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ABSTRACT

RGBD cameras, such as the Kinect, have recently revolution-
ized the field of real-time geometry and appearance acquisi-
tion. While impressive 3D reconstruction results have been
obtained, combining data acquired by multiple RGBD cam-
eras constitutes a technical challenge. Several methods have
been proposed to estimate the internal parameters of each
RGBD camera (such as depth mapping function and focal
length). Despite that the textured geometry obtained by each
RGBD camera individually is visually attractive, even state-
of-the-art methods have difficulties in correctly combining
the textured geometries obtained by several RGBD cameras
via a rigid transformation. Based on this observation, our ap-
proach registers the RGBD cameras by a smooth field of rigid
transformations, instead of a single rigid transformation. Ex-
perimental results on challenging data demonstrate the validity
of the proposed approach.

Index Terms— RGBD cameras, virtual view rendering

1. INTRODUCTION

RGBD cameras, such as the popular Microsoft Kinect device,
can simultaneously acquire the appearance and the geometry
of a scene, leading the way to new exciting applications such
as real-time content acquisition for 3D telepresence [1, 2] and
real-time novel view synthesis [3], among many others. How-
ever, a key limitation of such devices is that they provide only
2.5D geometry (depth maps) and cannot reconstruct an en-
tire scene particularly in the presence of occlusions, a critical
practical requirement for many applications. At first glance,
this major limitation can be easily mitigated by using several
RGBD cameras simultaneously. The data streams from these
devices can be, in principle, registered in the same coordinate
frame using optical [4] or geometric [5] methods. They com-
pute for each camera a global rigid transformation (rotation and
translation) aligning the textured geometries into a common
coordinate frame. However, this registration process is noted
by many to be a very delicate and sensitive procedure [3, 2].

Fig. 1. Single rigid transformation methods for multiple
RGBD cameras obtained with the optical calibration [4] and
with the geometric ICP algorithm [5] generally provide a cor-
rect registration only for a certain region, such as the back-
ground (green, top row) or the foreground (red, bottom row),
but not all the regions. In contrast, our method (right) provides
a correct registration for the whole captured scene.

Our experiments support this observation and show that even
with a very carefully executed registration procedure using
state-of-the-art methods, the geometry and color do not align
consistently everywhere. Indeed in some areas the alignment
might be satisfying but not in others, as illustrated in Figure 1.
This is an important observation as it tends to suggest that
there might not exist a (single) rigid transformation that can
correctly align the data streams from multiple RGBD devices.

The reasons why this is the case are complex. First, multi-
RGBD camera setups do not require only geometry alignment
but combined geometry and texture alignment which makes the
task challenging. Second, current RGBD cameras, such as the
Kinect, consist of a color camera, an IR camera (called depth



Fig. 2. Registration of two textured geometries acquired from two RGBD cameras (Kinects) by a single 3D rigid transformation
(e.g., obtained by the popular ICP algorithm) with (a) the internal parameters of the RGBD cameras provided by the manufacturer,
and with (b) the internal parameters computed by Herrera’s calibration toolbox [6]. (c) The proposed 3D registration field with
the internal parameters provided by the manufacturer. This comparison shows that, in contrast to single 3D rigid transformation-
based methods, our proposed approach provides a visually appealing alignment even when using low accuracy internal (e.g.,
manufacturer’s) parameters.

camera) and an IR projector. They require a careful calibration,
but calibrating such a complex device is a complicated task
and thus highly error prone. Small calibration errors can result
in erroneous 3D data that, in turn, cannot be rigidly aligned to
3D data acquired by another device, as illustrated in Figure 1.
While these calibration errors can be visually acceptable when
only one RGBD camera is used, they become immediately
apparent in multi-RGBD camera setups resulting in severe
visual artifacts. Third, the proprietary implementation of these
cameras contains additional processing, especially on the depth
stream, that are unknown to the user. Therefore, even though
several noise modeling methods have been proposed [6], it is
difficult to define and fit a realistic physical model that could
be used to obtain consistent 3D data.

