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ABSTRACT 

 

Static and dynamic parallax barrier displays became very popular over the past years. Especially for single viewer 

applications like tablets, phones and other hand-held devices, parallax barriers provide a convenient solution to render 

stereoscopic content. In our work we present a computer vision based calibration approach to relate image layer and 

barrier layer of parallax barrier displays with unknown display geometry for static or dynamic viewer positions using 

homographies. We provide the math and methods to compose the required homographies on the fly and present a way to 

compute the barrier without the need of any iteration. Our GPU implementation is stable and general and can be used to 

reduce latency and increase refresh rate of existing and upcoming barrier methods. 
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1. INTRODUCTION 

Stereoscopic parallax barrier displays deploy an image layer with two scrambled views and a barrier layer to multiplex 

the two views to distinct eye positions. A special translucent/opaque pattern is shown on the barrier layer, which exposes 

pixels of one view to one eye but blocks their sight to the other eye and vice versa. Careful alignment of barrier pattern 

and scrambled image pattern is required and crucial to avoid crosstalk and aliasing. 

 

Furthermore, computation of the barrier pattern in existing methods often relies on known display geometry. 

Imperfections and misalignment caused by the manufacturing process can thus lead to Moiré patterns, crosstalk and 

other artefacts. Also, the iterative nature common to these methods induces a growing latency with increasing display 

resolution. 

 

Perlin et al. [1] use known display geometry to compute the positions of the barrier slits and the positions of pixels for 

the left and right view, given the location of an eye pair. They are tracing rays from one eye to barrier pixels to get 

corresponding pixels on the image layer and vice versa with the other eye. This well-known approach giving an optimal 

barrier pattern is iterative: The preceding barrier position has to be known to compute the following one. 

 

Sakamoto et al. [2] use the very same procedure to determine corresponding positions on the barrier layer and the image 

layer. But instead of using a barrier slit pattern acting as pinhole, they use the whole area between two barrier pattern 

positions as clear or blocking patch. 

 

For both approaches, refresh rate drops and latency increases with higher display resolution due to the iterative nature of 

the algorithm. In addition, inaccurate knowledge about the display geometry can impose challenges: Tiny aberrations 

caused by the manufacturing process lower the quality of the displayed stereo content which becomes even more severe 

for high resolution displays with small pixel size. 

 

A computer vision based approach was used in the work of Annen et al. [3] to calibrate a multi-view parallax barrier 

setup: They place a camera in front of the setup and capture images to compute for each barrier slit the corresponding 

pixels for one view point. Interpolation is then used to compute the corresponding pixels for novel views. 

The approach is very suitable to compute the scrambling pattern of a multi-view display but would require further 

adaptations for a free viewpoint stereoscopic display. 
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Figure 1: Illustration of two optimal barrier patterns. On the left side, barrier positions are used to define slits acting as pinhole, 

exposing left view's pixels (dashed lines) to the left eye       and the right view's pixels (solid lines) to the right eye        only. On 

the right side, the barrier positions define the border of alternating blocking and translucent barrier patches, providing much more 

brightness. Latter approach can further be improved by swapping the translucent and opaque patches each alternating frame, providing 

full spatial resolution. 

The advantage of such vision based methods is that they do not require knowledge about the display geometry. They do 

scale well with the resolution of the camera sensor, which is usually a multiple higher than the resolution of a display. 

Furthermore, the use of projective transformations allows the image layer to be a projected image with keystone instead 

of a perfectly rectangular screen. 

 

Therefore, we propose a computer vision based calibration method for static and dynamic parallax barriers. We relate the 

barrier layer to the image layer using homographies for arbitrary viewing positions. Furthermore, we demonstrate how 

algorithms for camera calibration can be used to derive the required homography for any given eye position. We provide 

a method how to use the homographies to compute all barrier positions independently of all others, and thus without the 

need of any iteration. This method is then used to compute hardware accelerated the whole barrier pattern on GPU, 

increasing refresh rate and decreasing latency. Proof of concept of our method is given in a physical prototype and we 

conclude our work with a discussion of our results. 

