
Computer-Aided Design 58 (2015) 132–140
Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Efficient direct rendering of deforming surfaces via shared
subdivision trees✩

Fuchang Liu a,c,∗, Tobias Martin b, Sai-Kit Yeung c, Markus Gross b

a Hangzhou Normal University, Hangzhou, China
b ETH Zurich, Switzerland
c Singapore University of Technology and Design, Singapore

h i g h l i g h t s

• We present Shared Subdivision Trees (SST) to rasterize implicit surfaces on GPUs.
• We address the problem of efficiently rendering implicit surfaces which undergo a nonlinear deformation throughout the rendering process.
• Wemap Shared Subdivision Trees well to parallel computing platforms such as CUDA.

a r t i c l e i n f o

Keywords:
Isosurface visualization
GPU rendering
Computational geometry and object
modeling

a b s t r a c t

In this paper, we present a subdivision-based approach to rasterize implicit surfaces embedded in volu-
metric Bézier patches undergoing a nonlinear deformation. Subdividing a given patch into simpler patches
to perform the surface rasterization task is numerically robust, and allows guaranteeing visual accuracy
even in the presence of geometric degeneracies. However, due to its memory requirements and slow
convergence rates, subdivision is challenging to be used in an interactive environment. Unlike previous
methods employing subdivision, our approach is based on the idea where for a given patch only one sub-
division tree is maintained and shared among pixels. Furthermore, as the geometry of the object changes
from frame to frame, a flexible data structure is proposed to manage the geometrically varying Bézier
patches. The resulting algorithm is general and maps well to parallel computing platforms such as CUDA.
We demonstrate on a variety of representative graphics and visualization examples that our GPU scheme
scales well and achieves up to real-time performance on consumer-level graphics cards by guaranteeing
visual accuracy.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Deforming B-spline volumes with embedded scalar fields fre-
quently occur in a variety of computer graphics and engineering
applications. For instance, in free-form deformation [1] an implicit
surface of a scalar field is deformed by deforming the geometry of
its associated B-spline bounding volume. B-spline volumes are also
a fundamental primitive in isogeometric analysis [2] where they
are used to represent the geometry of a physical object. Physical

✩ This paper has been recommended for acceptance by Dr. Vadim Shapiro.
∗ Correspondence to: Digital Media and HCI Research Center, Hangzhou Institute

of Service Engineering, Hangzhou Normal University, Yuhang Qu Haishu Road 58,
Hangzhou 311121, China.

E-mail addresses: liufububai@gmail.com, liufu@ewha.ac.kr (F. Liu),
martint@inf.ethz.ch (T. Martin), saikit@sutd.edu.sg (S.-K. Yeung),
grossm@inf.ethz.ch (M. Gross).

http://dx.doi.org/10.1016/j.cad.2014.08.005
0010-4485/© 2014 Elsevier Ltd. All rights reserved.
analysis is applied directly to the B-spline volume representation,
where the analysis result is represented as an associated attribute.
Depending on the simulation scenario, the geometry of the rep-
resentation may undergo shape changes. For instance, an elastic
body deforms when external forces are applied, where stress is an
attribute of the deforming object.

In this paper, we address the problem of efficiently rendering
implicit surfaces which undergo a nonlinear deformation through-
out the rendering process. The deformation is performed on a vol-
umetric representation, which can be converted into a set of Bézier
volumes. While the topology of the deforming surface may remain
the same throughout the animation, its scale may change non-
uniformly from frame to frame. Extraction- and sampling-based
methods are not only challenged by the changing surface proper-
ties and the dynamic volumetric deformations, but also by the re-
construction of all the features present in the implicit surface (for
instance, see thin features in Fig. 1).

http://dx.doi.org/10.1016/j.cad.2014.08.005
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2014.08.005&domain=pdf
mailto:liufububai@gmail.com
mailto:liufu@ewha.ac.kr
mailto:martint@inf.ethz.ch
mailto:saikit@sutd.edu.sg
mailto:grossm@inf.ethz.ch
http://dx.doi.org/10.1016/j.cad.2014.08.005

F. Liu et al. / Computer-Aided Design 58 (2015) 132–140 133
Fig. 1. Deformation sequence of an isosurface of a tri-quintic algebraic function.
Methods to extract the implicit surface, such as Marching Cubes, are challenged
because of the nonlinear distortions and thin surface features.

Given this scenario, subdividing the Bézier patches into simpler
patches is key. Traditionally, a subdivision-based approach builds
a subdivision tree for each pixel, where sub-patches in the tree are
kept and only subdivided further if they potentially contain a piece
of the surface overlapping with the pixel. In the limit, the leafs of
the subdivision tree constitute to that piece of the surface, passing
through the pixel. However, subdivision is computationally expen-
sive and only converges linearly to a solution. Therefore, instead
of subdividing the patch to pixel size, it is only subdivided un-
til all intersections can be determined using the Newton–Raphson
method. Then, the local subdivision tree is discarded. In order to re-
duce the size of local sub-division trees, a pre-subdivision stage [3]
is employed: before rendering takes place, the patch is first subdi-
vided into a set of simpler patches. The main drawback with this
strategy is that a hierarchical data structure has to be maintained,
and has to be rebuilt whenever the geometry changes. This poses
additional challenges tomap such a scheme efficiently to GPU. Fur-
thermore, the hierarchy is view independent, i.e., it may consist of
too many (or too few) levels, and also patches which are occluded
from the current view.

Main contribution: we present a novel concept for GPU, called
Shared Subdivision Trees (SST), to rasterize implicit surfaces rep-
resented by multiple Bézier patches undergoing a nonlinear de-
formation during rendering. Conceptually, as illustrated in Fig. 2,
for a given patch, a single subdivision tree is maintained which is
shared among pixels. A patch in the subdivision tree is only subdi-
vided further if requested by a screen pixel, which eliminates the
redundant subdivision work. The proposed method can be seen as
moving the pre-subdivision stage into the rendering stage, where
the subdivision tree of a given patch is built by exploiting the high
parallelism of current GPUs. The visibility problem is solved by
a conventional sweep and prune method which allows to handle
datasets as they occur in practice. We demonstrate on a variety of
representative examples that our scheme is computationally effi-
cient and yields interactive and for some examples even real-time
frame rates. In addition, we verify that our scheme scales well with
respect to memory requirement and rendering speed.

