and normalized. We start
by computing an edge-stopping pyramid of the input
image. The motivation for using an edge-stopping
filter over a Gaussian was preventing contrast dif-
fusion between the in-focus region and background,
based on the assumption that the in focus region will
likely be bordered by strong gradients. For each color
channel I of the input image, each level k ∈ [1,K] of
the edge-stopping pyramid is defined as follows:

LP k = dt(I, σr, σs, N), (1)

where dt is the domain transform operator [42], the
range parameter σr = 1 for k < K, σr = Inf for
k = K, and the spatial parameter σs = 2(k+1). In
our implementation we set the number of pyramid
levels to K = 8, and the number of domain transform
iterations N = 5. One can use other edge preserving
filtering methods instead of the domain transform,
our choice was motivated by performance and is not
crucial to the overall method.

We denote the absolute differences between the
input image and LP 1 as the the detail layer D1. The
remaining detail layer levels Dk are defined as the
differences between subsequent pyramid levels LP k

and LP k+1. By combining all detail layers as follows,
we compute a multi-scale contrast image:

C =
∣∣I − LP 1

∣∣+ K−1∑
k=1

∣∣LP k − LP k+1
∣∣. (2)

The detail layers Dk are also used to compute another
data structure we call the “focus map”. The focus
map provides a rough spatial frequency based seg-
mentation of the input image, that is later used by
multiple aesthetic attribute metrics. Figure 10 shows
an illustration of a focus map with 3 levels. The
computation steps are as follows: we first apply the
domain transform to each detail layer Dk using the
gradients from the original image as the edge stop-
ping criterion. We designate these filtered detail layers
as D̂k with k = [1,K − 1]. The focus map levels
F k are computed sequentially through the following
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formula:

F k = D̂k ·
[
M &

(
D̂k > D̂k+1

)]
(3)

Where M is initialized as a matrix of ones with the
same size as the image, and is updated at each level
k as M =M & (D̂k == 0).

Some other computational elements required by
the aesthetic attribute metrics are the following: we
denote F if as the binary map of the in-focus region
and obtain it by marking each non-zero valued pixel
of F 1 is as 1, and all zero valued pixels as 0. The
inverse of F if , denoted as F oof , is the binary map
of the remaining, out-of-focus regions. The area of
the in-focus region Aif is defined as the number of
all the non-zero pixels of the in-focus region F if

normalized by the number of total image pixels. The
area of the out-of-focus region (Aoof ) is computed
similarly. In the following section we formulate the
aesthetic attribute metrics by making use of these
computational elements.

Fig. 10. Illustration of a 3-level “focus map”. As an
intermediate computational step we compute a spatial
frequency based segmentation of the input image, that
is later utilized by multiple aesthetic attribute metrics.
Brighter colors of the focus map indicate stronger
image contrast. Image courtesy of Bülent Erol.

5.2 Aesthetic Attribute Metrics
Our experience with different variations of aesthetic
attribute metrics showed a tradeoff between metric
sophistication and generality. While we were able to
formulate complex metrics with high accuracy on spe-
cific small data sets, we also found that such metrics
generate unpredictable results for previously unseen
and/or larger data sets. Since generality is one of our
main goals, the metrics we present in this section are
rather simple and mostly direct implementations of
the aesthetic attribute definitions from Section 3. As
also discussed in Section 3, a consequence of directly
implementing common rules of photography is that
the predictions of our metrics are not necessarily
linearly independent. However, by using such natural
attributes, that in turn form the aesthetic signature,
our method enables novel applications discussed in
Section 6.

Equipped with the focus map (F ), the multi-scale
contrast image (C), the image luminance (L), and the
area measures (A), the aesthetic attribute metrics are
given in Table 1:

Sharpness ψsh µ(
∣∣F 1
∣∣)

Depth ψde argmax
k

[∑
(Fk > 0)

]
k = [2,K]

Clarity ψcl Aoof · (|µ(C · F if )− µ(C · F oof )|)

Tone ψto cu · co ·
∣∣p95 (L)− p5 (L)∣∣

Colorfulness ψco f(Ir, Ig , Ib)

µ(A) 1
N

∑N

x=1
A(x), A(x) > 0

pn n-th percentile

TABLE 1
Equations of the aesthetic attribute metrics. Refer to

text for details.

