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Figure 1: a) Combined raw geometries obtained by a calibrated setup of two hybrid color+depth cameras rendered in green and
red respectively. b) Result of geometry fusion obtained by our MLS-based approach. c) Textured geometry from a). Note the
numerous visual artifacts due to the inaccurate and incomplete geometry, especially near depth discontinuities. d) Our optimized
textured geometry from b).

Abstract
Multiview reconstruction aims at computing the geometry of a scene observed by a set of cameras. Accurate 3D
reconstruction of dynamic scenes is a key component in a large variety of applications, ranging from special effects
to telepresence and medical imaging. In this paper we propose a method based on Moving Least Squares surfaces
which robustly and efficiently reconstructs dynamic scenes captured by a set of hybrid color+depth cameras.
Our reconstruction provides spatio-temporal consistency and seamlessly fuses color and geometric information.
We illustrate our formulation on a variety of real sequences and demonstrate that it favorably compares to
state-of-the-art methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Display Algorithms

1. Introduction

High quality geometry acquisition is a fundamental problem
in the fields of computer graphics and computer vision. State-
of-the-art acquisition pipelines generally have three major
components. First, data is acquired by a multi-sensor setup
that consists of, for example, a set of calibrated color cam-
eras [BPS∗08, BHPS10] or a set of calibrated color cameras
and projectors (structured light) [GWN∗03]. Second, in an
initial reconstruction stage, stereo matching is performed on
image pairs or projected patterns. This generates an initial
set of 3D points [BBH08]. Third, a fusion stage is applied
to jointly combine these initial partial geometries into one
consistent geometric model [Zac08, PSDB∗10].

Traditionally, the initial reconstruction stage is time con-
suming, with the exception of very few systems [GWN∗03].
However, the recent emergence of low-cost hybrid
color+depth cameras, such as the Kinect, paved the way to
real-time geometry acquisition, making the initial reconstruc-
tion stage virtually computationally free. On the downside,
geometric data from such hybrid cameras is of very low qual-
ity, suffering from severe spatial as well as temporal artifacts.
Moreover, these devices only capture 2.5D geometry (depth
maps). In order to acquire the full 3D geometry of a scene
or an object, multiple devices need to be used and their data
fused into one coherent 3D model or, in the case of spatio-
temporal surfaces, into one 4D model.
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In this work we consider acquisition setups consisting of a
set of calibrated hybrid cameras. We focus on the fusion stage
that takes a sequence of depth maps and the associated color
images as input and computes a spatio-temporal surface. Our
goal is to outfit the acquisition pipeline with an efficient yet
versatile fusion method that is tailored to the specific features
and limitations of such setups.

There are several important challenges in fusing data ac-
quired by multiple hybrid cameras. (i) The depth data is
spatially and temporally noisy, particularly around depth dis-
continuities. This leads to incomplete geometry and disturb-
ing flickering artifacts [KPZ∗11]. (ii) Calibration errors can
hinder the fusion process as the depth maps might not align
properly [MF11]. Calibration of heterogeneous setups is typ-
ically more difficult and error prone than for homogeneous
setups [HKH12]. (iii) Hybrid setups provide multiple data
types (i.e., color and depth) that need to be combined for
optimal reconstruction [KPZ∗11]. (iv) A large variety of ap-
plications such as free viewpoint video and autostereoscopic
3D requires the generation of multiple views simultaneously.
Therefore, it is important that the fusion of the geometry is
view-independent. (v) The fusion process is generally mem-
ory intensive and computationally expensive, especially for
spatio-temporal reconstruction [SAL∗08].

We propose a fusion method for setups with multiple hy-
brid cameras that addresses these limitations. Our method is
based on a point based surface representation and Moving
Least Squares (MLS) reconstruction. Our main technical con-
tribution is to adapt and extend current MLS reconstruction
techniques for efficient, accurate and robust reconstruction
that can naturally handle surface discontinuities and consis-
tently incorporate color and temporal information.