In this paper, we propose an approach to register data ob-
tained from a multi-hybrid camera setup that uses a non-rigid
alignment strategy making the method more robust and inde-
pendent of technology and manufacturer. Our approach locally
computes the parameters that can accurately register the ge-
ometry and color streams and interpolates these values across
the entire captured volume. This approach provides a more
visually appealing alignment than competing techniques (see
Figure 2), is easy to perform, and efficient to use in practice.

2. RELATED WORK

Current RGBD cameras output a color image and the asso-
ciated depth map. To obtain a textured geometry, internal
calibration must be conducted for each RGBD camera. First,
the depth map values must be converted to metric units and the
3D points computed using the depth camera parameters [6].
This process is related to intrinsic calibration. Second, the
rigid transformation between the depth camera and the color
camera must be estimated to align the geometry to the texture.
This step corresponds to extrinsic calibration.

Both intrinsic and extrinsic parameters of RGBD cam-

eras can generally be obtained from the manufacturer via the
drivers/API as each device is factory calibrated. In practical
terms, the drivers/API can provide a depth map that is directly
aligned with the color image. However the manufacturer pa-
rameters are generally not accurate and many methods have
been proposed to estimate them more precisely. We apply the
state-of-the-art method of Herreta et al. [6] that can perform a
complete device calibration.

In order to use data acquired by a multi-device setup, it is
also necessary to register the data streams from all devices in a
common coordinate system. This is typically achieved by fol-
lowing either an optical approach (in a similar way to extrinsic
calibration using the color streams) or a geometric approach
(using the depth streams). The optical approach uses a calibra-
tion pattern (typically a checkerboard) that is observed by the
cameras of the setup. A very popular tool for stereo-camera
systems is the Camera Calibration Toolbox [4]. This optical
approach has been followed, for example, by Maimone and
Fuchs [7] to register their multi-Kinect setup. The geometric
approach aims to find the rigid transformation that aligns the
3D point clouds obtained by each RGBD camera. The most
popular technique is the Iterative Closest Point (ICP) algo-
rithm [5] and many variants have been proposed (see [8] for a
recent review). In case some correspondences of 3D points are
known, one can directly estimate the rigid transformation [9].
This geometric approach has been followed by Izadi et al. [10]
in the context of a moving Kinect.

In this work, we compare our method to the (single) rigid
transformations obtained by optical and geometric approaches,
and also demonstrate experimentally that we outperform state-
of-the-art methods.

3. PROPOSED APPROACH

While in theory, a single global rigid transformation for each
device should be sufficient to register multiple data streams



to the same coordinate system, in practice, even using state-
of-the-art calibration methods, the alignment from this global
registration is inaccurate. Therefore, rather than assuming a
global rigid transformation, we model the registration in a
spatially variant way. Therefore, transforming a point x from
camera A into camera B is a function of x, i.e.,

x′ = Rx x+Tx. (1)

We represent the field of translations, Tx, and the field of
rotations, Rx, by first placing a rectangular regular grid of
n ×m × o vertices within camera A. Then, for each vertex
vijk, where i = 1, . . . , n, j = 1, . . . ,m, and k = 1, . . . , o, we
estimate a rotation coefficient rijk and a translation coefficient
tijk, which are tuned to accurately transform vijk into camera
B. The computation of these transformation coefficients is
conducted as a preprocess and is discussed in more detail in
Section 3.1. Then, a linear basis is imposed on the grid to
reconstruct the smooth rotation and translation field, both of
which are C(0) continuous.

Due to the linear basis, the evaluation of the amount of
rotation r := Rx and translation t := Tx boils down to
first identifying the voxel which contains x. Then, a parame-
ter (u, v, w) is computed from the eight corresponding voxel
vertices vijk. Note that u, v, and w vary between 0 and 1.
By referring to Figure 3, r and t are computed by first inter-
polating the respective transformation coefficients pair-wise
along u. The resulting values are then interpolated along v.
And finally, the resulting two values are interpolated along w,
yielding r and t, respectively.