The sharpness metric consists of the average abso-
lute contrast magnitude at the first level of the focus
map (F 1). The outcome of this metric increases with
stronger high frequency details over a larger area. We
found that the average contrast measure is more stable
than taking the maximum, mostly due to the effect of
very small areas with exceptionally sharp details.

The depth metric estimates the perceived range
of blur among all image details by searching the
remaining focus map levels for the largest area with
a non-zero response. The resulting index of the focus
map level indicates the dominant spatial frequency
at the non-sharp image regions. The metric predits
zero depth for completely out-of-focus images. As an
example, Figure 10 shows a 3-level focus map, where
the first level contains sharp details in focus, and the
remaining two levels contain the out-of-focus regions.
In this example the metric would choose the second
level of the focus map, since most of the image’s non-
sharp regions are at that level.

The clarity metric utilizes two terms: the area of
the out-of-focus region, and the difference of average
contrast within the in-focus region with the aver-
age contrast in the out-of-focus regions. The metric
outcome increases with the presence of large image
regions that are either empty or contain low contrast
details.

The tone metric computes the difference of the
maximum and minimum gamma corrected luminance
values of the image. Perceptual studies on lightness
perception have shown that utilizing the extreme val-
ues is preferable over using the mean luminance [43].
However, to eliminate the error from isolated pix-
els with very high and low luminance values, we
compute the 95th percentile and 5th percentile in-
stead of maximum and minimum. To account for
under– and over-exposure we introduce two addi-
tional terms cu and co. These terms are defined as cu =
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min(u, p30(L) − p5(L))/u and co = min(o, p95(L) −
p70(L))/o. The terms penalize large image regions
with significantly low or high luminance, and there-
fore are likely to be under– or over-exposed. We set u
and o to the pixel values 0.05 in our implementation.

The colorfulness metric utilized in our framework
is discussed in detail in Hasler et al [44]. Given an
RGB image, this method estimates colorfulness by
standard deviation and mean of the opponent color
channels yellow-blue and red-green. Our choice of
this metric was motivated by the fact that it has been
perceptually validated on a set of complex images.
Nevertheless, we re-evaluate the method in our cali-
bration experiment discussed in the next section.

5.3 Calibration
The metrics we discussed in Section 5.2 do not
necessarily have the same range of output values.
Presenting the aesthetic attribute ratings together in
the aesthetic signature format requires that they are
calibrated with subjective responses. This ensures
both that each individual attribute rating matches the
corresponding subjective rating, and also ratings of
different attributes are normalized to the same range.
To that end we calibrate the aesthetic attribute met-
rics using the subjectively obtained aesthetic attribute
ratings from Section 4 (Figure 11-left). The calibra-
tion procedure involves for each aesthetic attribute
building a linear system of equations from the metric
outcomes and the median values of subjectively ob-
tained ground truth ratings. By solving the equation
system we determine the multipliers for calibration.
Figure 11-right shows the subjective ground truth
ratings with the calibrated metric outcomes computed
automatically by our system.

The figure shows that given the highly subjective
nature of the aesthetic attributes our metrics provide a
good estimate to the ground truth data. The root mean
square error of the calibrated metric predictions with
respect to the subjective data are 0.34 for sharpness,
0.32 for depth, 0.31 for tone, 0.33 for clarity and
0.26 for colorfulness. Note that the relatively lower
colorfulness error can be misleading, since 4 images
in our test set were grayscale, and thus predicting
the colorfulness rating was trivial. Excluding these
images, the accuracy of the colorfulness metric is at
the same level as the other aesthetic attribute metrics.
As mentioned in Section 5.2 one can design more
complex metrics to improve on prediction accuracy
at the cost of generality. However we found that this
approach limits the practical utility of the system,
and the current performance is sufficient to enable a
number of novel applications without sacrificing gen-
erality (Section 6). Note that our metrics are trained
with natural 8-bit images, obtaining reliable aesthetic
predictions for synthetic and/or HDR images would
likely require additional training and modifications to
the metrics.
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Fig. 11. Experimentally obtained subjective aesthetic
attribute ratings (left column), and the predictions of our
calibrated metrics where error bars show the accuracy
with respect to the subjective ground truth (right col-
umn).