2. Related work

Early methods of 3D surface acquisition using multi-camera
setups rely on visual hulls to compute the rough geometry
of an object [MBR∗00]. Although very efficient, hull based
methods miss details, especially in concave areas. Further-
more, they put a lot of constraints on what type of objects can
be captured as well as on the camera positions. Therefore,
these methods were complemented [dST∗08] and eventually
replaced altogether by techniques based on pairwise stereo
reconstruction [BPS∗08, VPB∗09]. These pairwise 2.5D ge-
ometries need to be fused into one global 3D geometry. This
can be achieved by fitting a template to the captured ob-
ject [dST∗08,LAGP09]. Such a template-based approach has
the advantage of yielding a complete and consistent model
spatially as well as temporally. However, in general template-
based methods limit the scope of the acquisition. Templates
for all objects in a scene are not always available and often
impractical to build. Some methods require a priori a template
of the captured object that has to be obtained by some other
means. Other methods compute an ad-hoc template, but they

are usually not online, i.e. they require the entire sequence as
input [WJH∗07, WAO∗09].

Since the wide adoption of low-cost depth cameras, a lot
of effort is focused on refining the depth maps by incorpo-
rating color and temporal information [RSD∗12, LWA∗12].
Although high-quality results can be achieved, processing
the data from each device independently might lead to in-
consistencies, such as geometric misalignments. The refined
depth maps have to be jointly fused into a 3D (or 4D) surface
using a surface reconstruction technique. In the following,
we differentiate between surface reconstruction techniques
based on their underlying surface representation.

Depth map representation: for a variety of applica-
tions, especially in graphics, vision and robotics, depth
maps are a very popular representation [MAW∗07, ZJWB09,
CVHC08, GFP10]. One of the main benefits of depth maps
is that the entire arsenal of image processing techniques
is (i) readily available to refine the data very efficiently
[PKT∗11, RSD∗12, MACNB12, YYLH12] and (ii) also suit-
able for spatio-temporal processing [LWA∗12]. The downside
of these methods is that the reconstruction is view-dependent.
This implies that the processing has to be performed for
each frame and virtual camera location and in the case of
spatio-temporal reconstruction, the viewpoint must be fixed
throughout the sequence.

Triangle mesh representation: mesh-based representa-
tions are widely used due to their simplicity and efficient
execution on graphics hardware. For example, Maimone et
al. [MF11] simultaneously acquire data from 10 Kinects and
render the geometry from each individual device as a triangle
mesh. As the rendered meshes are not consistent, the result
exhibits spatial as well as temporal artifacts. To fuse the entire
point cloud into one surface, most mesh methods use Voronoi
diagram and Delaunay triangulation based algorithms to com-
pute the connectivity [AB98, ACK01]. These methods are
generally computationally expensive. Furthermore, they are
challenged when large parts of the scene are occluded and
they are not robust to noise. Other mesh based methods for
temporal fusion like [PSDB∗10, LLV∗12] rely on parameteri-
zation and tracking to construct the temporal varying surface,
but are dedicated to offline processing (in the order of several
minutes per frame). In contrast, we obtain a processing rate
in the order of one second per frame (see details in Section
5).

Volumetric representation: many popular volumetric fu-
sion methods are based on the seminal work of Curless et
al. [CL96], which maintains a regular grid enclosing the area
of interest. The volumetric representation encodes the sur-
face as a signed distance field where the implicit surface at
distance zero represents the scene. This signed distance field
is constructed by fusing depth maps from multiple views into
the volume. Ray casting is generally employed to render the
scene. This approach is especially useful when many views
are merged into the volume [IKH∗11], as the data size of
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the volume remains constant throughout the fusion process
which incrementally constructs a consistent surface. When
many views are available, the resulting surface can be of high
quality as the input data noise can be, to some extent, fil-
tered out during the volumetric averaging process. However,
this advantage does not play out when only a few views are
available.