The outline of this paper is as follows. After discussing the re-
lated work in Section 2, the mathematical framework used for
this work is introduced in Section 3. The proposed algorithm is
described in Section 4 and its implementation is discussed in
Section 5. Then, three applications and associated studies are pre-
sented in Section 6.1. Finally, we evaluate the efficiency of our pro-
posed method in Section 6.2, and conclude the paper in Section 7.

2. Previous work

Direct renderingonuniformgrids: there is a vast body ofwork
to directly render implicit surfaces of volumetric scalar fields. A
variety of highly efficient methods exist when the scalar field in
world space can be described by a trivariate or piecewise trivari-
ate polynomial. Methods in this category date back to the work by
Rockwood [4] which computes univariate contours from a Bézier
volume. Roots of these contours correspond to points on the iso-
surface. A related approach presented in [5] converts the algebraic
function along the ray into Bernstein form to efficiently and ro-
bustly determine all intersections between the ray and the im-
plicit surface. Knoll et al. [6] present an approach to render implicit
surfaces of algebraic functions using interval arithmetic achieving
real-time frame rates. Approaches falling into the same category,
but which are based on sampled volume data are [7–9]. More re-
cently, Liu et al. [10] present an isosurface rasterization approach
exploiting cache coherency to further speed up rendering.

Due to the polynomial nature of the scalar field, the scalar field
along a viewing ray can be represented in closed form. This prop-
erty results in a lower memory footprint making it easier to solve
the problem on the GPU. However, in our scenario, the volume em-
bedding the scalar field undergoes a nonlinear deformation (Fig. 1
and for more examples Figs. 7 and 8). In this case, the scalar field
consists of a highly nonlinear term which makes it impossible to
express the scalar function along the ray analytically. Because of
that, it is unclear how to extend the methods above to also work
efficiently in this scenario. In this paper, we present an efficient
rasterization method which robustly renders isosurfaces embed-
ded in deformed objects.

Extraction-basedmethods: among the first methods to render
scalar data embedded in deformed volumes is [11]. The method is
based on an isosurface sampling approach similar to [12]: points
are iteratively projected onto the isosurface and the surface is ren-
dered using a point-based rendering system such as [13]. High vi-
sual accuracy can be achieved following this strategy. However,
determining a point sampling which guarantees visual accuracy
is difficult. These methods generally tend to oversample the im-
plicit surface in order to reconstruct thin or smaller features as the
one shown in Fig. 2. Extraction based methods face similar prob-
lems. Such an approach first extracts the implicit surface using a
method such asMarching Cubes [14], orMarching Tetrahedra [15].
Then, the extracted triangle mesh approximating the smooth im-
plicit surface is rendered.While extraction can be executed very ef-
ficiently, the smooth representation first has to be discretized into
a linear format. This requires the sampling of the volumetric patch.
Efficiently generating a sampling such that the extracted triangle
mesh is accurate up to image resolution is an open problem. Note
that, all these challenges are amplified when the implicit surface
undergoes a nonlinear deformation every frame.

Ray-sampling-based methods: given a ray passing through a
pixel and a deformed volumetric patchwith embedded scalar field,
an intersection of the ray with the implicit surface is computed in
two steps: (1) determine the entry and exit point of the ray into
the patch; and (2) perform root finding on these bounds to iden-
tify where the ray intersects the implicit surface. Since the scalar
function cannot be written in closed form, as discussed above, the
latter step requires sampling of the scalar field along the ray,where
for each sample, the inverse function has to be evaluated using
a numerical method. For instance, [16,17] adaptively sample this
function to compute a polynomial interpolant based on a Legendre
basis which can be arbitrarily close to the solution. Similarly, [18]
present a GPU ray-caster using a frequency based adaptive sam-
pling approach to account for high variations along the ray. To
achieve interactive frame rates, the method stores the volumetric
patches in a grid.

Ray-sampling methods, such as the ones discussed above, as-
sume that the mapping between the reference element to the de-
formed patch is bijective. However, this is often not the case in
practice. For instance, in physically based animation [19], patches
undergoing a nonlinear deformation may self-intersect or even in-
vert. This results in zero Jacobians, where at these locations the
mapping is not bijective and therefore, a numericalmethod such as
Newton–Raphson to compute the inverse cannot be used. This type
of data presents severe stability and convergence issues for the
rendering approaches mentioned above. Furthermore, boundaries

134 F. Liu et al. / Computer-Aided Design 58 (2015) 132–140
Fig. 2. Subdivision and numerical root-finding allow to robustly render implicit surfaceswithoutmissing features. Traditionally, the problemhas been approached in parallel
on the pixel level. Our method efficiently maps to the GPU by sharing a single subdivision tree for a given patch among multiple pixels.
Fig. 3. Nonlinear deformation of a tri-quintic Bézier volume. Themap also deforms
an isosurface of an embedded scalar field. The inverse p−1(x) is highly nonlinear.

of volumetric patches are often degenerate, e.g., elements along a
cylindrical axis, which complicates the computation of entry and
exit points. Our proposed method robustly handles these types of
scenarios.

The introduction of geometric constraint solvers in the pioneer-
ing work [20] is based on subdivision and numerical root-finding,
and thus guarantee to find all values satisfying a system of nonlin-
ear geometric constraint equations. The method proposed in [21]
builds up on this framework: for each pixel, a system of three
nonlinear equations is solved to determine intersections with the
implicit surface. The method results in a tremendous memory
overhead, since it constructs a subdivision tree for each pixel in-
dependently. Because of this property, it is difficult to map this
scheme to the GPU. In this paper, we reformulate the problem in
such a way, that the intersection problem can be efficiently solved
on a GPU. At the same time, it retains the guarantees of a geometric
constraint solver. The key of the proposedmethod is to share both,
the subdivisionwork and the resulting patches across viewing pix-
els to robustly compute the implicit surface intersections.