2. HOMOGRAPHY-BASED MAPPING 

To compute an optimal barrier pattern for a given viewer, a relation between image layer and barrier layer has to be 

computed for each eye position. The relation must map a barrier pixel to the image pixel which is seen by the eye when 

looking through the barrier pixel and vice versa. 

 

An optimal barrier slit pattern as computed by Perlin et al. [1] is shown in Figure 1 on the left. The barrier slits are as 

close together as possible without exposing left eye pixels to the right eye or the other way around. Exactly the same 

barrier positions can be used to create an optimal stripe pattern as used by Sakamoto et al. [2], which is illustrated in 

Figure 1 on the right. 

 

Figure 2 on the left hand side shows a geometrical interpretation of the approach proposed by Perlin et al. [1] on how to 

compute the required positions using ray tracing. To compute a new barrier position, a ray from left eye to the preceding 

barrier position is intersected with the image layer. Another ray from the intersection to the right eye intersects the 

barrier layer in the new barrier position. The same relation can also be expressed by homographies, a 3-by-3 matrix 

defining a mapping between two planes with respect to a center of projection. 



 

For known homography        with center of projection in the left eye       and any pixel position    on the barrier 

layer, the corresponding pixel     on the image layer can be computed by 

 

               (1) 

 

as illustrated in Figure 2 on the right side. The iteration presented by Perlin et al. [1] can thus be expressed as  
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using the inverse mapping        
   for the right eye. The complete iteration for the i-th barrier position is given by 
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and    some initial barrier point. Similarly, the image positions can be computed by 
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Thus, for each viewer position it is sufficient to know        and        
   to compute all required barrier and image 

positions. 

 

 
Figure 2: Two computation methods for an optimal barrier pattern. On the left, rays are traced from one eye through a barrier layer 

position onto the image layer and back to the other eye, resulting in the next barrier position. The same can be achieved using one 

homography for each direction as illustrated on the right.        maps any barrier pixel to its corresponding image pixel as seen by the 

eye      . Similarly,        
   maps image pixels to barrier pixels as seen by the eye       . Concatenating both homographies results in 

a homography  , which can be used to determine all barrier positions both at the top and the bottom border of the screen, using 

Equation (3). 



3. CLOSED FORM 

Computing    in Equation (3) and Equation (5) would involve an iteration which is especially unsuited for parallel 

architectures such as GPUs and would decrease refresh rate and increase latency for parallax barrier updates. Thus we 

propose to decompose   into 
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using the eigendecomposition.   is a 3-by-3 matrix consisting of the eigenvectors of   and   is a diagonal matrix 

containing the corresponding three eigenvalues   ,    and   . 

The i-th power of   can now be rewritten as 
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As       chancels out, this leads to the more compact form 
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Equation (8) can be computed without the need of costly iterations. In combination with Equation (3) and  Equation (5), 

any barrier or image layer position can be computed independently of other positions and in constant time, both 

important characteristics for a fast GPU accelerated implementation. 

4. FREE VIEW TRANSFORM 

A specific eye position      together with the barrier layer can be seen as a virtual pinhole camera, where the eye is the 

center of projection and the barrier layer the virtual image plane. Together with any second eye positions     , a virtual 

stereo camera pair with shared camera image plane is defined, illustrated in Figure 3. As described in [4, p. 325], the 

display image plane induces a homography           between these two virtual cameras. This means that the 

homography           relates two points, one corresponding to each camera, whose rays would share the intersection 

point on the display image plane, also shown in Figure 3. 