There are three additional shortcomings on this represen-
tation: First, updating the volume with dynamic data is a
challenging task [MF12a]. Second, methods based on volu-
metric representations are memory intensive, as a relatively
high volume resolution is required to achieve reasonable re-
sults. Therefore, in practice, the volume is moved around the
scene to capture a larger area of interest [WKF∗12, CBI13].
Third, it is difficult to incorporate color information in these
volumetric approaches as it is not clear how textures can be
fused into the volumetric representation as well. Texturing
the reconstructed surface is generally based on texture projec-
tion [RNK97] or a variation of voxel coloring [SD99], or a
hybrid of both [MF12a]. Texture projection projects the color
image as seen from the color camera onto the reconstructed
surface. Voxel coloring stores colors as weighted averages in
the volume. Since the volume resolution is generally much
lower than the input textures, methods based on texture pro-
jection have to address ghosting artifacts, whereas approaches
based on voxel color exhibit blurring artifacts.

Variational methods [Zac08, KBH06] in the context of sur-
face reconstruction explicitly store the volumetric grid on
which the surface is reconstructed solving a global system of
equations. They allow incorporating temporal consistency as
a fourth dimension in the formulation (e.g., [SAL∗08]). How-
ever, storing such a 4D volume does not only significantly
increase the memory requirement, but also makes solving the
respective (non-linear) problem computationally expensive.

Point based methods: 3D points are a natural primitive
for geometry acquisition as most devices return point clouds
or depth maps that can be trivially converted into points.
Wand et al. [WJH∗07, WAO∗09] adopt a point based surface
representation for temporal fusion to build a template of
dynamic objects. However, the method is computationally
demanding. Another possibility for fusing and consolidating
point cloud data is applying filters on point locations, possibly
augmented with attributes such as colors, similar to bilateral
or robust filtering. Such filters can be used to remove noise
and outliers [HLZ∗09, HWG∗13] as a preprocessing step for
surface reconstruction, but cannot be used alone to generate
and resample smooth surfaces.

A recent set of methods that combines the efficiency and
locality of explicit surfaces with the robustness of the implicit
methods is MLS based point set surfaces [Lev03, ABCO∗03,
ABCO∗03]. They can locally estimate the implicit function
and project points onto the surface. They have also been
extended for improved stability [GG07], fast evaluation on
the GPU [GGG08], and sharp feature and detail preserva-

tion [FCOS05, ÖGG09]. However, the current MLS defini-
tions are not suitable to handle large depth discontinuities,
and temporal and color dimensions have not been considered.

3. MLS based Point Set Surfaces

MLS based point set surfaces (PSS) are a class of robust
surface definition and reconstruction methods that rely on a
set of, possibly noisy, 3D sample points as input [ABCO∗03,
AA04,KB04]. In our application, the 3D point set is acquired
by multiple depth cameras. MLS PSS approximate an implicit
function f : R3→R and provide stable reconstructions based
on local fitting. This approximation is computed such that
f (xi) ≈ 0 for the set of sample points xi (for local surface
fitting) with additional constraints such as ‖∇ f‖ = 1 (to
avoid the trivial solution f (x) = 0). This is equivalent to
performing a local kernel regression based fitting [ÖGG09],
for which the following energy needs to be minimized:

∑ρ( f (xi)− yi)k(x,xi) (1)

Typically, a least squares system is solved such that ρ(·) =
(·)2, and the kernel function k(·) is defined to give more
weights to the points xi that are closer to the point x. Due
to this weighting, a local approximation is obtained by
expanding f (xi) in a Taylor series around x as f (xi) =
f (x) +∇ f (x)T (xi − x) + · · · and computing the minimiz-
ing f ,∇ f , · · · . When using a first order expansion for f , a
simple and efficient approximation can be computed by the
following formula [AA03, AA04]:

f (x) = n(x)T (x−a(x)) , (2)

where n(x) can be computed via a local principle compo-
nent analysis or as n(x) = ∑niwi(x) (if the normals ni are
provided), a(x) = ∑xiwi(x), and wi(x) = ki(x)/∑ki(x). The
kernel function k(·) determines the influence of each sam-
ple on the local approximation. We use a kernel of the form
ki(x) = φ(

‖x−xi‖
hi(x) ) where hi(·) controls the smoothness of the

surface (in our case, a simple constant parameter) and φ(·) is
a monotonically decreasing radial function. For φ(·), we use
a fast approximation of the Gaussian kernel [GG07]:

φi(r) =
{

(1− r2)4 if r < 1
0 otherwise.