In the next section, we introduce the mathematical framework
on which we base our method. It also includes a discussion of clas-
sical ray/isosurface intersection given this type of data as a ratio-
nale to propose Shared Subdivision Trees and its implementation
to fully exploit the parallelismof consumer level GPUs in Sections 4
and 5.

3. Mathematical background

The input to our method is a volumetric representation with
embedded scalar field undergoing a nonlinear deformation in dis-
crete time steps, where we assume that the representation can be
converted into a set of Bézier volumes. In this work each frame is
treated independently, i.e., calculations of a previous time step are
not used in the current time step. In the following paragraphs we
solely focus on rendering implicit surfaces embedded in the Bézier
volume of a single time step. Fig. 3 illustrates the formalities made
in the following twoparagraphswhere for illustrative purposes the
input consists of a single rational Bézier volume of degree (l,m, n),
formulated as

V(u) =

l
i=0

m
j=0

n
k=0

wijk cijk θ l
i (u) θm

j (v) θn
k (w)

l
i=0

m
j=0

n
k=0

wijk θ l
i (u) θm

j (v) θn
k (w)

. (1)

Here, the parameter u = {u, v, w} lives in a cubic parameter do-
main, where θn

i (u) is the ith Bernstein polynomial [22] of degree n.
cijk define control points of a (l + 1) × (m + 1) × (n + 1) control
grid, where, cijk = {xijk, yijk, zijk, aijk}. The first three components of
cijk represent world space positions, and the fourth component is
a scalar attribute. Thus, V(u) can be separated into two mappings,
i.e., V(u) = {p(u), α(u)}, where p(u) deforms the unit cube into
Ω ∈ R3, with α(u) as its associated scalar volume (see Fig. 3).

The inverse p−1(x) maps a point x ∈ Ω back to the unit cube.
Given a user-specified isovalue â, an implicit surface residing
within the bounds of Ω is defined as the set S = {x | α

p−1(x)

=

â, x ∈ Ω}. Due to the rational nature of p(u), its inverse p−1(x)
cannot be expressed in closed form. Hence, the inverse of a given
point x ∈ Ω can at most be numerically approximated by a value
u∗ such that |p−1(x) − u∗| < ϵ, where ϵ is sufficiently small.
Newton’s method is generally used to improve the accuracy of u∗.
However, if a local self-intersection of the Bézier volume is crossed
during a Newton iteration, the method does not succeed.

3.1. Classical ray/isosurface intersection

Ray/isosurface algorithms generally give answer to the ques-
tion, atwhich point a ray inworld space intersects S. Such an inter-
section point belongs to S if it satisfies three constraint equations,
where the first equation is α(u) − â = 0. Furthermore, the point
also has to sit along the ray: by following the development of [23],
the ray can be represented as the intersection of two orthogonal
planes, ⟨x,ni⟩+di = 0, for i = 0, 1, whereni is the normal of plane
i. The patch p(u) is substituted into these two equations, yielding
the second and the third constraint equations, ⟨p(u),ni⟩ + di = 0,
for i = 0, 1.

Given these three equations, a new Bézier volume, q(u), with
control points {⟨xijk,n0⟩+d0, ⟨xijk,n1⟩+d1, aijk− â}, where xijk =
{xijk, yijk, zijk} with associated weights wijk can be constructed.
The point where the ray intersects the isosurface can now be

F. Liu et al. / Computer-Aided Design 58 (2015) 132–140 135
Fig. 4. 3 × 3 pixel neighborhood on the near plane. Planes (red and blue) whose
intersections coincide with pixel centers are defined as geometric constraints. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

determined by solving q(u) = {0, 0, 0} for u. This can be robustly
achieved by splitting the Bézier volume q(u) into smaller sub-
patches via Bézier subdivision [24] by only keeping those sub-
patches which contain the origin. Martin et al. [21] combine
subdivision and numerical root finding to determine all solutions
along the ray following this strategy.

This scheme is general: given any ray in world space, the in-
tersection problem can be solved robustly. This generality is espe-
cially useful for secondary rays in ray tracing solutions (e.g., [25]).
However, it comes at the price that for each ray an independent
problem has to be solved, i.e., construct an individual subdivision
tree for each ray in order to faithfully determine all the intersection
points. The pioneering work [26], and the famous Bézier Clipping
method [27] follow a very similar strategy to directly render para-
metric surfaces. While local memory might be sufficient to render
parametric surfaces, mapping such an approach to the fragment
level of a GPU to render isosurfaces of deformed volume data is
generally not feasible, because local subdivision trees quickly ex-
ceed the local memory size.

The following section arrives at a solution which rasterizes the
isosurface as seen from the eye, where only a single subdivision
tree for a given Bézier volume is maintained and shared among the
pixels. This results in a scheme which requires significantly less
memory and thus allowing for the efficient implementation and
execution on a GPU.

4. Shared subdivision trees for isosurface rasterization

Given the mathematical framework introduced above, in this
section we propose our isosurface rasterization algorithm to accu-
rately render the isosurface S of a given time step from the cur-
rent camera position. While our method will be applied to objects
which are represented as a union of Bézier volumes, for simplic-
ity of discussion, we focus here on a single Bézier volume p(u).
For that we assume that its world space coefficients have been
transformed by the camera and projection matrix into perspective
space. Hence, the isosurface S lies within the transformed camera
frustum, a cube of size [−1, 1]3. The computation discussed in this
section is conducted on its front side, corresponding to the cam-
era’s near plane onto which we impose a n× n image.