While trilinear interpolation is used to interpolate trans-
lation quantities, rotations have to be interpolated over the
sphere to achieve constant-speed motion. This is achieved by
the slerp operation, defined as

slerp(t, r0, r1) =
sin((1− t)α)

sin(α)
r0+

sin(tα)

sin(α)
r1 with t ∈ [0, 1]

(2)
which linearly interpolates between the two quaternions r0 and
r1, respectively, and where cos(α) = r0 ·r1. More information
on the slerp operation is provided in [11].

The next section discusses the computation of the two 3D
lattices of rotations and translations, and proposes an algorithm
which guarantees that our method is always at least as accurate
and in most cases significantly more accurate in registering
the geometry of multi device data as methods that use a global
rigid transformation.

3.1. Computation of Transformation Coefficients

The choice of the coefficients rijk and tijk significantly affects
the quality of alignment of the camera data, hence, accurate
computation of these coefficients is key. We first sample the
scene with a checkerboard that is observed by both cameras. A
3D location is determined for each checkerboard corner which

Fig. 3. Given parameter (u, v, w) for sample point, x, 7 lerp
operations are performed to compute the amount of translation
at x from the eight translation coefficients tijk. The amount
of rotation is computed accordingly, by performing 7 slerp
operations given the quaternions rijk.

is local to the respective camera, i.e., for each checkerboard
corner we have a pair of points (x,x′), where x is the corner
as seen in camera A, and x′ is its corresponding corner as seen
in camera B. We propose an adaptive scheme to compute rijk
and tijk as follows:

1. Consider a set of nested cubic regions with increasing
sizes centered all around vijk.

2. For each region l, construct a set Cl containing checker-
board corner correspondences, (x,x′), where x is lo-
cated within the respective region.

3. For each of these regions, estimate the rotation rlijk and
translation tlijk using the rigid transformation estimation
method in [9].

4. Pick rlijk and tlijk that produces the smallest reprojec-
tion error. The reprojection errors are evaluated on the
pairs of corners in the respective set Cl.

By construction, the reprojection error obtained with our
method is never higher than the reprojection error obtained
using the transformation computed from all the samples. In
fact, in the result section we demonstrate that our reprojection
error is frequently much lower.

4. RESULTS AND DISCUSSION

4.1. Setup

Our acquisition setup is composed of two rigidly attached
Kinects. To reduce the interference due to the IR projectors,
we attach a small vibrator to each Kinect [12]. As discussed
in Sections 1 and 2, each RGBD camera must be internally
calibrated to obtain appropriate textured geometry, and then
the transformations between the RGBD cameras are needed
to register the textured geometries in a common coordinate
system. For the internal calibration, we use the parameters pro-
vided by the manufacturer as well as obtained from Herrera’s
state-of-the-art toolbox [6]. In our experiments, the toolbox
provides very low reprojection/residual errors in both the color
images and depth space, namely, less than 0.7 pixel and less
than 0.8 kdu (Kinect disparity units, see [6]) for each Kinect.



Fig. 4. Comparison of the average reprojection error (in pixels) in both color images obtained by a global registration and the
proposed method at 3× 3× 3 locations uniformly distributed in the scene. For an easier visualization, the (x, y, z) locations are
illustrated on a 3D grid.

We compare our registration approach against both optical
and geometric approaches (see Section 2). For the optical
approach, we apply the popular Camera Calibration Toolbox
for Matlab [4], in a similar way to Maimone and Fuchs [7]. A
checkerboard is observed by both cameras, and the checker-
board corners as well as their correspondences between the
cameras are extracted semi-automatically (see [4]). To avoid
biasing of the registration for a certain part of the scene (see
discussion in Section 1), we move the checkerboard at many
different orientations and locations in the whole volume of
interest. For the geometric approach, we apply ICP [5] and
acquire several 3D geometries by moving the setup at differ-
ent poses. Since ICP depends on the initial solution, we give
the best possible initial alignment manually and then run the
ICP method available in Point Cloud Library. To apply our
approach, we use the same checkerboard data as acquired for
the optical approach and run the algorithm presented in Sec-
tion 3.1. The grid covers the volume of interest and its size is
set to 3m× 3m× 3m with 20× 20× 20 regular voxels.