 

Assuming that the homography       relating barrier pixels to display image pixels for some reference eye position is 

known, the homography       for any other eye position can be computed by 

 

                      (9) 

 

According to [4], the homography            can be computed by 
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As the virtual cameras share the same image plane, namely the parallax barrier plane, the relative camera rotation   is 

the identity matrix. The relative translation can be computed by 
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where      is the given input position of the eye and      the position of the reference camera computed during 

calibration.       and      
   denote the intrinsic parameters of the virtual cameras and can be computed by simply 

putting the eye center into the projection matrix form 
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Note, the negative sign comes from the positive z-axis being the viewing direction in the used coordinate system. 

Similarly, the inverse projection matrix can be derived by 
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The remaining unknowns   and   in Equation (10) are the plane parameters of the display image layer 

 

  (    ) (14) 

 

which will be computed during 

calibration. As for Equation (10) the 

eye position      needs to be at the 

origin, the plane parameters might need 

to be shifted accordingly. With this 

information, all the required relations 

can be computed by replacing      by 

      and        for any viewer 

position. 

 

Noticeable is, that the homography 

      can consist of any combination 

of other homographies, including e.g. 

the projection and keystone of a 

projected image. This is useful for 

projector-based parallax barrier 

displays as the one given by Sakamoto 

et al. [2]. 

 

Hence, if the plane parameters   and 

the homography       can be 

calibrated for one reference position 

    , then the homographies for any 

new eye position can be easily 

computed using Equation (9) and 

Equation (10). These derived 

homographies for left and right eye can 

then be used in Equation (4) to 

compose the required homography for 

the barrier computation. 

Figure 3: The mapping       from barrier layer pixel to image layer pixel (or vice 

versa) can be computed for any eye position      using the mapping           defined 

in Equation (10), given a known reference eye position     , known plane parameters 

of the image layer   (    ) and known mapping for the reference eye position 

     . 



5. CALIBRATION 

In standard camera calibration procedures, images of a planar calibration pattern with known pattern coordinates are 

taken from different camera positions [5]. For each image, a homography relating the coordinates in the calibration 

pattern to image coordinates of the camera sensor is computed. Based on this, intrinsic and extrinsic camera parameters 

can be computed. Intrinsic parameters contain camera characteristics as focal length and principal point and extrinsic 

parameters describe the position and orientation of the camera for each image. 

 

To calibrate a parallax barrier display, the same algorithms can be used. One calibration pattern is shown on the barrier 

layer and one on the image layer, both being visible from different viewing positions at the same time. Example of such 

a calibration pattern as used in this work is shown in Figure 4 on the top right. Similar to camera calibration, pictures 

from different view positions are taken and the pattern on the barrier layer is used to compute the extrinsics of the 

camera. 

This gives for each image the corresponding center of projection, expressed in pixel coordinates relative to the pixel 

positions of the barrier layer. These positions can be interpreted as candidates for the reference eye position       used in 

Section 4. 

 

Also, using the known calibration pattern corner coordinates and their corresponding coordinates detected in the camera 

image, one homography that maps barrier layer pixels to camera sensor pixels and one homography that maps camera 

sensor pixels to display image layer pixels can be computed, using the standard direct linear transform method [4, p. 90]. 

Multiplying both matrices results in the homography that maps directly barrier pixels to display image pixels for each 

camera position. Hence, each such combined homography is candidate for       required in Section 4. 

 

The same homographies are also used to compute the plane parameters (    ) of the display image layer. For each 

camera center the corresponding mapping from image layer pixels to barrier layer pixels is applied to a single image 

layer pixel. This gives a number of barrier layer pixels which define together with their corresponding camera center a 

set of rays. These rays share a common intersection point on the physical image layer which can be found using known 

least squares methods. For three or more of such points, the plane parameters   (    ) expressed in pixel coordinates 

relative to the barrier layer can be fitted. 

 

As the homographies are only used to find corresponding pixels on the barrier layer, the image of the display image layer 

does not have to be rectangular and can e.g. be a projection with keystone or warped by any other homography. Also, the 

intrinsics derived during camera calibration are not used at all. Only the radial distortion parameters are used to undistort 

the images before any step of our algorithms. 

