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Abstract

We present a novel, end-to-end workflow for content creation and distribution to a multitude of displays that have different dynamic
ranges. The emergence of new, consumer level HDR displays with various peak luminances expected in 2015 gives rise to two new
research questions: (i) how can the raw source content be graded for a diverse set of displays both efficiently and without restricting
artistic freedom, and (ii) how can an arbitrary number of graded video streams be represented and encoded in an efficient way.
In this work we propose a new editing paradigm which we call dynamic range mapping to obtain a novel Continuous Dynamic
Range (CDR) video representation, where the luminance of the video content, instead of being a scalar value, is defined as a
continuous function of the display dynamic range. We present an interactive interface where CDR videos can be efficiently created
while providing full artistic control. In addition, we discuss the efficient approximation of CDR video using a polynomial series
approximation, and its encoding and distribution to an arbitrary set of target displays. We validate our workflow in a subjective
study, which suggests that a visually lossless CDR video representation can be achieved with little bandwidth overhead. Our
solution can be implemented easily in the current distribution infrastructure and consists of transmitting two gradings and an
additional meta-data stream, which occupies less than 13% current standard video distribution bandwidth.

Keywords: HDR, Continuous Dynamic Range, Dynamic Range Mapping, Lumipath

1. Introduction

After years of research and development, we are finally about
to witness the emergence of High Dynamic Range (HDR) con-
tent distribution and display at the consumer level. While high-
end cameras (such as the Red Epic Dragon, SonyF55 and F65,
and ARRI Alexa XT) have been able to natively capture HDR
video, up to now displaying HDR content has only been possi-
ble through research prototypes or custom built hardware. This
landscape is rapidly changing as TV manufacturers including
LG, Sony, Samsung, Panasonic and TCL have announced HDR
displays with various peak luminances and black levels, which
they plan to release in 2015. On the content creation side, Tech-
nicolor and the Sinclair Broadcast Group successfully demon-
strated over-the-air broadcast of UltraHD HDR content and Tech-
nicolor now offers HDR grading services. Netflix and Amazon
announced the upcoming start of HDR content streaming ser-
vices. In the meantime, experimental HDR short films [1, 2]
explored the creative use of HDR imaging in film making.

These efforts towards realizing an HDR content production and
distribution pipeline from capture to display are fueled by the
massive difference that HDR makes in viewing experience [3].
The significance of the increase in experience quality provided
by HDR over standard dynamic range (SDR) is becoming widely
accepted as common knowledge. As a result, the focus point of
the next generation viewing experience is shifting from more
pixels to obtaining better pixels by extending their dynamic

range, among other factors.

The emergence of HDR displays from multiple vendors with
different dynamic ranges creates some significant challenges
for content production and distribution. Specifically, the pro-
duction challenge is tailoring HDR content to a number of up-
coming displays which are announced to have peak luminances
ranging from 800-4000 nits, as well as future HDR displays
with different dynamic ranges. The straightforward approach
of grading content for each specific display dynamic range does
not scale well due to the required additional manual labor. Meth-
ods proposed in literature, such as display adaptive tone map-
ping [4], can alleviate this issue, but do not allow for precise
artistic freedom in the expression of brightness variations.

The distribution challenge is the task of efficiently coding and
transmitting a large number of HDR streams graded for differ-
ent display dynamic ranges. Previous work proposed distribut-
ing a single HDR stream efficiently as a residual signal over the
SDR content [5]. This approach, however, is not well suited for
application in the emerging landscape where numerous HDR
streams are required to be transmitted simultaneously.

The content creation and distribution challenges force us to
rethink the way raw source content is graded for a multitude
of target displays, and how graded content can be efficiently
represented. In this work we propose a new content creation
paradigm which we call Dynamic Range Mapping, where raw
source content is graded not only for a single display (as in
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Figure 1: We present an end-to-end pipeline for efficient content creation and distribution of HDR content for a multitude of target display dynamic ranges. Our
workflow starts by color grading the source content for the largest and smallest of the target dynamic ranges among the set of targeted dynamic ranges. Next,
through an interactive “dynamic range mapping” we obtain “continuous dynamic range” (CDR) video, where each pixel contains an art-directable function rather
than a scalar value. We approximate this CDR video using Chebyshev Polynomials, and encode it for efficient distribution to the target displays.

traditional tone mapping), but for a dynamic range continuum
that entails the dynamic ranges of an arbitrary number of target
displays. Unlike tone mapping where the resulting pixels have
scalar luminance values, dynamic range mapped pixels are de-
fined by art-directable functions of display dynamic range. We
call this new data structure Continuous Dynamic Range Video
and propose a method for its efficient representation and dis-
tribution. Specifically, our work makes the following contribu-
tions:

• A practical dynamic range mapping workflow, allowing
the creation of continuous dynamic range video with full
artistic control.