5.4 Aesthetic Judgment
Having computed the calibrated ratings for each in-
dividual aesthetic attribute, an obvious question is if
we can combine them to obtain an overall aesthetics
rating of an image. As we discussed earlier, this
is a challenging problem due to the “particularist”
aspects of aesthetic judgment (Section 2). While aes-
thetic judgment in this form is not the main focus of
this work, we conducted a study both to investigate
how our method generalizes beyond the calibration
set, and to compare our method’s prediction accu-
racy with acquine, a popular online aesthetic rating
engine [16]. We automatically collected a set of 955
images from the dpchallenge dataset [3], which con-
tains photographic images with associated subjective
overall aesthetic ratings, and has often been used as
ground truth data to train and evaluate automated
image aesthetics methods.

For generating the test set, the obvious approach of
randomly sampling from the entire dpchallenge set
would have produced a bias towards images with
medium overall aesthetic ratings, since the number
of very high and very low ranked images in the
set are much less than the number of images with
medium ratings [3]. We produced a balanced test set
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by dividing the range of overall aesthetics ratings
into equally sized intervals and sampling the images
closest to the center of each interval.
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Fig. 12. A comparison of the overall aesthetic rating
predictions with the subjective ground truth data. Our
method’s (right) correlation to the ground truth is signif-
icantly higher than that of acquine’s (left).

Figure 12-left shows each image’s acquine rating
plotted against the subjective overall rating from the
ground truth data. The correlation between the ac-
quire rating and the ground truth is 0.17. On the same
set we also computed each image’s aesthetic signa-
ture, which we aggregated into an overall aesthetics
rating using the following simple formula:

ω = ψsh × µ (ψde, ψcl, ψto, ψco) , (4)

where µ denotes the mean function. Equation 4 is
motivated by our observation that sharpness is essen-
tial to an aesthetically pleasing photograph, in that
its absence will result in a low overall aesthetics
rating. This is not necessarily the case for the other
attributes: e.g. a grayscale photograph can still be
considered as aesthetically pleasing, if it has high
ratings in clarity, depth and tone. As shown in Fig-
ure 12-right our method’s predictions are noticeably
more accurate than acquine’s predictions. In fact, the
correlation between ω (Equation 4) and the ground
truth is considerably higher at 0.46. Thus, even though
Equation 4 is admittedly ad-hoc, it is justified by the
fact that it achieves significantly better correlation to
the subjective data compared to the state-of-the-art.

Despite our method’s better accuracy, the results
of this study show that there is still a lot room for
improvement for the task of predicting an overall
aesthetics rating. The correlation between our overall
aesthetic rating prediction and the subjective data
suggests that there is indeed a link between the in-
dividual aesthetic attributes and the overall aesthetic
judgement. However it is important to note that due
to the highly subjective nature of the aesthetic judge-
ment process, more validation would be necessary in
order to be able to claim that any automatic aesthetic
judgement method works universally.

On the other hand the aesthetic signature represen-
tation not only gives an impression on overall aesthet-
ics, but also provides some insight on what makes an
image aesthetically plausible or not as demonstrated
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Fig. 13. Our method not only is more accurate in pre-
dicting an overall aesthetics score, but also provides
some insight on why an image is aesthetically pleasing
or not. See text for discussion.

in Figure 13. The figure compares the overall subjec-
tive aesthetic ratings, the acquine predictions, and the
predictions obtained by applying Equation 4 along
with the aesthetic signatures for a set of 4 exemplary
images.