By referring to Fig. 4, given pixel (s, t), the goal is to determine
all points which lie on the isosurface S and within pixel (s, t). The
first constraint is described with the inequality |α(u) − â| ≤ ϵ,
where in our implementation ϵ = 10−5. The requirement that
a point has to lie within the pixel can be described with two
constraint inequalities: analogously to the strategy in Section 3.1,
given half the pixel width pw , the two scalars, bs = s/n + pw
and bt = t/n + pw , are used to define two perpendicular planes,
x − bs = 0 and y − bt = 0, coinciding with the center of the
pixel. Note that the first plane passes through all the pixel cen-
ters of the image column s, and the second plane passes through all
pixel centers of row t . Substituting patch p(u) = {x(u), y(u), z(u)}
into the two plane equations yields the second and third constraint
inequalities, |x(u)− bs| ≤ pw and |y(u)− bt | ≤ pw , respectively.

Given these three constraint inequalities, a new Bézier volume
with control points {xijk− bs, yijk− bt , aijk− â}with corresponding
weights wijk can be constructed. This Bézier volume is equivalent
to s(u) − ost , where s(u) is a Bézier volume with control points
{xijk, yijk, aijk} with the same weights as p(u), and ost = {bs, bt , â}.
All parameters u∗ satisfying these constraints can now be deter-
mined by solving |s(u) − ost | ≤ {pw, pw, ϵ} for u, i.e., p(u∗) lies
within the pixel and is sufficiently close to the isosurface. Note that
the z component of p(u∗) is the pixel depth. The offset ost can be
seen as translating the Bézier volume s(u) into the local coordinate
system of pixel (s, t), where the pixel center serves as origin. In
this formulation, the patch s(u) is independent of the pixel offset,
i.e., the patch s(u) can be used by other pixels to solve its individual
intersection problems.

This suggests an algorithm, called the Shared Subdivision Tree
(SST) algorithm, which is based on building only one subdivision
tree for a given patch s(u). Initially a subdivision tree consists of
the input patch only. This patch is subdivided if required by a pixel.
However, since the tree is independent of a given pixel, subdivided
patches can be used to determine the root of other pixels by apply-
ing the respective offset as discussed above. Semantically, we refer
to this behavior as sharing a subdivision tree among pixels, because
the relevant patches are shared among various pixels and subdi-
vision work is not performed for each pixel independently. There-
fore, this algorithm can be seen as solving the intersection problem
globally, which is in contrast to the traditional ray/isosurface inter-
section discussed in Section 3.1, where the intersection problem
is solved independently for each pixel (s, t). In the following we
describe the SST algorithm in more detail.

4.1. SST algorithm

The inputs to our algorithm are the screen pixels (s, t), and a
list L consisting of Bézier volumes, constructed as discussed in the
previous section. Li corresponds to the ith patch in L. The algo-
rithmoutputs a solution arrayR of parameter values for eachpixel.
Here, Rst contains the solutions for pixel (s, t). Given that, the fol-
lowing three stages are executed until all intersections have been
determined.

(1) Overlap Stage. Each pixel (s, t) is tested whether it
overlaps with bounding boxes of the patches in L. If there is
an overlap between bounding box of patch Li and pixel
(s, t), the isosurface may overlap with the pixel as well.
Therefore, the tuple (s, t, i), where i refers to patch Li, is
added to pixel index list I.
(2) Solution Stage. Newton’s method is used on each tuple
in I to solve equation |Li(u)− ost | ≤ {pw, pw, ϵ}, for
parameter u, as discussed in the previous section. If Newton
succeeds, the tuple is removed from I and the solution u is
added to Rst . If all tuples have been removed from I, the
algorithm terminates. Otherwise it proceeds to Stage 3.
(3) Subdivision Stage. For all the remaining tuples in I,
patches are subdivided and L is overwritten with the new
patches, where patch indices in the tuples are adjusted
accordingly. Subpatches which do not have a sign change in
their scalar attribute are discarded, as this indicates that
they cannot contain a piece of the implicit surface. Go back
to Stage 1.

136 F. Liu et al. / Computer-Aided Design 58 (2015) 132–140
Fig. 5. Illustration of the SST initialization part.

After the termination of this loop, in a final step, each Rst is
sorted according to the respective pixel depth. For more details,
pseudocode of this algorithm is provided in Appendix A. Since all
roots for a given pixel are computed, the method can be used to
realize independent transparency and to render CSG objects as dis-
cussed in Section 6.1. Note that, each stage of this algorithm can be
executed in parallel.

5. Implementation

In the following, we give a brief description on how to imple-
ment the above algorithm on existing computing platforms such
as CUDA [28]. The initialization part and core of our rendering al-
gorithm are illustrated in Figs. 5 and 6. Here we assume the more
general case where multiple input patches are given. All steps are
executed through GPU primitives such as sort, compact, and scan,
where we use the implementation provided in the Thrust [29] li-
brary.

In the initialization part of our implemented rendering frame-
work, we first determine the patches whose bounding boxes are
intersected by a given pixel. These patches are sorted along the ray
passing through the pixel’s center, because as with most existing
methods, once the closest intersection to the near plane has been
found, the pixel can be removed from the list.We call this grouping
process sweep and group (SAG). To sort patches along a ray, a data
structure such as a Kd-tree [30] could be employed as well. How-
ever, those data structures are generally challenged when dealing
with dynamic geometry. SAG is a reasonable compromise given the
dynamic environment, where the shape of patches changes from
frame to frame. As illustrated in Fig. 5, we spawn a thread for each
pixel, sweeping along the ray passing through the pixel’s center in
parallel. Patches are grouped according to the distance from the
eye to its corresponding bounding boxes. A patch and its corre-
sponding ray are stored in onework item.Work items correspond-
ing to the same ray are packed into one work set. After performing
SAG, work sets are compacted and stored in global GPUmemory as
a linear list.

