AUTOMATIC JUMPING PHOTOS ON SMARTPHONES

Cecilia Garcia, Jean-Charles Bazin, Marcel Lancelle, Markus Gross

ETH Zurich
Department of Computer Science
Universitatstrasse 6, 8092 Zurich, Switzerland

ABSTRACT

Jumping photos are very popular, particularly in the con-
texts of holidays, social events and entertainment. However,
triggering the camera at the right time to take a visually ap-
pealing jumping photo is quite difficult in practice, especially
for casual photographers or self-portraits. We propose a fully
automatic method that solves this practical problem. By an-
alyzing the ongoing jump motion online at a fast rate, our
method predicts the time at which the jumping person will
reach the highest point and takes trigger delays into account
to compute when the camera has to be triggered. Since smart-
phones are more and more popular, we focus on these devices
which leads to some challenges such as limited computational
power and data transfer rates. We developed an Android app
for smartphones and used it to conduct experiments confirm-
ing the validity of our approach.

Index Terms— Digital photography, automatic trigger,
jump photos, mobile phones

1. INTRODUCTION

Jumping photos are very popular nowadays, especially for
holidays and entertainement. However, a good timing is cru-
cial to get a visually appealing jumping photo: if the cam-
era is triggered a bit too early or a bit too late, the jumping
picture is missed. Therefore, in practice many attempts are
usually necessary to obtain a satisfying photo (see Figure 1).
A self-portrait when jumping, with the help of a self timer or
a remote control, is even more difficult. In this work, given
the fact that smartphones are more and more ubiquituous, we
focus on these devices, which leads to some technical chal-
lenges, as will be discussed in the following.

A simple solution to obtain a jumping photo with a smart-
phone is to record a video of the complete jump and later
select the best frame from the video. However, compared
to photos obtained by the camera mode of a smartphone,
this yields a low quality result due to a lower resolution and
stronger compression. Another solution is to use a camera
equipped with a burst mode, capturing a sequence of pho-
tos, and later select the best result. However, the limited
bandwidth of the camera results in a tradeoff between frame

manual trigger

automatic trigger

Fig. 1. The top row shows two jumping photos obtained with
a camera manually triggered. A good timing is crucial: while
manual triggering can sometimes yield good results (top left),
it generally requires several attempts by trial-and-error (top
right) The bottom row shows the same jumps automatically
acquired with our Android app installed on a second device.

rate and image resolution, and moreover conventional smart-
phones do not have a burst mode. This means that with
consumer-level smartphones, high-resolution photos can only
be taken at a low frame rate, which drastically decreases the
chance to capture the correct jumping picture.

In order to facilitate taking a high-resolution jumping
photo with consumer-level smartphones and with little effort,
we propose a method for automatically triggering the camera
at the right time to acquire visually appealing jumping photos.

2. RELATED WORK

Automatic triggering of a photo can be achieved with addi-
tional hardware. For a precise timing to trigger a photo of
a moving object, light barriers are a common choice [1]. A
camera can also be triggered with many other types of sen-
sors, such as accelerometers embedded in the acquisition de-
vice to capture aerial views [2], [3]. However, all such ap-
proaches require additional hardware and too much setup time
for our purpose of casual photos.

Automated triggering can also be performed via on-
camera image processing. For instance, many of nowadays’

digital cameras have a smile detection feature to automat-
ically take the picture when people smile. Visual motion
detection has also been applied as a camera trap, for example,
to take photos of lightning or wild animals.

To facilitate the development of computational photogra-
phy apps, the FCam API was created for devices using the
N900 hardware [4]. Unfortunately, this API does not sup-
port other hardware. Another option is the Frankencamera by
Adams et al. [5], a custom camera platform allowing full low-
level control of this camera. In contrast, our goal is to create
a program that can run on existing conventional smartphones.

Recently and independently from our work, Maxwell pre-
sented a face detection-based approach to acquire jumping
photos [6]. However, the result is a low-resolution video
frame from a webcam. Moreover, the system triggers the ac-
quisition of the final result when the tracked face starts falling
back down and thus might miss the highest point. In con-
trast, our method (1) predicts the time of the highest point to
achieve good timing and (2) returns a high-resolution photo.

Over the last few years, several programs based on com-
puter vision techniques have been developed for smartphones,
such as 3D reconstruction [7] and panoramic stitching (e.g.
panorama tool in Microsoft’s Photosynth). However, to the
best of our knowledge, no app exists for automatically trig-
gering high-resolution photos of jumping persons.