(3)

Once the implicit function f (x) is obtained, the points
can be projected onto the surface for rendering via splat-
ting [ZPvBG01]. The projection can be simply performed
with a gradient descent xk+1 = xk−∇ f (xk) f (xk), where x0
is the point to be projected. For the definition in Equation 2,
this can be made even more efficient by the approximate
descent xk+1 = xk−n(xk) f (xk). Typically a few iterations
are sufficient for a very accurate projection. Note that the
projection is a fast operation involving only local neighbors
at each iteration, making MLS surfaces suitable for efficient
reconstruction and rendering of noisy point cloud data.
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Figure 2: Our pipeline: a) Raw input data: depth maps and color images of (here two) hybrid cameras. b) Combined geometry
(top) and textured version (bottom). c) Boundary refinement and hole-filling. d) Final fused surface. e) Optimized textured
rendering of the fused surface.

3.1. Limitations of MLS PSS

Although celebrated for their robustness and accuracy, current
MLS PSS have several limitations that need to be addressed
particularly when using them for a reconstruction system
based on multiple hybrid cameras. Below we outline these
limitations and in the next section we detail how our method
addresses them.

Color image consistency: in our setup, we simultaneously
acquire depth maps and color images. Traditional MLS PSS
are purely geometric and thus do not consider information
from color images. In contrast, we propose taking advantage
of the rich information available in these images to (i) en-
hance the geometry reconstruction quality and (ii) compute
the 3D point color for texturing.

Temporal consistency: MLS PSS methods can be ex-
tended to the temporal domain by lifting the point repre-
sentation from 3D to 4D. Adding the time dimension results
in a temporally consistent geometry reconstruction. This con-
ceptual extension faces two main technical challenges. The
first one is to overcome the computational burden, while re-
taining the accuracy and theoretical smoothness properties of
the spatio-temporal reconstruction (see performance section),
and the second one is the ability to deal with the relatively
sparse sampling of the time domain.

Performance: MLS PSS reconstruction relies on frequent
neighborhood computations. Unlike meshes, neighbors of
points cannot be efficiently retrieved unless appropriate data
structures, such as kd-trees, are used. However, constructing
and maintaining these structures is the main computational
bottleneck of current MLS PSS methods. The complexity ad-
ditionally increases in the case of spatio-temporal reconstruc-
tion due to the additional temporal dimension and number of
points that define the surface to be reconstructed. We propose
a solution that takes advantage of the structure inherent in
the depth map and color data to perform the spatio-temporal

neighborhood queries removing the need of computationally
expensive data structures.

Discontinuities and boundaries: MLS PSS methods in-
herently assume that the underlying surface is a smooth man-
ifold without boundaries. Although several variants of MLS
surfaces address sharp features [FCOS05,ÖGG09] and bound-
aries [GG07], the current methods cannot handle the unreli-
able data points acquired by low-cost hybrid camera setups,
especially near depth discontinuities as shown in Figure 6.
The estimated location of these points can deviate signif-
icantly from their true locations, leading to an essentially
random reconstruction in those regions. We propose a new
solution that handles such cases robustly for hybrid camera
setups.

4. Proposed Approach

Our novel geometry fusion method is designed for calibrated
setups of multiple hybrid (color+depth) cameras. The depth
cameras return depth maps that provide a set of 3D point
clouds. They can be merged into a common coordinate frame
using the extrinsic calibration. These merged point sets could
be processed at each time instance using an MLS based re-
construction method. However, as discussed in Section 3.1,
current MLS methods suffer from a number of fundamental
limitations that make them unsuited for efficient dynamic
scene reconstruction. The proposed method, as detailed in
the following, handles fuzzy depth discontinuities robustly,
ensures spatio-temporal consistency, and provides accurate
texturing of the reconstructed model.