• An efficient representation of continuous dynamic range
video using a polynomial series approximation.

• A demonstration of efficient encoding of continuous dy-
namic range video.

The individual components presented in this paper form an end-
to-end solution for efficiently creating, representing and dis-
tributing content graded for an arbitrary number of target dis-
plays with different dynamic ranges. In our solution, contin-
uous dynamic range content is efficiently represented by two
video streams (graded for the highest and lowest target dynamic
ranges) and an additional meta-data stream that occupies less
than 13% of the current standard business-to-consumer video
distribution bandwidth.

2. Related Work

In this section we discuss relevant work on HDR image and
video tone mapping, HDR display and distribution.

Tone mapping of HDR images has been studied extensively in
the literature. A comprehensive overview can be found in Rein-
hard et al. [6]. Early image tone mapping operators have been
heavily influenced by the photographic film development pro-
cess. The photographic tone mapping operator [7] utilizes an
S-shaped curve to globally compress the input dynamic range,
as well as dodging and burning operations to control local de-
tails. Another tone mapping approach aimed to produce natural
looking results by modeling various mechanisms of the human

visual system [8, 9, 10]. Durand and Dorsey [11] proposed de-
composing HDR images into base and detail layers by utilizing
edge-aware filtering. They showed that local image details can
be preserved by restricting tonal compression to the base layer
while keeping the detail layer intact. Similar effects were also
achieved by processing the input HDR image in the gradient
domain [12, 13].

While most tone mapping operators target a single hypothetical
SDR display, the display adaptive tone mapping [4] approach
tailors its outcome for a user-selected display dynamic range.
Our CDR video representation can be thought of the union of
content tone mapped for all possible displays. Additionally, our
dynamic range mapping workflow does not restrict the user to
a single tone mapping approach, as the source content graded
for the smallest and largest dynamic range can be generated
manually or using any tone mapping operator.

Tone mapping of HDR video has recently become an active
field of research. The majority of the various video tone map-
ping operators have been discussed and subjectively evaluated
by Eilertsen et al. [14]. More recently, Boitard et al. [15] pro-
posed segmenting each video frame (typically to 2−4 segments)
and applying a global tone curve to each segment individually.
Local adaptation is introduced at a segment level at the cost of
more complex processing involving video segmentation. An-
other recent operator achieved temporally coherent local tone
mapping through efficient spatiotemporal filtering [16].

While tone mapping is a useful tool for displaying HDR con-
tent on SDR devices, the research community has long aspired
to develop displays that can natively reproduce HDR images.
While reproducing the entire range that the human eye can see
may prove difficult, it has been subjectively shown that a lumi-
nance range from 0 − 10, 000 nits satisfies 90% of the viewers
who were asked to select an ideal range [17]. The first pro-
totype HDR display has been introduced by Seetzen et al. [18],
which was then followed by multiple custom-built research pro-
totypes [19, 20, 21, 22, 23]. For a detailed discussion on the var-
ious HDR display approaches we refer the reader to Reinhard
et al. [6]. In parallel, experimental HDR displays have been
introduced by private enterprises such as Brightside, SIM2 and
Dolby. More recently, major TV manufacturers including LG,
Sony, Samsung, Panasonic and TCL have announced the up-
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coming release of their consumer-level HDR displays. While
many of these displays are being marketed using the term HDR,
their dynamic ranges are quite different from each other (peak
luminances varying from 800 − 4000 nits). As a consequence
of these emerging displays, traditional content production and
distribution methods have to be revisited.

The efficient distribution of HDR content has also been inves-
tigated by various researchers. Mantiuk et al. [5] proposed en-
coding HDR video as a residual stream over its SDR counter-
part with an overhead of 30%. More recent work proposed
an optimized bit-depth quantization and human visual system
based wavelet transform denoising for HDR compression [24],
and also investigated the distribution of HDR video using exist-
ing codecs such as H.264/AVC [25].

3. Continuous Dynamic Range Video

We propose Continuous Dynamic Range (CDR) as a novel way
of representing video within a continuum of dynamic ranges.
For practical purposes, it is important that the CDR represen-
tation is both efficient and allows full artistic freedom. In this
section we will introduce key concepts and components of CDR
video and discuss artistic control. The efficient approximation
and encoding of CDR video will be discussed in Section 4.

3.1. Key Concepts

A high-level overview of our pipeline is illustrated in Fig. 1.
The goal of our method is distributing the input source video
to a number of target displays, where the grading for each of
the target displays can be art directed. The first input to our
method is the source video in camera raw format. While the
dynamic range of the source video can be arbitrary, in this work
we used HDR content with up to 14 f-stops. Formally, we de-
note a frame of the raw input video as I, its color at pixel p as
Ip, and the corresponding luminance as L(Ip).