3. PROPOSED APPROACH

The main idea of our approach is to compute the optimal trig-
gering time in advance. To achieve this, we analyze the ongo-
ing jump online at a fast rate and predict the time at which the
jumping person will reach the highest point. Taking the trig-
ger delay into account, we compute the time when the camera
must be triggered. All these steps are performed in real-time
and in a fully automatic way.

To estimate the time corresponding to the highest point,
we track the jumping person and fit a motion model to the tra-
jectory when he/she is in the air. Hence, the algorithm needs
to know when the ballistic phase starts, i.e. when the feet
leave the ground, and use only the following measurements
to fit the ballistic trajectory [8]. Detecting this transition is
not trivial. To solve this problem, our method is based on the
observation that the trajectory of a jumping person has a par-
ticular pattern that our algorithm uses to detect four distinct
phases (Figure 2). In the following, we will first discuss how
to obtain this trajectory and how to detect the phase transi-
tions. Finally, we explain how to fit a motion model to the
trajectory during the ballistic phase and how to estimate the
optimal triggering time.

3.1. Jump trajectory

To obtain the motion trajectory of the jumping person, we
detect and track the face, which is generally suitable for the
targeted application of jumping person photos. Nevertheless,

240+

200t ’ N

160 N s \ /

y position (in pixels)

1201 I I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100
frame number

standing gathering momentum ballistic

Fig. 2. Jump trajectory and jump phases automatically de-
tected by our method (from left to right: standing, gathering
momentum, ballistic and trigger+landing).

during the jump, motion blur is usually noticeable and thus
the face detection might fail. Therefore, after the initial de-
tection of the face in the first frame, we extract the most
“salient” feature within the area of the detected face [9] and
track it in the next frames. In terms of implementation, for the
face detection, we use the approach proposed by Viola and
Jones [10], for the feature extraction, we apply the feature de-
tector by Shi and Tomasi [9] and the tracking is performed
via KLT [11]. We also apply the autofocus on the face po-
sition at the first frame and then keep the focus fixed as aut-
ofocusing may be too slow and unreliable during the jump.
Despite the simplicity of the approach, experiments showed
that our tracking is robust and also accurate. A representative
trajectory is shown in Figure 2. We assume that the distance
between the jumping person and the camera does not change
significantly during the jump. We only use the vertical (y) po-
sitions of the tracked face since the horizontal (x) values are
not needed to predict the time of highest point.

3.2. Jump phases

Our algorithm segments, in real-time, the jump trajectory into
four phases (Figure 2): standing, gathering momentum, bal-
listic (person is in the air) and frigger+landing. Note that this
last phase is for illustration purpose only: the final photo is
already triggered during the ballistic phase and no more mea-
surements are acquired after the camera is triggered. As soon
as a face is detected, we enter the standing phase and assume
that the person stands relatively still. At each new processed
frame, we compute ¢, the median of the y positions obtained
from the start of the standing phase. If § — y < A, with y be-
ing the vertical position at the current frame and) a threshold
in pixels, then we switch to the gathering momentum phase.
In all the results shown in this paper, we set A to 6% of the
image height, i.e. about 16 pixels in low-resolution 480 x 270
images. Experiments have shown that our method is not sen-
sitive to the value of \ as long as it is meaningful, i.e. between
2% and 10%. In the next frames, once y > 7, we consider the

+++ automatic tracking
parabola using first 3 points
parabola using first 4 points
parabola using first 5 points
—— parabola using first 6 points

y position (in pixels)
N
[
o

6‘4 6‘6 6‘8 7‘0 7‘2 7‘4 7‘6 7‘8\
frame number

Fig. 3. Ballistic trajectory fitting with an increasing number of

measurements from automatic tracking for the jump sequence

of Figure 2.

feet do not touch the ground anymore and transition to the
ballistic phase. A representative result is shown in Figure 2.

3.3. Ballistic curve fitting

To predict the time of the highest point, we fit a ballistic
curve to the measured points of the ballistic phase. As the
air resistance can be neglected, the curve is approximated by
a parabola [8]. The parabola is represented by y = a;t? +
ast + az where y is the vertical position, ¢ is time (or the
frame index) and (a1, g, au3) are the parabola coefficients.
A representative example with an increasing number of mea-
surements considered for the fitting is shown in Figure 3. The
time at which the highest point is reached is ' = —ay/(2a1).

3.4. Optimal triggering time

A minimum theoretical number of three data points is needed
to fit the parabola. Thus, as soon as three measurements are
available, ¢’ could be predicted. In practice, more measure-
ments permit to have a more robust and accurate estimation
of ¢’. Therefore, we repeat the process (parabola fitting and
computation of ¢') with the newly obtained measurements as
long as there is enough time to wait for a next measurement
according to the current prediction. This is discussed in de-
tails in the following.