The core of our implemented rendering framework corresponds
to Section 4.1. As illustrated in Fig. 6,we fetch thework sets and test
the overlap for each work item in the overlap kernel. Patches which
overlap with the pixel are sent to the solution kernel. This kernel
executes Newton’s method to determine roots. If a root for a given
pixel has been found, the pixel is flagged in a stencil buffer. If no
root has been found, the patch is sent to the subdivision kernel to
continue subdividing the respective patch. The compaction kernel
removes those work items which do not pass the compute overlap
kernel or the solution kernel. The detailed GPUs implementation of
the three kernels is described in the following:

Overlap kernel. Update the indices in I to reflect the new in-
dices of the subdivided volumes, and remove those tuples (s, t, i),
where the pixel (s, t) does not overlap with the bounding box of
the subdivided patch Li.
Fig. 6. Illustration of the SST core execution kernels.

Solution kernel. Initialize a pixel flag list of the same size as the
pixel index list I with false, and a patch score list of the same size
as L with 0. Then, for each tuple (s, t, i) ∈ I, if Li contains at most
one solution, construct the offset ost = {bs, bt , â} and execute
Newton’s method to solve Li(u) = ost . If it succeeds and the com-
puted solution is within the extents of pixel (s, t) and within ϵ dis-
tance to the isosurface, add it to the solution vector Rst . If it fails,
set the flag for pixel (s, t) to true and increment the score for patch
Li by 1.

Subdivision kernel. This kernel consists of 4 steps: (1) iterate
through all pixel flags, and remove the tuple from I, if the corre-
sponding flag is false. (A tuple (s, t, i) is only removed if a solution
in the solution stage has been found;) (2) initialize a patch flag list
of the same size as the patch list L with false. Set those flags to
true whose corresponding score in the score list is >0; (3) iterate
through all patch flags and remove those patches from L whose
corresponding flags are false. (A patch Li is only removed if no
pixel fails in finding a solution in step (3);) (4) iterate through L,
and split eachL in themiddle into 8 sub-patches using Bézier sub-
division and add them to a new list L̄. Once subdivision has been
performed, overwrite L with L̄.

Newton’s method fails when the Jacobian of the mapping is
ill-conditioned, or when the solution falls outside the parameter
domain of the patch. In this case, the patch requires further subdi-
vision. A normal cone test to find out whether at most one root is
within a given patch is applied as in [21]. Bounding boxes are ori-
ented such that they tightly fit the patch as it is done in the same
work. An important aspect of our algorithm is that it maintains
global arrays for patches and pixels, where all available threads as-
sist in the computation. Related rendering methods implemented
on the local memory where each pixel is treated independently in
parallel, might have more efficient memory access than a method
which is based on global memory. However, the high usage of lo-
cal memory may add a bottleneck to GPU kernels resulting in de-
creased GPU occupancy. Moreover, threads which were assigned
to pixels for which rasterization has been completed, cannot be
reassigned to help other threads still working on active pixels. Be-
cause of this, SST can be seen as maintaining a good balance be-
tweenmemory andworkload. In the following section,we evaluate
SST and compare it to other methods.

6. Results and evaluation

We implemented our proposed rendering method in CUDA 5.0
which outputs a set of textures containing the normals and depth
values of the rendered surface. As discussed above, except for

F. Liu et al. / Computer-Aided Design 58 (2015) 132–140 137
Fig. 7. Datasets used to benchmark the SST algorithm.

the CSG example in Fig. 8, we only consider the solution which
is closest to the near plane. The data is then forwarded to GLSL
performing Phong shading. All tests in this paper were run on a
NVIDIA GeForce GTX 680 with a 4 GB memory, under Windows
7. The accompanying video shows screen captures of all examples
shown in this paper.

6.1. Benchmarking results

Rendering implicit surfaces within deformed volumes and ren-
dering parametric surfaces are different problems. Previous meth-
ods generally address one of these scenarios. A method designed
for one of the two scenarios is generally difficult to extend so that
it also performs well in the other scenario. However, by slightly
modifying our framework, our algorithm can be used to also ren-
der parametric Bézier surfaces [22]: By omitting the third param-
eter direction, the Bézier volumes in the algorithm presented in
Section 4 can be replaced with parametric Bézier surfaces. More
details are given in Appendix B. Given this modification, we com-
pare our method to Bézier Clipping [27]. Since a surface prob-
lem requires less memory than a volume problem, we are able to
run Bézier Clipping exclusively through the (faster) local memory,
where each pixel is executed in parallel.

Volume and surface datasets. By referring to the examples
shown in Fig. 7, we test our method on two volume datasets,
Teardrop and Cylinder, and compare rendering performance to a
basic scheme, which maintains a subdivision tree for each screen
pixel. Due to the high memory requirement of the basic scheme,
the image resolution is limited to 512×512 for both datasets. Note
that, the basic scheme is the GPU version of [21] following a similar
strategy to render implicit surfaces.

We tested all three methods (SST, Bézier Clipping and basic
scheme) on two parametric surface datasets, Teapot and Monster
with a resolution of 512× 512. While Bézier Clipping is more effi-
cient than the basic scheme, it is still significantly slower than the
presented SSTmethod. The goal of this paperwas not to implement
an optimized framework of the modified Bézier clipping method
on the improvement of numerical stability (e.g., [31]). Ourwork fo-
cus on the improvement of rendering speed. Note, for the surface
case, the implementation of Bézier Clipping and the basic scheme is
identical, except that Bézier Clipping uses amore efficient subdivi-
sion strategy, where the basic scheme splits patches in the middle.
Themethodproposed in this paper is not only a faster alternative to
thesemethods, but also numerically very robust.While tessellation
methods such as [32] yield high efficiency in rendering parametric
surfaces, it is not clear on how to extend them to the dynamic sce-
nario where the surface properties change during the rendering.