Since the dynamic range continuum encompassed by a CDR
video is a superset of the dynamic ranges of all target displays,
we also require the user to specify a dynamic range (DR) hull.
The DR hull defines a dynamic range continuum between the
minimum and maximum dynamic ranges. The minimum dy-
namic range is bounded by the min peak luminiance and max
black level among the set of all target display dynamic ranges.
Analogously, the maximum dynamic range is bounded by the
max peak luminance and min black level (Fig. 2).

The first artistic interaction in our pipeline is the grading of the
raw content for the minimum and maximum dynamic ranges to
obtain minimum and maximum gradings, which we denote with
Iα and Iβ. Here, the user has full freedom in terms of tools to
be used and edits to be performed, as long as the spatial corre-
spondence between the pixels of the minimum and maximum
gradings are preserved. We denote the minimum and peak lu-
minance of Iα by ηα and πα, respectively, and the minimum and
peak luminance of Iβ by ηβ and πβ, respectively.

Lmax

Lmin

Dynamic
Range

(a) (a*)

(b)

(c)
(d)

DR Hull
(b)

(d)

(a)

(c)

Figure 2: The dynamic range hull is a superset of the dynamic ranges of all
target displays. Colored bars represent the dynamic range of a display.

After these traditional grading processes, the next artistic inter-
action step is dynamic range mapping where the user specifies
how the pixel luminances change across the dynamic range hull.
Functions of the following type have to be generated

hp : [ηα, ηβ] × [πα, πβ]→ [L(Ip
α),L(Ip

β)], (1)

which associate with each pixel p and dynamic range (η, π) a
unique luminance value hp(η, π). To reduce the complexity of
generating these functions and the amount of distributed data,
we restrict the domain to [πα, πβ] and define the associated min-
imum luminace for any π ∈ [πα, πβ] by η(π) := ηα + (ηβ −
ηα) π−πα

πβ−πα
. Thus, (η(π), π) ∀ π ∈ [πα, πβ] defines the considered

DR hull.

Consequently, at each pixel a user-defined function, which we
call a lumipath, represents the pixel’s luminance value as a
function of the peak luminance π of a target display. Formally,
we define a lumipath as

gp : [πα, πβ]→ [L(Ip
α),L(Ip

β)], (2)

where πα and πβ are the peak luminances corresponding to the
maximum and minimum dynamic ranges. The end result of
the dynamic range mapping process, namely the continuous dy-
namic range video, stores a lumipath at each pixel rather than
a scalar luminance value. In our current implementation we
transform the graded image pair Iα and Iβ to the CIE YUV
color space, where the variation of the Y channel across the dy-
namic range hull is controlled by the user defined lumipaths,
and the chrominance channels are linearly interpolated.

3.2. Dynamic Range Mapping

We implemented a user interface (Fig. 4) for convenient dy-
namic range mapping. Users can select desired image regions
by using masks and adjust the corresponding lumipaths by mod-
ifying the control points of a third degree polynomial spline
interface. While we chose this particular representation on the
based on the standard tone curve interfaces in commercial color
grading software, other tools could be employed to a similar
effect. Formally, given a series of image masks M j with values
M

p
j ∈ [0, 1], the user manually specifies functions k j : [πα, πβ]→

[πα, πβ] with the user interface. When applied to each pixel, the
function is modulated at each pixel position by the mask, and
kp

j is obtained as follows:

kp
j (π) = Mp

j k j(π) + (1 − Mp
j )π. (3)
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This defines a blending between the artist defined curve and a
linear curve based on the weights specified by the mask, al-
lowing for smoothly varying edits. By employing n masks and
specifying n such functions, the corresponding lumipaths gp

are obtained by applying all functions successively (layer based
grading) and scaling the result:

gp =
kp

1 ◦ ... ◦ kp
n − πα

πβ − πα

(
L(Ip

β) − L(Ip
α)

)
+L(Ip

α). (4)

The lumipath gp : [πα, πβ] → [L(Ip
α),L(Ip

β)] is the desired
curve defining the luminance of the pixel p for any display with
maximum brightness between the two analyzed extremes. This
process is illustrated in Fig. 3.

... ... ... ...

=       =       

=      gp 

M1
p  

      + (1-M1
p)         =      

○ 
=      g1

p
1

p       

M2
p  

      + (1-M2
p)         =      =      g2

p
2

p       

=      Mn
p  

      + (1-Mn
p)         =      gn

p 

○ 

○ 

○ 

Figure 3: A visual representation of the process of obtaining a numerical lumi-
path (Eqs. 3 and 4) is shown here. Lumipaths input by an artist are averaged
with linear functions according to the weights specified in the interface and
subsequently concatenated to obtain the final per-pixel lumipath gp.