Once ¢ is computed, some steps must be performed
before taking the final jumping photo. First, the camera
mode needs to be switched from low-resolution (LR) to high-
resolution (HR) capture mode. There is also a delay between
calling the capture function (similarly to pressing a physical
trigger button) and the start of the image exposure. Note that
the computation is performed with a latency due to image
readout. We refer to the sum of the latency and delays as the
trigger delay A4. Thus to take the picture at the computed
time ¢/, the camera must be triggered at t* = ' — Ay. The
trigger delay A, is hardware dependent and can be deter-
mined in advance, either by simple measurements/timers or
from the technical specifications of the phone camera. If

fng Ae

W

o 2201 i :

= rigger

£ 3 exposure

S 210¢ * manual tracking

24% —— estimated parabola (manual points)

g 200t % estimated highest point (manual points)
> ¢ automatic tracking

—— estimated parabola (first 6 autom. points)
190+ ¥ estimated highest point (first 6 autom. points)

L L
66 68 70 72 74 76 78
frame number

[o2]
X

~N
N

—— all autom. points
all manual points
ese Using available measurements

(frame number)
~N
o

estimated times of
highest point

o))
oo

3 4 5 6
number of measurements
available for estimation

Fig. 4. Triggering time estimation for the jump sequence of
Figures 2 and 3. Top: comparison of the estimated and ground
truth time of the highest point (blue and red crosses), and il-
lustration of the trigger time and delays. Bottom: the dynam-
ically computed estimated time for the highest point.

needed, the estimated delay value can be adjusted by the user
for his/her own smartphone.

Let A; be the time interval between two images (acquisi-
tion and processing). At the current acquisition time ¢, if there
is not enough time to wait for the next image/measurement,
ie. if t + A; > t' — Ay, the acquisition of the final pic-
ture is prepared (e.g. switching from LR to HR mode). After
waiting until ¢*, the image is triggered so that the exposure
happens at the computed time ¢', as illustrated in Figure 4.
For the depicted sequence, six measurements are used to fit
the final parabola and thus to estimate ¢’ and ¢*, since waiting
for a next seventh measurement will not permit to trigger the
camera on time.

4. RESULTS

Our approach is implemented as an Android app and de-
ployed on multiple smartphones. The user launches our app,
frames the shot via the displayed preview and then simply
needs to click on a “start” button. Then, the processing is
performed on low-resolution images in real-time and in an
automatic manner, and captures a high-resolution picture of
the jump. In case the face detection does not work, e.g. for
a person not directly facing the camera, the user can tap on
the smartphone screen to manually select the face or another
textured part of the jumping person that is then tracked auto-
matically. As an example, on our Sony Xperia smartphone,
the jump is analyzed in low-resolution 480 x 270 at an ac-
quisition and processing rate of around 25fps. Switching
the camera from LR to HR mode to take the final jumping
photo takes about 9ms and the estimation of the total trigger

number of
sequences
= N W

o

0 10 20 30 40 50 60 70 80 90
temporal error A, in ms

Fig. 5. Distribution of the temporal error of our method with
respect to the manually estimated best time.

delay Ay is 499ms. The final jumping picture is acquired at a
high resolution of 5 Megapixels (2592 x 1944).

The number of available measurements for the computa-
tion of the triggering time depends on the acquisition and pro-
cessing duration A, the trigger delay A, and the jump dura-
tion. From four to eight measurements were available in our
experiments. The observed trajectory curve is not a perfect
parabola because of some noise sources like hand-held cam-
era motion, tracking inaccuracy and jumps slightly towards
or away from the camera leading to perspective scaling of the
y coordinate. To measure the influence of these factors and
the temporal accuracy of our method, we conducted a quan-
titative comparison with ground truth data, as shown in Fig-
ures 4 and 5. The ground truth time of the highest point is
obtained by manually tracking the face in each image and se-
lecting the measurements of the ballistic phase (see red dots
in Figure 4). Then we fit a parabola (red curve) to all these
measurements and compute the time of the highest point as
described in Section 3.3 (see red star in Figure 4). The tempo-
ral error A, is computed as the difference between the ground
truth time and the time estimated by our method. Figure 5
shows the distribution of the temporal error on 14 representa-
tive sequences. More than 70% of the tested sequences have
a temporal error of less than 40ms. It shows that, in prac-
tice, despite the potential noise sources mentioned above, our
method can still estimate the triggering time accurately.