 

The camera center closest to the preferred viewing position can be used as reference eye position.     ,       and 

  (    ) can be further improved with a non-linear optimization, minimizing the re-projection error of Equation (10) 

when applied to all the other cameras and detected calibration pattern corners. 

6. IMPLEMENTATION 

For the implementation of our calibration algorithm we use the libraries ARToolKitPlus [6] and OpenCV [7]. 

ARToolKitPlus provides a convenient way to automatically detect virtual markers and extract their corners in our 

captured images. These initial guesses are then refined using sub-pixel accurate corner detection algorithms provided by 

OpenCV. Also, the inbuilt camera calibration and homography computation functions of OpenCV were used to get the 

camera centers and corresponding pixel mapping homographies. 

 

We further use Matlab to fit the plane parameters and for a non-linear optimization of the reference camera parameters. 

As reference eye position we choose a virtual one positioned at the centroid of the viewing volume. We first compute its 

homography based on the proposed method using the closest camera position. We then use a non-linear, gradient descent 

method to further optimize this initial guess of      . For this purpose, we compute for each captured camera image the 

mapping homography based on our reference camera using Equation (10). Then, some barrier pixels are mapped to 

image pixels, once using this homography and once using the homography derived during calibration. The summed 



distance between corresponding image pixels is used as error metric in the gradient descent method, as it optimally 

should be zero. 

 

Our real-time barrier renderer is based on DirectX and also uses OpenCV. Each barrier stripe is represented as quad, 

with the y-coordinate as screen coordinate and x-coordinate as barrier index. The vertex buffer for the barrier has to be 

uploaded to GPU only once as it remains constant. In each frame, the input eye coordinates are used to compute the 

homography   as described in Section 2 and  Section 4. OpenCV is then used for the eigendecomposition of  . We use 

the pseudo-eigendecomposition to avoid complex eigenvalues which will save GPU operations. In each frame,         
  , 

 ,     and   are uploaded to the GPU shader. In the shader, these informations and the index of each vertex found in 

the x coordinate are used with Equation (8) to compute    and thus the new barrier position or, together with        
  , the 

image position. 

 

 
Figure 4: The top row shows our transparent stereoscopic display prototype once without displaying anything to illustrate 

transparency (top left) and once showing the calibration pattern that was used in our calibration algorithms (top right). A RGB liquid 

crystal display is used as barrier layer loosing much transparency in the embedded color filters. Using a gray-scale liquid crystal 

display as deployed in e.g. medical screens would improve transparency significantly. The bottom row shows results captured on our 

prototype using the barrier pattern illustrated in Figure 1 on the right and calibrated with the proposed method. Left eye's view (bottom 

left) and right eye's view (bottom right) show the image separation. Time-multiplexing for alternating transparent/opaque patches was 

applied to regain full spatial resolution. Crosstalk at the right border of the display is due to the slightly non-planar projection surface. 

The strong radial fall-off comes from the projector and is not subject of our work. 

 

 



7. PHYSICAL PROTOTYPE 

To demonstrate the potential of our algorithms we implemented a simplified version of the back-projected transparent 

stereoscopic screen suggested by Sakamoto et al. [2]. The isotropic back-projection screen ST-Professional-Trans from 

Screen-Tech® was used in combination with a BenQ SH910 Projector to create a transparent image layer which 

preserves polarization. As barrier layer we use an Acer HN274H with removed diffusing polarizer. The barrier layer has 

a theoretical transparency of only 16% as only a third of the light passes the color filters and additionally half the light is 

lost in the polarizer. As the barrier layer does not require colors, the system's transparency could further be improved by 

using a gray-scale screen as available e.g. in medical high-contrast displays. Instead of using two projectors with two 

polarizations as proposed in [2] we only use one projector and time-multiplexing to swap the barrier pattern in each 

alternating frame.  