Our fusion pipeline is illustrated in Figure 2. It has three
main components: First, we position the points in the fuzzy
depth discontinuities by classifying them in the most plau-
sible locally defined foreground or background region. This
is necessary for a stable reconstruction of those fuzzy ar-
eas. Second, we reconstruct the spatio-temporal geometry
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Figure 3: Temporal kernel: 3D reconstruction without (left)
and with (right) temporal information. Top: results in the
color images, bottom: results in 3D space, both with close-up
views.

Figure 4: Color aware MLS kernel: Top: without color infor-
mation. Bottom: with color information.

faithfully using an MLS reconstruction method that simulta-
neously incorporates depth and color information. Although
our main goal is to reconstruct the geometry, for some appli-
cations such as novel view synthesis it is important to also
provide texture information. This is typically achieved by
blending the textures from different cameras, which may cre-
ate unwanted visual artifacts [BBM∗01]. In a third step we
therefore optimize the texture based on the refined geometry.

4.1. Spatio-temporal Reconstruction

Incorporating the temporal dimension requires to reconstruct
a 3-manifold surface in the 4D spatio-temporal space via
the implicit function f : R4→ R. The same formulation as
explained in Section 3 can be used to solve for f , except that
the points and vectors are in 4D. These samples can be used
to compute the normal n(x) via a local PCA, and a(x) via
averaging, as defined in Equation 2.

The main benefit of the temporal kernel is that it provides a
more accurate and consistent reconstruction that helps allevi-
ate undesirable flickering artifacts during rendering. Figure 3
illustrates how the reconstructions obtained using our tem-
poral kernel are more accurate and the accompanying video
highlights the temporal consistency of the results.

Figure 5: Conceptual approach of our boundary refinement
on a 1D example. The dots represent the data points and the
MLS resulting curve is shown in orange. a) Depth discontinu-
ity. b) The color information of the data points (obtained from
the color image) reveals that the discontinuity is inaccurate.
c) Our method robustly classifies the points around the depth
discontinuity as local foreground/background.

Robustness to color differences. As observed by Öztireli
et al. [ÖGG09], robustness to point-wise attributes can be
obtained by adjusting the error function ρ in Equation 1. For
certain classes of functions ρ, the resulting system can be
solved by iteratively reweighted least squares with Gaussian
weighting [ÖGG09]. For our purposes, the attributes are col-
ors and we would like to get a surface definition that is robust
to color differences. With our first order spatio-temporal def-
inition, as explained in Sections 3 and 4.1, and assuming a
single iteration, this leads to using a modified kernel k:

ki(x) = φ

(
‖x−xi‖

hi(x)

)
·φ

(
‖c(x)− c(xi)‖

hc
i (x)

)
(4)

where x and xi are in the spatio-temporal domain, hi and
φ have been defined in Section 3, and c(x) and c(xi) are
the colors of the points x and xi respectively as seen by the
camera from which they are constructed. The parameter hc

i
controls the smoothness of the color, similarly to hi in the
spatial domain. The color distance is computed in the Lab
color space. Figure 4 shows the improvements in fine details
when using the color aware kernel.

Fast neighborhood queries. As discussed previously, the
main performance bottleneck of point based surfaces is the
neighborhood search, particularly the construction and main-
tenance of spatio-temporal search structures. A key observa-
tion is that point clouds obtained from depth maps exhibit a
particular structure: points are aligned to the 2D grid of their
corresponding camera. For a given point x, we compute its
set of neighbors by projecting x in all the cameras and taking
the union of all the points within an area in the 2D domain.
The set of neighbors computed on the 2D grid is larger than
the set of the actual 3D neighbors, but this is not a problem as
the far away points are automatically eliminated by the MLS
kernel that will assign a weight close to zero if they are too
far in the 3D space.