4.2. Rendering

To render the scene from a virtual camera position, the depth
map of each RGBD camera is tesselated and vertices of the
triangles are transformed by either a single rigid transforma-
tion, or by the proposed approach. These triangle meshes are
textured accordingly. The textured geometries of each RGBD
camera are projected into the virtual view, and the color of
the pixel in the final view is the average of the projected tex-
tures. If a pixel is visible by only one camera, we use the
color observed by that camera. This type of blending is chosen
intentionally to better visualize the quality of the alignment.

The proposed method is computationally inexpensive and
runs in real-time on the GPU, taking about 18ms per frame for
two RGBD cameras at full resolution (i.e., 640 × 480 depth
maps). The execution time linearly scales with the number
of devices by pairwise registration. An important observation
is that the execution time depends on neither the volume size
nor the grid resolution: First, the regularity of the grid allows
for efficient lookup of the coefficients for a given query point,

where a lookup is performed in constant time. Second, the time
to compute the transformation of a query point only depends
on the eight coefficients and thus runs in constant time as well.

4.3. Evaluation and Discussion

In the following, the global transformation is computed by
ICP only, as it yields comparable quality to an optical method.
A visual comparison between a global 3D rigid transforma-
tion and the proposed rigid transformation field is shown in
Figure 2. It can be seen that our approach leads to visually
appealing images in which the textures are correctly aligned.

To quantitatively measure the results, we consider the re-
projection error in the images. We prefer this measurement
over the 3D registration error simply because the reprojection
reflects the visual quality. We apply the following procedure
to compute the reprojection error. The N corners of a checker-
board are observed by each of the M RGBD cameras. Their
2D coordinates are obtained by corner extraction in each color
image and their 3D coordinates are provided by the corre-
sponding depth image. These 3D corners can be reprojected
in the image plane of any RGBD camera. In the case where
noise is absent, these reprojected points lie at the exact same
location as the extracted corner in the image. However, due to
noise, these points do not perfectly coincide and the distance
between them is not zero. We compute the registration error in
image space as the mean distance between the corresponding
corners. The reprojection error from the k-th RGBD camera
to the j-th RGBD camera is:

∑N
i=1 ‖p

j
i − p

k→j
i ‖

N
(3)

where pji is the 2D location of the i-th corner point extracted
in the color camera of the j-th RGBD camera and pk→j

i rep-
resents pki which is reprojected in the color image of the j-th
RGBD camera. If k = j, the error is zero, so we do not
consider self-reprojection. Summing over each pair of RGBD
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Fig. 5. Novel viewpoints rendered by a virtual camera. The
full motion of the virtual camera is available in the accompa-
nying video.

cameras, the overall reprojection error is computed as:∑M
j=1

∑M
k=1,k 6=j

∑N
i=1 ‖p

j
i − p

k→j
i ‖

M(M − 1)N
(4)

A single rigid transformation obtains an average reprojection
error of 2.5 px (with a std. dev. of 0.8). In contrast, our method
provides an average of 0.8 px (with a std. dev. of 0.2), which
is an improvement of about 68%.

We further analyze the error distribution within the volume
of interest. We compute the average reprojection error (see
Eq. 4) of the checkerboard corners located inside a local
volume of size 20 × 20 × 20 cm and centered at each grid
vertex, using both the proposed method and a global rigid
transformation. Results are illustrated in Figure 4. For better
visibility, we display the error computed on a uniform 3×3×3
subsampling of the grid. It shows that our reprojection always
outperforms the global registration approach. It also illustrates
the fact that the error obtained by the global registration greatly
varies with respect to the location in the scene, in agreement
with the results in Figure 1.