CSGmodels. Constructive solid geometry (CSG) is often used in
solid modeling and has a number of applications. We created com-
plexmodels by using Boolean operators to combine simple volume
datasets. A dice and a cheese are composed of simple spheres and
cubes embedded in volumetric Bézier patches and renderedwith a
resolution of 512×512.We also deformed these twomodelswhich
validate that our approach was able to preserve sharp edges, as
shown in Fig. 8. It is challenging for polygonal meshes to preserve
the exact sharp edgeswhen surfaces are undergoing a deformation.
Fig. 8. Our algorithm is applied to deforming CSG models, where sharp edges
are exactly preserved. This kind of application is challenging for polygonal
representations.

Larger datasets. We run our algorithm on a wind blade dataset
with 800 K Bézier patches with a resolution of 512 × 512. We
vary the implicit surface during the visualization. Fig. 9 shows a
few snapshots. Our approach is able to render this dataset size as it
makes the economical use of GPU memory, by sharing subdivided
among multiple pixels.

Timings. Table 1 gives an overviewof the computation times for
the experiments conducted above, and provides further relevant
information. It can be seen that SST outperforms the basic scheme
on all the six datasets. It is important to mention that SAG is ex-
cluded from the timings in Table 1, as it is applied to the other basic
schemes and Bézier Clipping as well. Moreover, SAG is performed
in parallel for those rays which overlapwith the bounding boxes of
the Bézier patches. Since for the given datasets, this requires much
less computation time in comparison to the actual core algorithm,
it can be neglected. In addition,we provide a breakdownof the tim-
ings for the different core stages (as illustrated in Fig. 10) of the SST
algorithm.

6.2. Evaluation

Scalability of SST. Here we test how SST performs in terms of
rendering speed and memory cost when the image resolution is
increased. By referring to Fig. 11, image resolution is doubled at
each step, where the computation time and memory consumption
at most increases by a factor of four. This implies that by increas-
ing the resolution, computation time and memory consumption
only increase linearly. Note that, the corresponding plots are not
provided for the latter two methods due to the limitation of lo-
cal memory. However, the performance numbers in Table 1 in-
dicate that SST significantly performs better than both, the basic
scheme and Bézier Clipping, which both are implemented with
CUDA on the GPU as well. While the memory consumption of the
latter methods scale linearly as well, their performance degrade
due to the excessive access of local memory.

In addition, we conduct a study on how SST scales with in-
creasing degrees of the input patches. For this, we construct a
tri-quadratic Bézier volume to represent the algebraic function
f (x, y, z) = x2 + y2 + z2 − 1 by using Marsden’s identity [33]. We
raise the degree of this initial tri-quadratic patch and construct a
tri-cubic, tri-quartic, and tri-quintic patch. Note that each one of
them exactly represents f (x, y, z). In the study we visualize the
implicit surface f (x, y, z) = 0, i.e., a sphere with radius 1. We
run both, the SST algorithm and the basic scheme. Fig. 13 illus-
trates the growth in computation time by increasing degree. For
the tri-quadratic case, both methods perform similarly. However,
on the higher order patches SST outperforms the basic scheme.
Since the basic scheme constructs a subdivision tree for each pixel,
it also performsmore subdivisions. As the subdivision cost isO(p3),
where p is the degree, performing more subdivisions results in
longer computation times.

138 F. Liu et al. / Computer-Aided Design 58 (2015) 132–140
Table 1
Row 1–4 show timings of SSTs and the basic scheme to render isosurfaces. Row 5 and 6 show timings of SSTs and
Bézier clipping (B.C.) to render parametric surfaces. The table also shows the corresponding speedups by using SSTs.

Screen occupancy (%) # Patch # Degree SST (ms) Basic (ms) B.C. (ms) Speedup

Teardrop 38.9% 1 5 75.8 3151.7 N/A 41.6
Cylinder 68.1% 50 3 151.2 1719.1 N/A 11.4
Dice 32.5% 28 2 136.0 1500 N/A 11.03
Cheese 32.5% 23 2 94.5 903.4 N/A 9.56
Teapot 68.2% 32 3 19.4 251.1 256.7 12.9/13.2
Monster 73.1% 1494 3 25.9 294.9 121.4 11.4/4.7
Fig. 9. Different isosurface snapshots rendering the velocitymagnitude of air moving around awind blade. The dataset consists of 800 K tri-quadratic rational Bézier patches
(≈330 MB).
Fig. 10. The breakdown of the timings for the core of SST. Compute overlap kernel:
50.7%, Compaction kernel: 7.9%, Newton kernel: 10%, Subdivision kernel: 31.4%.

SST vs. pre-subdivision. A pre-subdivision stage is commonly
employed to reduce the computation load per pixel: before render-
ing takes place, the volumetric representation is subdivided where
subdivided volumes are only kept if they potentially contain a piece
of the isosurface. For a parametric surface, all subdivided patches
are kept. In the following we compare SST to the basic scheme and
Bézier Clipping by adding several pre-subdivision steps. As illus-
trated in Fig. 12, it can be seen that the basic scheme and Bézier
Clipping converge towards our algorithm as the number of pre-
subdivisions increases.

While a pre-subdivision stage can help to significantly improve
the rendering time, it is generally not clear how many initial sub-
division steps should be performed. Generally, there might be
more pre-subdivisions than necessary, i.e., for many rays, New-
ton’s method would already succeed on the coarser or even initial
patch, or, the number of pre-subdivisions is not enough, i.e., the
number of pre-subdivisions are too few to have an impact on the
number of local subdivisions and hence on the rendering speed.
In SST, more subdivision work is only performed for more com-
plex areas (e.g., around the silhouette) where Newton’smethod re-
quires more accuracy to succeed. In particular, for larger datasets
(Fig. 9), SST has a lower memory footprint compared to employing
a pre-subdivision stage. Next to those reasons, the main reason for
this is that SST considers only those parts of the dataset which are
potentially visible from the camera. An additional benefit of this is
a more efficient rendering speed.