We extended the neighborhood query to 4D by adding the
time dimension as the fourth coordinate and scaling it linearly
to match the spatial scaling. This scaling factor was computed
experimentally and is the same for all the results shown in
this paper.
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Figure 6: The boundary refinement shown for clarity on the geometry of one depth camera. Top: Geometry. Bottom: Textured
geometry. Red boundaries highlight depth discontinuities. a) Initial geometry with holes. b),c) Geometry filled, boundary is
inconsistent with the color information. Rendered from the camera view and a virtual view, respectively. d),e) Corrected boundary,
consistent with the color information. Rendered from the camera view and a virtual view, respectively. Note particularly the
correct reconstruction of the teeth of the plush hypo highlighted in the zoomed-in area.

4.2. Boundary Refinement

One of the most appealing features of MLS methods is their
robustness to noise. However, although MLS surfaces are
designed to tolerate some errors in the point set, they typically
fail in the presence of very large errors. Specifically, very
frequently with current depth camera technologies, points
near depth discontinuities are inherently unreliable [KPZ∗11].
They are often positioned incorrectly by the depth camera
either onto the locally defined foreground or background
of the depth discontinuity, as illustrated in Figures 5 and 6.
These points can be too far away from the true geometry for
the MLS reconstruction to work. Therefore it is important
to detect and relocate them, such that the error is within the
interval tolerated by the MLS reconstruction mechanism.

To address this issue we make a few key observations. First,
as the error comes from the depth measurements, we need
to search for the optimal positions for the problematic points
only along the corresponding ray. Furthermore, similarly
to a skewer, a ray intersects the geometry of a scene at a
few discrete depths, which further limits the search space.
Second, color consistency is a reliable indicator in selecting
the appropriate depth along the ray and third, these points do
not have to be relocated perfectly, but rather close enough for
the MLS reconstruction to tolerate.

To put this into practice, for a given point x along a depth
discontinuity we first perform a mean clustering of the neigh-
boring pixels based on their depth. In nearly all cases there
are only two clusters, therefore, for efficiency we assume two
clusters. As shown in our examples, this assumption does
not affect the quality of the results. The second step is to
select which cluster is more consistent to the investigated

point. To achieve this, we place the point sequentially at the
average depth of each cluster and compute the fit function
g(x j) = ∑ki(x) where x j is the 3D position of the point x
in the j-th cluster and ki() is defined as in Equation 4. This
function g returns high values if the point x j and its neigh-
bors xi are consistent in terms of both geometry and color
and low values otherwise. Finally the cluster leading to the
highest consistency value is selected. This step is illustrated
schematically in Figure 5.

For completeness, a few additional technical details are
now explained. In order for this method to work reliably,
the depth map should contain no missing geometry such
that all points have a full neighborhood. Therefore we fill
the depth map in a similar way to [KPZ∗11]. Points along
depth discontinuities in one depth camera are not necessarily
depth discontinuities when considering the union of all the
depth maps. The boundary refinement is performed using
the entire spatio-temporal geometry, thus producing robust
and temporally consistent results. This procedure is repeated
iteratively until the boundaries stabilize.

4.3. Texture Blending

The last step in the pipeline is to determine the color of each
pixel. This is done by projecting the point into the visible
cameras, and if two or more are available the information
is fused together by performing a weighted average of the
colors. The choice of these weights is not critical when the
blended colors are similar. However, due to calibration and
other data errors it happens frequently that the blended colors
are quite different. As illustrated in Figure 2, this results in
undesirable color bleeding artifacts. Several heuristics have

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



C. Kuster et al. / Spatio-Temporal Geometry Fusion for Multiple Hybrid Cameras using Moving Least Squares Surfaces

Figure 7: Our hybrid setup composed of two Asus Xtion
depth cameras (red) and two Point Grey’s Grasshopper Ex-
press color cameras (green).

been developed for this problem [BBM∗01, KPZ∗11]. They
usually take into account the position of the cameras and/or
the surface normals but not the local color consistency. We
propose a new blending technique that computes the blending
weights aware of the local color consistency.