Figure 6 shows several additional representative results
for different scenarios and applications. All results are ob-
tained by a hand-held device, unless otherwise stated. Note
the different jump styles and amplitudes, as well as the dif-
ferent lighting conditions. Figure 6(e) shows a self-portrait
obtained with a camera set on a stable location (here a wall).
Beyond faces and persons, our app can handle various kinds
of objects: the user simply needs to tap on the object to track
on the smartphone screen. For example, Figure 6(f) is ob-
tained by selecting the hippo plush toy that is then tracked
automatically. The plush toy is thrown in the air and the re-
sulting picture is taken when it is at its highest point. Fig-
ure 6(g) shows that our method can create visually impressive
picture in a simple way. In this example the person on the
right stands in a side kick position and the person on the left
simply jumps vertically while mimicking being kicked. This
jumping person is tracked by the app and the picture is au-
tomatically taken at his highest position. Figure 6(h) shows
an example of a group of persons jumping together. In our

Fig. 6. Representative results automatically obtained by our
smartphone app.

current version, a single person is tracked: the final picture is
taken when this person is at the highest position.

Despite the numerous visually appealing jumping photos
we acquired, currently, the proposed method still has some
limitations. The main one is that the face tracking can fail,
especially in low light conditions due to severe motion blur.
In standard daylight conditions, the face tracker worked gen-
erally very well. In addition, the KLT tracking can fail when
the tracked point gets occluded during the jump, for example
when an arm passes in front of the face.

5. CONCLUSION

In this paper, we proposed a method to automatically take
high-resolution jumping photos with smartphones. The key
idea of the proposed method is (1) to predict the time at which
the jumping person will be at the highest point by analyzing
his/her trajectory in real-time and (2) to compute when the
camera has to be triggered for an optimal shot, taking the trig-
ger delay into account. We implemented our approach as an
Android app for smartphones. The processing starts by sim-
ply clicking on the “start” button and runs in a fully automatic
manner. Numerous experiments in real-world scenarios have
demonstrated the validity of the approach.

6. REFERENCES

[1] Gus Kayafas, Stopping Time: The Photographs of
Harold Edgerton, Harry N. Abrams, 2000.

[2] Jonas Pfeil, Marc Alexa, and Carsten Gremzow,
“Throwable camera array for capturing spherical
panoramas,” in Diploma Thesis, TU Berlin, 2010.

[3] Kodai Horita, Hideki Sasaki, Hideki Koike, and Kris M.
Kitani, “Experiencing the ball’s POV for ballistic
sports,” in Proceedings of the 4th Augmented Human
International Conference, 2013.

[4] Kari Pulli, Timo Ahonen, and Alejandro Troccoli,
“FCam: an architecture and API for computational cam-
eras,” in SIGGRAPH Asia Courses, 2011.

[5] Andrew Adams, Eino-Ville Talvala, Sung Hee Park,
David E. Jacobs, Boris Ajdin, Natasha Gelfand, Jennifer
Dolson, Daniel Vaquero, Jongmin Baek, Marius Tico,
Hendrik P. A. Lensch, Wojciech Matusik, Kari Pulli,
Mark Horowitz, and Marc Levoy, “The Frankencamera:
An experimental platform for computational photogra-
phy,” ACM Transactions on Graphics (SIGGRAPH),
2010.

[6] Andrew Maxwell-Parish, “Automati-
cally take perfect jump shots,” http:
//www.instructables.com/id/
Automatically-Take-Perfect—-Jump-Shots/,
accessed on 2014/02/14.

[7] Petri Tanskanen, Kalin Kolev, Lorenz Meier, Fed-
erico Camposeco Paulsen, Olivier Saurer, and Marc
Pollefeys, “Live metric 3D reconstruction on mobile
phones,” in International Conference on Computer Vi-
sion, 2013.

[8] Gerald M. Gregorek, “Aerodynamic drag of model rock-
ets,” Tech. Rep., Estes Industries, 1970.

[9] Jianbo Shi and Carlo Tomasi, “Good features to track,”
in IEEE Conference on Computer Vision and Pattern
Recognition, 1994.

[10] Paul Viola and Michael Jones, “Rapid object detection
using a boosted cascade of simple features,” in /EEE

Conference on Computer Vision and Pattern Recogni-
tion, 2001.

[11] Bruce D. Lucas and Takeo Kanade, “An iterative im-
age registration technique with an application to stereo
vision,” in Proceedings of the 7th International Joint
Conference on Artificial Intelligence, 1981.