7. Conclusions

In this paper, we propose Shared Subdivision Trees which effi-
ciently map to the GPU by sharing a single subdivision tree for a
given patch across multiple pixels. We demonstrate that Shared
Subdivision Trees cannot only be used to efficiently rasterize im-
plicit surfaces embedded in deforming volumes but also to raster-
ize parametric surfaces undergoing a deformation. Our method,
based on a direct rendering approach, is especially useful in
applications such as free-formdeformation or physically-based an-
imation applied to solids, where methods based on meshing, tes-
sellation, or sampling, are difficult to apply due to the nonlinear
deformation of the given surface representation. Input is allowed
to be rational, allowing the method to also be used in other appli-
cations such as CADmodeling or within isogeometric analysis. The
presented algorithm is simple in terms of implementation and ex-
ecutes efficiently on GPU. In the future we plan to embed this algo-
rithm in time critical applications such as 3D animation to render
nonlinear effects more robustly and efficiently. We further want to
explore our scheme to work directly with more general volumet-
ric representations, such as trivariate NURBS, without converting
them first into a Bézier representation.

Acknowledgments

This research, which is carried out at BeingThere Centre, is sup-
ported by the Singapore National Research Foundation under its
International Research Centre @ Singapore Funding Initiative and
administered by the IDM Programme Office. This research is
partially supported by Multi-platform Game Innovation Centre
(MAGIC) GREaT IPMD13013, funded by the Singapore National Re-
search Foundation under its IDM Futures Funding Initiative and
administered by the Interactive & Digital Media Programme Of-
fice, Media Development Authority. Sai-Kit Yeung is supported by
Singapore University of Technology and Design (SUTD) StartUp
Grant ISTD 2011 016, SUTD-ZJU Collaboration Research Grant
2012 SUTD-ZJU/RES/03/2012, SUTD-MIT International Design Cen-
tre Grant IDG31300106 and Singapore MOE Academic Research
Fund MOE2013-T2-1-159. Fuchang Liu is partially supported by
NSFC (61332017).

Appendix A. Pseudocode of SST algorithm

Inputs areM screen pixels, and a listL of patches in perspective
space. Output is a solution vector R, which stores a solution for
each pixel. As discussed in Section 4, line 3 corresponds to stage
1, line 4–10 corresponds to stage 2, and line 11–15 corresponds to
stage 3. The subdivision operation in line 13 splits patch Li at the
parametric center into eight Bézier patches and replaces patch Li
in L with the respective subpatches.

F. Liu et al. / Computer-Aided Design 58 (2015) 132–140 139
Fig. 11. Performance (left), and memory cost of three volume datasets (right), with respect to the image resolution.
Fig. 12. The performance with respect to the number of patches for (a) teardrop, (b) cylinder, and (c) teapot.
Fig. 13. The performance with respect to the order of patches.

1: Initialize 1D array R← {∞}Mk=1
2: do
3: I← ComputePixelOverlap(L) in parallel
4: for each tuple (s, t, i) ∈ I in parallel do
5: ost ← {bs, bt , â}
6: if rst ← Newton(Li, ost) succeeds then
7: Rst ← min(Rst , rst)
8: Remove (s, t, i) from I
9: end if

10: end for
11: F ← {}
12: for each tuple (s, t, i) ∈ I in parallel do
13: L← {Subdivide(Li) if i /∈ F }
14: F ← F ∪ {i}
15: end for
16: while I ≠ ∅

Appendix B. Rasterization of parametric surfaces

Section 4 describes an algorithm to rasterize an isosurface
against a grid of pixels. The core of the algorithm is the formulation
of three constraint equations, where the first equation requires a
solution to lie sufficiently close to the isosurface. The formulation
of the rasterization problem of a (rational) parametric surface in
perspective space, is defined as

S(u, v) =

n
i=0

m
j=0

wij cij θn
i (u) θm

j (v)

n
i=0

m
j=0

wij θ
n
i (u) θm

j (v)

= {x(u, v), y(u, v), z(u, v)}.

Given pixel (s, t), the goal is to compute all points which lie on the
parametric surface S, andwithin pixel (s, t). The two scalars, bs and
bt , defined as above, are used to define two perpendicular planes,
x− bs = 0 and y− bt = 0, coinciding with the center of the pixel.
Substituting S(u, v) into the two plane equations yields the two
constraint inequalities, |x(u, v)−bs| ≤ pw , and |y(u, v)−bt | ≤ pw ,
where pw is the pixel width as defined above.

Given these two inequalities, a new 2D Bézier surface with
control points {xijk − bs, yijk − bt} is constructed and input to
the algorithm as described in Section 4 with slight modifications:
(1) patches are only subdivided along u and v which is responsi-
ble for the significant speedup and reduced memory requirement
in contrast to the isosurface rasterization; (2) Newton’s method is
conducted in 2D instead in 3D, as the parametric surface is a func-
tion of two variables u and v, respectively. Pixel depth is deter-
mined by evaluating z(u, v).

References

[1] Sederberg TW, Parry SR. Free-form deformation of solid geometric models.
In: SIGGRAPH. New York: ACM Press; 1986. p. 151–60.

[2] Hughes TJ, Cottrell JA, Bazilevs Y. Isogeometric analysis: Cad, finite elements,
nurbs, exact geometry, and mesh refinement. Comput Methods Appl Mech
Engrg 2005;194:4135–95.

[3] Barr AH. Ray tracing deformed surfaces. In: SIGGRAPH. New York: ACM Press;
1986. p. 287–96.

[4] Rockwood A. Accurate display of tensor product isosurfaces. In: IEEE VIS. San
Francisco: IEEE Press; 1990. p. 353–60.

[5] Reimers M, Seland J. Ray casting algebraic surfaces using the frustum form.
Comput Graph Forum 2008;27(2):361–70.