 

A polarizer in front of the projector is used to create two polarized scrambled views on the image layer. The light then 

passes the twisted nematic liquid crystal barrier layer, and is, depending on the rotating state of the liquid crystal, either 

blocked by a polarizer in front of the setup or transmitted to the viewer. 

 

Both image and barrier layer provide FullHD resolution and deploy an average spacing of 2.5cm in between. The 

average barrier width at a viewing distance of one meter is 5 pixels. The back-projection screen is not co-planar to the 

barrier layer, the projected image is slightly rotated and suffers from keystone distortion. All these geometric unknowns 

are addressed by our algorithms. The complete setup is shown in Figure 4 on the top left. 

8. RESULTS AND LIMITATIONS 

To assess quality of our calibration we use the pixel distance between calibrated homography and homography computed 

by our algorithms as described in Section 6. Sub-pixel accuracy in display pixel space has been achieved for completely 

planar barrier and image layer. We have observed an increasing error for slightly bent or non-planar layers as they do not 

fit the assumption of planar surfaces in our algorithm. 

 

Our implementation is able to run at 120Hz for FullHD on a state of the art desktop graphics card, tested with an opaque 

parallax barrier display. The 60Hz refresh rate (limited by the projector) in our presented prototype could be achieved 

without any problems. The crucial eigendecomposition can be computed in less than a millisecond due to the small and 

fixed size of the homography. Barrier computation is as fast as rendering at most 1920 quads on GPU for full HD. 

 

Results captured on our prototype are shown in Figure 4. The two bottom images show left and right eye's view with 

clear color separation. Slight crosstalk is visible at the right border of the screen, coming from the slightly non-planar 

back-projection screen. 

9. CONCLUSION 

We have proposed a sub-pixel accurate calibration method for parallax barrier displays using known methods from 

computer vision. Without prior knowledge about display geometry, we are able to relate image layer and barrier layer 

with respect to arbitrary viewer positions. We provide a stable, scalable and fast GPU implementation to compute the 

barrier and scrambled image pattern in real-time. 

 

Proof of concept of our method is given by a transparent, back projected stereoscopic display. Though currently driven 

by a desktop computer, we believe that our algorithms can meet the requirement of mobile devices as low power 

consumption and low processing power. Especially for mobile devices, the calibration procedure could be implemented 

fully automatically without the need of manual interaction, which could then be included into a production pipeline. 

ACKNOWLEDGMENTS 

This research, which is carried out at BeingThere Centre, is supported by the Singapore National Research Foundation 

under its International Research Centre @ Singapore Funding Initiative and administered by the IDM Programme Office. 



REFERENCES 

[1] Perlin, K., Paxia, S. and Kollin, J. S., "An autostereoscopic display", Proc. of SIGGRAPH '00, 319-326 (2000). 

[2] Sakamoto, K., Kimura, R. and Takaki, M., "Parallax polarizer barrier stereoscopic 3D display systems", Proc. of 

the 2005 International Conference on Active Media Technology, 2005. (AMT 2005), 469-474 (2005). 

[3] Annen, T., Matusik, W., Zwicker, M., Pfister, H. and Seidel, H., "Distributed Rendering for Multiview Parallax 

Displays", Proc. of Stereoscopic Displays and Virtual Reality Systems XIII, 231-240 (2006). 

[4] Hartley, R. I. and Zisserman, A., "Multiple View Geometry in Computer Vision", Cambridge University Press, 

ISBN: 0521623049 (2000). 

[5] Zhang, Z., "Flexible Camera Calibration By Viewing a Plane From Unknown Orientations", The Proc. of the 

Seventh IEEE International Conference on Computer Vision(1), 666-673 (1999). 

[6] Wagner, D. and Schmalstieg, D., "ARToolKitPlus for Pose Tracking on Mobile Devices", Proc. of the 12th 

Computer Vision Winter Workshop, (2007). 

[7] http://www.opencv.org (accessed 01.01.2014) 

http://www.opencv.org/