For these images, in addition to our overall aes-
thetics prediction being more accurate, our method
enables a more detailed aesthetic evaluation through
aesthetics signatures. For example in Figure 13, even
though images (a) and (b) have completely different
subjects, from a photography point of view they are
similar since they both are are macro photographs
with a sharp foreground and a shallow depth-of-
field. Image (a) makes better use of negative space
and ranks slightly higher in clarity, whereas its global
contrast is slightly lower reflected in its tone ranking.
Image (c) on the other hand has a wide depth-of-
field and very low lens blur resulting in low depth
rating, but has stronger global contrast compared to
(a) and (b) paralelled by its high tone rating. Image (c)
is aesthetically pleasing just as images (a) and (b) are,
but in a different way as indicated by the different
shape of its aesthetic signature. Image (d), however,
doesn’t have anything that makes it special which is
also evident from its aesthetic signature.

6 APPLICATIONS

In this section we demonstrate various photo editing
applications of the aesthetic signatures, such as au-
tomated aesthetic analysis, HDR tone mapping eval-
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uation, and providing aesthetic feedback for multi-
scale contrast manipulation. All results in this section
are generated by our prototype system using standard
model parameters discussed previously. Our current
matlab based implementation requires roughly a sec-
ond to compute the calibrated aesthetic signature of
a 1 megapixel image on a desktop computer.

6.1 Automated Aesthetic Analysis
Figure 14 shows a set of pictures that are edited in
various ways to make them visually more appealing.
We compute the aesthetic signatures of the original
and edited images separately. An advantage of our
method is that it does not require pixel correspon-
dence between the original and edited images, and
also works if the editing involves cropping the origi-
nal. A comparison of the resulting aesthetic signatures
provides information on the nature and magnitude
of the aesthetic improvements made in each case.
For example, the original image (a) is dramatically
improved in sharpness, depth, and to a lesser degree
colorfulness. Image (c) has been also been improved
in sharpness and colorfulness at the cost of slight
decrease in clarity. The edited image has high contrast
details over the entire image, and as a result no clearly
identifiable subject region. The edited image (d) on
the other hand is simply converted to grayscale with
a slight increase in sharpness.

6.2 HDR Tone Mapping Evaluation
As a consequence of the numerous HDR tone map-
ping techniques in the literature, evaluation of the
operators has received some interest in the research
community. Subjective evaluation studies [45] are of-
ten prohibitively expensive due to the number of
dimensions involved in such studies: test images,
tone mapping operators, parameters, to name a few.
Automated studies have been made possible through
metrics such as DRI-IQM [46] that computes the
probability of contrast loss, amplification and rever-
sal. DRI-IQM evaluates tone mapping in terms of
the amount of visible details preserved in the tone
mapped image with respect to the reference HDR
image. Figure 15 shows that our method can com-
plement current tone mapping evaluation methods
from an aesthetics perspective. Instead of comparing
the tone mapped images with reference HDR images,
our method directly evaluates tone mapped images
produced by the operators Drago [47], Tumblin [48]
and Ward [49]. The figure shows that for the tested set
of images, produced by the authors of each operator,
Ward’s operator consistently results in more tone
and sharpness compared to the other two. Another
interesting result is the consistency of the aesthetic
consequences of the tone mapping operators over
multiple images. Figure 16 illustrates that the ratio of
aesthetic signatures of two operators computed over
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Fig. 14. The aesthetic changes before and after editing
reflected in the automatically generated aesthetic sig-
natures. Photographs courtesy of Wojciech Jarosz.

a number of images can be used to characterize each
tone mapping operator.

6.3 Multi-scale Contrast Editing
Recent work on multi-scale image editing has been
focused on using efficient edge-preserving image de-
compositions on multiple scales, such as Farbman et
al. [50], Fattal [51], Paris et al. [52], Gastal et al. [42]
among many others. These frameworks provide better
control over an image’s aesthetic attributes compared
to global operations like brightness change (Figure 17
- top row). Multi-scale frameworks allow enhancing
image details at different frequencies by local contrast
editing, through which one can enhance tone and
sharpness without significant negative consequences
if not taken to extremes (Figure 17 - rows 2 and 3).
A possible use scenario of the aesthetic signatures
is providing aesthetic feedback to the user during a
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Fig. 15. Analysis of tone mapped HDR images us-
ing Drago’s, Tumbin’s and Ward’s operators provided
by their authors. Using our method one can analyze
aesthetic attributes of the tone mapped images without
requiring the reference HDR image.