[6] Knoll A, Hijazi Y, Hansen CD, Wald I, Hagen H. Interactive ray tracing of
arbitrary implicit functions. In: IEEE IRT. UIm: IEEE Press; 2007. p. 11–8.

http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref1
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref2
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref3
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref4
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref5
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref6

140 F. Liu et al. / Computer-Aided Design 58 (2015) 132–140
[7] Parker S, Shirley P, Livnat Y, Hansen C, Sloan PP. Interactive ray tracing for
isosurface rendering. In: IEEE VIS. Los Alamitos: IEEE Press; 1998. p. 233–8.

[8] Entezari A, Dyer R, Moller T. Linear and cubic box splines for the body centered
cubic lattice. In: IEEE VIS. Washington: IEEE Press; 2004. p. 11–8.

[9] Kim M, Entezari A, Peters J. Box spline reconstruction on the face-centered
cubic lattice. IEEE Trans Vis Comput Graphics 2008;14(6):1523–30.

[10] Liu B, Clapworthy GJ, Dong F. Fast isosurface rendering on a gpu by cell
rasterization. Comput Graph Forum 2009;28(8):2151–64.

[11] Chang YK, Rockwood A, He Q. Direct rendering of freeform volumes. Comput-
Aided Des 1995;27(7):553–8.

[12] Meyer M, Nelson B, Kirby R, Whitaker R. Particle systems for efficient and
accurate high-order finite element visualization. IEEE Trans Vis Comput
Graphics 2007;13(5):1015–26.

[13] Zwicker M, Pauly M, Knoll O, Gross M. Pointshop 3D: an interactive
system for point-based surface editing. ACM Trans Graph 2002;21(3):322–9.
(Proceedings SIGGRAPH 2002, San Antonio).

[14] Lorensen WE, Cline HE. Marching Cubes: A high resolution 3D surface
construction algorithm. In: SIGGRAPH. New York: ACM Press; 1987. p. 163–9.

[15] Cignoni P, Floriani LD, Montani C, Puppo E, Scopigno R. Multiresolution
modeling and visualization of volume data based on simplicial complexes. In:
VVS, New York. 1994. p. 19–26.

[16] Nelson B, Kirby RM. Ray-tracing polymorphic multidomain spectral/hp
elements for isosurface rendering. IEEE Trans Vis Comput Graphics 2006;
12(1):114–25.

[17] Nelson B, Liu E, Kirby R, Haimes R. Elvis: a system for the accurate and
interactive visualization of high-order finite element solutions. IEEE Trans Vis
Comput Graphics 2012;18(12):2325–34.

[18] UffingerM, Frey S, Ertl T. Interactive high-quality visualization of higher-order
finite elements. Comput Graph Forum 2010;29(2):337–46.

[19] Muller M, Gross M. Interactive virtual materials. In: GI. Waterloo. 2004.
p. 239–46.
[20] ElberG, KimMS. Geometric constraint solver usingmultivariate rational spline
functions. In: SMA. New York: ACM Press; 2001. p. 1–10.

[21] Martin T, Cohen E, Kirby MM. Direct isosurface visualization of hex-based
high-order geometry and attribute representations. IEEE Trans Vis Comput
Graphics 2012;18(5):753–66.

[22] Farin G. Curves and surfaces for CAGD: a practical guide. 5th ed. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.; 2002.

[23] Kajiya JT. Ray tracing parametric patches. In: SIGGRAPH.NewYork: ACMPress;
1982. p. 245–54.

[24] Cohen E, Riesenfeld RF, Elber G. Geometric modeling with splines: an
introduction. Natick, MA, USA: A. K. Peters, Ltd.; 2001.

[25] Parker S, Martin W, Sloan PJ, Shirley P, Smits B, Hansen C. Interactive ray
tracing. In: I3D. New York: ACM Press; 1999. p. 119–26.

[26] Toth DL. On ray tracing parametric surfaces. In: SIGGRAPH. New York: ACM
Press; 1985. p. 171–9.

[27] Nishita T, Sederberg TW, Kakimoto M. Ray tracing trimmed rational surface
patches. In: SIGGRAPH. New York: ACM Press; 1990. p. 337–45.

[28] NVIDIA: CUDA programming guide 2.0, 2008. http://developer.nvidia.com/
object/cuda.html.

[29] Hoberock J, Bell N. Thrust: a parallel template library, 2010. URL: http://thrust.
github.io/.

[30] Zhou K, Hou Q, Wang R, Guo B. Real-time kd-tree construction on graphics
hardware. ACM Trans Graph 2008;27(5): Article No. 126. (Proceedings
SIGGRAPH Asia 2008, Singapore).

[31] Efremov A, Havran V, Seidel HP. Robust and numerically stable bezier clipping
method for ray tracing nurbs surfaces. In: SCCG. New York: ACM Press; 2005.
p. 127–35.

[32] Eisenacher C, Meyer Q, Loop C. Real-time view-dependent rendering of
parametric surfaces. In: I3D. New York: ACM Press; 2009. p. 137–43.

[33] Marsden MJ. An identity for spline functions with applications to variation
diminishing spline approximation. J Approx Theory 1970;3(7):7–49.

http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref7
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref8
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref9
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref10
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref11
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref12
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref13
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref14
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref16
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref17
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref18
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref20
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref21
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref22
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref23
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref24
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref25
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref26
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref27
http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/cuda.html
http://thrust.github.io/
http://thrust.github.io/
http://thrust.github.io/
http://thrust.github.io/
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref30
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref31
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref32
http://refhub.elsevier.com/S0010-4485(14)00174-2/sbref33

	Efficient direct rendering of deforming surfaces via shared subdivision trees
	Introduction
	Previous work
	Mathematical background
	Classical ray/isosurface intersection

	Shared subdivision trees for isosurface rasterization
	SST algorithm

	Implementation
	Results and evaluation
	Benchmarking results
	Evaluation

	Conclusions
	Acknowledgments
	Pseudocode of SST algorithm
	Rasterization of parametric surfaces
	References