In addition, we study the reprojection accuracy with re-
spect to the grid resolution. The average reprojection error is
1.3 px for a 5 × 5 × 5 grid, 1.1 px for a 10 × 10 × 10 grid,

Fig. 6. Representative results on a dynamic scene.

0.8 px for a 20× 20× 20 grid and 0.8 px for a 40× 40× 40
grid. This indicates that the accuracy increases with the grid
resolution until converging to 0.8 px. For all the results shown
in this paper, we use a 20× 20× 20 grid (same accuracy as a
40× 40× 40 grid but with fewer coefficients in memory).

4.4. Additional Results

In the context of free-viewpoint video, the pose (location and
orientation) of the virtual camera can be controlled interac-
tively by the user or via a head/eye tracking system, for ex-
ample in combination with autostereoscopic displays [7]. To
study the quality of the results in this context, we move the
virtual camera between the physical cameras and render the
scene at these new viewpoints. Still images of the novel view-
points are available in Figure 5. We invite the readers to view
the full camera motion in the accompanying video. It shows
that our method provides visually appealing results for a range
of virtual camera poses. Note that our goal is not to compete
with systems dedicated to free-viewpoint video such as [3, 13],
but to provide a visually appealing alignment that can then
be combined with free-viewpoint video techniques such as
silhouette refinement and advanced blending (see [13]).

Our approach can also be applied to dynamic scenes. To
illustrate this, we acquire sequences with moving subjects.
We process each frame sequentially by directly applying the
method described in Section 3. Figure 6 illustrates a represen-
tative result obtained with a person walking. This example
demonstrates that our method can correctly deal with dynamic
scenes. In an additional experiment, we capture a dynamic
scene with an acquisition setup installed on a mobile platform.
Results are available in Figure 7 and show that our approach
can also be applied in a mobile acquisition context.

Our approach can deal with more than two RGBD cam-
eras. In practice, we apply it pairwise with respect to a given
reference camera. We use a single calibration grid and run
the method of Section 3.1 for each pair of devices, i.e., the
coefficients of the grid vertices encode the rotation and transla-
tion associated with each pair. Figure 8 shows a representative
result obtained by a setup composed of three Kinects.

4.5. Limitations

While a single rigid transformation does not modify the cap-
tured geometry (it just “moves” it), rigid transformation fields



Fig. 7. Representative results on a dynamic scene acquired by
a moving setup.

Fig. 8. Left: Representative result with three Kinects. Right:
color coded visualization of the overlap of the three Kinects.

might change the geometry. In practice, we have not observed
any visual distortion of the geometry resulting from our smooth
transformations in the experiments. For quantitative evaluation,
we considered the two most distant corners of each checker-
board and measured the distance between their 3D points for
all the captured checkerboards in the entire space. The average
distance obtained by a single rigid transformation and the pro-
posed approach are both 72.6cm, which shows the distortion
is quasi-inexistent.

Our current method follows a pairwise registration with
respect to a reference camera. While in theory the contents of
the auxiliary cameras might not perfectly align, experiments
show that the results are visually appealing. The quality could
be further refined by a global registration procedure in post-
processing, which considers all the cameras simultaneously in
a way similar to bundle adjustment.

5. CONCLUSION

Registration of multi RGBD camera setups is a notoriously
sensitive and delicate procedure despite the variety of avail-
able methods. In particular, the registration between RGBD
cameras which typically consists of a (single) rigid transfor-
mation often fails in practice to faithfully align all the depth
and color streams consistently everywhere inside the capture
volume, as observed in many experiments. We address this
issue by proposing a practical and general approach to register
the depth and color streams of multi RGBD camera setups.
Our approach estimates a smooth field of rigid transformations

between RGBD cameras with C(0) continuity on a regular grid
within the captured volume. In terms of both visual quality
and measurable reprojection errors, we demonstrate that our
method provides better results than state-of-the-art methods. In
future work, we plan to investigate our proposed methodology
on other range sensors, especially time-of-flight cameras.
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