0
0.2
0.4
0.6
0.8

1
sharpness

depth

claritytone

colorfulness

0
0.2
0.4
0.6
0.8

1
sharpness

depth

claritytone

colorfulness

Fig. 16. The relative aesthetic signature of Drago’s
operator (left) and Ward’s operator (right), obtained
by normalizing the aesthetic signatures of both by the
aesthetic signature of Tumblin’s operator. The brown
shades show the relative aesthetic signatures for the
three images in Figure 15, and the red dotted lines
show their average. Note that the relative aesthetic sig-
natures of both operators are very similar over multiple
images. This suggests that our method captures some
essential properties of these operators invariant over
multiple images.

multi-scale image editing session. This way, the user
can be made aware of the aesthetic consequences
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Fig. 17. Aesthetic consequences of some basic con-
trast editing operations. Image courtesy of Zeev Farb-
man.

of the changes he introduces to an image. In such
a setting, our system can also prevent users taking
certain actions that will make the image worse. Fig-
ure 18 shows two examples where both images have
initially a high sharpness rating. As such, enhancing
fine image details does not provide any aesthetic
benefit in the first case (top row). In the second case
(bottom row) the fine detail enhancement significantly
reduces the aesthetic appeal of the image by com-
pletely negating the depth-of field effect, reflected by
the reduced depth and clarity ratings.
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Fig. 18. Unnecessary editing can have negative aes-
thetic consequences. Since both top and bottom image
have a high sharpness rating to begin with, enhancing
fine image details does not provide any benefit (top
row) or makes the image considerably less appealing
(bottom row). Images courtesy of Zeev Farbman Mark
Plonsky.

7 CONCLUSION

In this work we present a framework for automated
image aesthetics that can be utilized in current photo
editing software packages for providing aesthetic
guidance to the user. Given a single image, our sys-
tem automatically computes an aesthetic signature
that comprises calibrated ratings of a set of aesthetic
attributes, and provides a compact representation of
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some of the input image’s fundamental photographic
properties. We described an experimental procedure
for obtaining subjective ratings for each aesthetic at-
tribute, and presented a set of metrics capable of accu-
rately predicting these subjective ratings. We showed
that our method outperforms the current state-of-the-
art in predicting an overall aesthetics rating, as well
as opening novel application areas.

Our aim was to be able to evaluate all types of
real-world pictures without putting any constraints
on their content or aesthetic characteristics, and the
aesthetic attributes we utilized in this work were cho-
sen accordingly. Consequently our method is limited
to the expressiveness of the five aesthetic attributes
we evaluate. While we showed our current system
enables novel applications (Section 6), the aesthetic
signature representation can still be enhanced by in-
creasing its number of dimensions. Also, the aesthetic
attribute metrics in our system trade off complexity
for generality, because we did not want our met-
rics to overfit our subjective dataset, but rather to
capture consistently present tendencies. This design
choice also resulted in a slightly higher deviation of
the metric predictions from subjective ground truth
data than what we would have achieved with more
complex metrics.

Since automated image aesthetics is fundamental
to many visual computing methods, future directions
for our work include in-depth treatment of novel
application areas enabled by our method, such as
the ones we demonstrated in Section 6. Another di-
rection could be specializing our method by taking
into account further, more specific aesthetic attributes
like facial expressions, the position of the horizon
line, rule of thirds, etc., that are only meaningful for
certain types of photographs. Since in this work our
reference data consists solely of real world images,
another immediate future direction is testing to what
extent our framework generalizes to synthetic images.
It is also an interesting research question if there is a
connection between recent work on image memora-
bility [53] and aesthetics.
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