Given a point x, with colors c j(x) corresponding to M
color cameras where x is unoccluded, we compute the unnor-
malized weights w j as follows:

w j(x) = ∑φ

(
‖x−xi‖

hi(x)

)
·φ

(
‖c j(x)− c j(xi)‖

hc
i (x)

)
(5)

where xi are neighborhood vertices and φ, hi and hc
i are de-

fined as before. A high color consistency in the neighborhood
of a given vertex will result in a high weight and vice-versa.
The weights are normalized for the blending. As shown in
Figure 9 and the accompanying video this blending method
alleviates some of the color bleeding artifacts and leads to
visually satisfying results.

5. Analysis and Results

We demonstrate our proposed approach on a calibrated hy-
brid setup consisting of two depth cameras (Asus Xtion de-
vices) complemented with two high resolution color cameras
(Grasshopper Express by Point Grey), as illustrated in Fig-
ure 7. The depth maps have a resolution of 640×480 and the
color images 1280×960, and are both acquired at 30 frames
per second (fps). Experiments have been conducted on a
computer equipped with a 3.4GHz CPU, 16-GB RAM and
a GeForce GTX 680 graphics card. Note that our approach
is (i) general as its mathematical formulation does not put a
restriction to the number of devices, and thus additional cam-
eras can be installed if needed by the target application and is
also (ii) scalable since its complexity increases only linearly
with the number of devices. For rendering via splatting, we
did not have to incorporate a resampling strategy [GGG08]
as the projected splats already gave us a hole-free rendering.

Our pipeline executes entirely on the GPU, and currently
runs at 0.5fps at full resolution and at 2fps at half resolution.
Performance could be significantly improved with careful
code optimization and next generation hardware. A strength
of our method is its view-independence, i.e., the geometry
does not have to be recomputed when the virtual camera is

Figure 8: Surface reconstruction using our method. Left:
original geometry. Right: our surface reconstruction. Top
example: Complex discontinuities are accurately preserved.
Bottom example: many salient details such as the folds on the
cloth are well preserved.

moved. Once the geometry is obtained, this allows real-time
viewpoint modification, typically between 10 and 30fps in
our setup, depending on the number of rendered points. Our
reconstruction method relies on a few user parameters: we
use a spatial neighborhood of 10 pixels, a temporal window
of 4 frames and a color neighbourhood of 0.05 in the Lab
perceptual color space for all the sequences of this paper.

Representative results obtained by our approach are avail-
able in Figures 1, 8 and 9. Some particular features have been
discussed in the previous sections, such as color aware MLS
kernel refinement in Figure 4 and boundary refinement in
Figure 6. For a better assessment, particularly of the temporal
consistency, we refer the reader to the accompanying video
of this work. In addition to our own captures we have applied
our algorithm to the well-known Breakdance dataset acquired
by a set of color cameras [ZKU∗04]. Note that here the input
depth maps have been obtained by stereo matching. As shown
in Figure 10 our method is able to fuse the multiple depth
maps while removing quantization artifacts and preserving
fine details.

5.1. Comparisons

We compare our approach against several competing state-of-
the-art methods that use similar hybrid devices. In a first set
of experiments, we apply two recently developed methods
that integrate both color and temporal information acquired
by a single hybrid camera: an advanced spatio-temporal filter-
ing [RSD∗12] and a temporal edge-aware filtering [LWA∗12].

c© 2014 The Author(s)
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Figure 9: Additional representative results of geometry fusion and texturing from a multi-hybrid camera setup. Raw geometry (a)
and its textured version (c). Refined geometry (b) and its optimized textured version (d) obtained by our approach.

Figure 10: Result using three cameras from the Breakdance dataset [ZKU∗04]. (a) original depth maps and color images. (b)
raw geometry and result. (c) color coded raw geometry and result (one color for each of the three cameras).

Each hybrid camera is processed individually and then the re-
sulting filtered geometries are combined into a common coor-
dinate system using the extrinsic calibration of the setup. Re-
sults are shown in Figure 11 and in the accompanying video.
Although their results are convincing on each individual de-
vice (especially the method of Richardt et al. [RSD∗12]),
these image-based methods cannot be straightforwardly ap-
plied to joint processing of data acquired by multiple hybrid
cameras. An important practical consequence of independent
processing is that the resulting geometries might not align
correctly. For example, see the eye or mouth misalignment
in Figure 11. While partly coming from small calibration
inaccuracies of the setup (the same calibration has been used
for all the methods), this geometry misalignment is mainly
due to the fact that the temporal component strongly modifies
the geometry. This has been experimentally verified by turn-
ing off the temporal component in the method of Richardt et
al. [RSD∗12] to the price of introducing temporal flickering
artifacts. In contrast to independent processing, our method
treats the data from all depth cameras as one geometry, thus
providing more consistent results.

In a second set of experiments, we compare our work to
a recent impressive system dedicated to free-viewpoint tex-
tured rendering using several hybrid cameras [MF11]. Their
approach applies a specifically designed 3D data merger and
renders the scene as a triangle mesh. While data from multiple
cameras is simultaneously considered, experimental results
show that the resulting geometry exhibits severe flickering
artifacts, in contrast to our results. See Figure 12 and video.

The latest systems that fuse data from multiple hybrid
cameras [IKH∗11, MF12b] are based on the volumetric rep-
resentation following the approach proposed by Curless et
al. [CL96]. As updating the volumetric representation with
dynamic data is particulary challenging, the signed distance
function is reconstructed at each time instance, taking into
account all data provided by the multiple cameras. The color
of a fragment is determined by projecting the position of the
surface it corresponds to into the image of the color camera
which best faces the surface point. Results obtained by the
volumetric representation are shown in Figure 12 and in the
video. Thanks to the volumetric fusion, spatial consistency
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Figure 11: Data from each depth sensor processed individu-
ally and then combined, resulting in an inconsistent surface.
Richardt et al. [RSD∗12] (left). Lang et al. [LWA∗12] (mid-
dle). Our result: MLS-based reconstruction jointly fusing the
geometry from all depth sensors (right).

and smoothness are ensured. However, since only a few views
are available (here two cameras), the accumulation power of
the volumetric representation cannot play and thus the qual-
ity of the reconstructed geometry is limited. Furthermore,
flickering artifacts are noticeable because of the lack of a
temporally consistent volumetric method for dynamic data.

5.2. Limitations

Despite that spatio-temporal reconstruction of dynamic data
is both computationally and memory intensive [SAL∗08],
we managed to achieve a processing rate of 0.5fps at full
resolution. Although this might not be sufficient for demand-
ing applications such as real-time reconstruction with sev-
eral additional cameras, in contrast to state-of-the-art offline
spatio-temporal reconstruction methods [WJH∗07, WAO∗09,
BPS∗08,PSDB∗10,LLV∗12], our framework is designed bot-
tom up for efficient reconstruction using only simple parallel
local operations that each are computationally inexpensive.
Thus, the current performance of our prototype is significantly
faster than offline methods: in the order of half a second per
frame v.s. in the order of minutes per frame and it has no
conceptual performance limitations.

Because of the memory limitations of the graphics card
used in our experiments, we can currently process a temporal
window of only 4 frames which, while being sufficient for a
wide range of sequences (as illustrated in the paper), it does
not alleviate all artifacts.

6. Conclusion

In this paper we present a MLS methodology to fuse a set of
2.5D geometries with associated color information into one
temporally coherent textured 3D geometry representation.
Our method extends the traditional MLS point based surface
representation by combining the efficiency inherent to grid
aligned representations with the versatility and reconstruction
power of point based representations. We apply our method
to a setup consisting of hybrid cameras and demonstrate
on various real-world sequences that our method produces

Figure 12: Comparison of geometry reconstruction (top) and
texturing (bottom) obtained by volumetric fusion [IKH∗11]
(a), triangle mesh-based representation [MF11] (b) and our
MLS-based approach (c).

superior output with minor flickering artifacts, even in the
presence of significant spatial and temporal noise as well as
small errors in the camera calibration.
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