In practice, the dynamic range mapping process begins by spec-
ifying maximum and minimum gradings to our tool. The user
can additionally import multiple masks that can be generated
using modern video editing software (e.g. Resolve, Nuke, etc.).
Our user interface, which is rendered on a standard LCD dis-
play, provides interactive visual feedback on an external HDR
display as the lumipaths for the selected region are modified.
Visualization is provided by computing and rendering a user
defined number of gradings (Fig. 4-right). Since (i) there are no
restrictions in how the input gradings are obtained (except pre-
serving pixel correspondences), (ii) any number of pixel-level
masks for region selection can be used, and (iii) the lumipaths
can be defined precisely using any number of control points, our
method allows for significant artistic freedom during dynamic
range mapping.

4. Efficient Approximation and Coding

CDR video in its raw form is represented by a considerable
amount of data, where each frame f comprises (i) an LDR im-
age I f

α, (ii) an HDR image I f
β , and (iii) lumipaths gp, f for every

pixel of a frame. In this section we describe how we solve the
distribution challenge by efficiently approximating and coding
CDR video.

LDR and HDR image sequences can be jointly compressed
with dedicated coding methods like [5] or other methods which
are currently the subject of intensive investigations in MPEG
[26]. In this work, we assume that the image sequences of I f

α

and I f
β are already encoded. In this section a first exploration

of the compressibility of the remaining data - the lumipaths - is
performed.

Our compression approach can be subdivided into two parts:
we begin by approximating the lumipath functions in a percep-
tually lossless way using a polynomial series, followed by a
representation of the coefficients in an image-like format and
encoding using a video compression method.

4.1. Approximation

The first step towards the efficient compression of this infor-
mation is a suitable approximation of the individual lumipath
functions. The goal is to find a representation of all lumipaths,
which should be both compact and visually indistinguishable
from the original. Our approach consists of approximating each
lumipath by a series of functions. The series is truncated at a
point where the resulting output is visually lossless based on
a human visual system model. The result is a representation
of each lumipath by a finite set of coefficients with respect to
a polynomial basis. These coefficients are later further com-
pressed with the help of a standard video codec.

Our human visual system model consists of a threshold-versus-
intensity (tvi) function that computes an approximate threshold
luminance, given the level of luminance adaptation (La). The
tvi function is computed by finding the peak contrast sensitivity
at each luminance level as described in previous work [27, 28]:

tvi(Lp
a ) =

L
p
a

maxx

(
CSF

(
x,Lp

a

)) , (5)

where CSF denotes the contrast sensitivity function, and Lp
a

denotes the adaptation luminance for pixel p. To avoid intro-
ducing visual artifacts, we make the conservative assumption
that the human eye can adapt perfectly to a single pixel p. In
practice, we found that even such a conservative threshold es-
timation can significantly reduce the number of required poly-
nomial basis coefficients. In our experiments, the number of
coefficients did not exceed 20.

In mathematical analysis, the Weierstrass approximation theo-
rem shows that a continuous real-valued function f : [a, b] →
[c, d] can always be uniformly approximated by a polynomial
series. Approximation by simple functions is desirable because
they can be easily computed and evaluated. Several bases of the
space of polynomials can be used for such an approximation,
but while all of them may converge, not all perform equally
well for a given problem.

A common method for approximating functions with a poly-
nomial basis consists of using Chebyshev series [29]. Cheby-
shev polynomials have some very useful properties that make
them desirable for our problem, namely (i) they are guaranteed
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SDR display HDR display

Figure 4: This figure shows our luminance grading interface. On the SDR display, masks with values in [0, 1] can be loaded in the bottom left menu, and are
displayed in the bottom-middle window. A cubic spline interface shown on the bottom right allows the user to manually input lumipaths. Different visualization
options can be selected from the menu on the top. On the HDR display, users can visualize their edits in an interactive manner. To see a standard work session using
our interface, we point the reader to the supplementary material of this paper.

to minimize Runge’s phenomenon when approximating in an
interval (this is particularly important since in practice most
displays are located near the minimum end of the examined
dynamic range hulls), (ii) they can be quickly computed nu-
merically, and (iii) the error of the approximated function as
compared to the original can be estimated from the calculated
coefficients, which is important as a stopping criterion.

Our goal is to approximate a lumipath gp, f at a given pixel in a
perceptually lossless way by a truncated Chebyshev series ḡp, f

such that
∥∥∥gp, f − ḡp, f

∥∥∥
∞
< tvi(Lp

a ), i.e. the deviation is smaller
than the threshold computed by our model of the human visual
system. The truncated Chebyshev series is represented by

ḡp, f (x) =
Np, f∑
k=0

cp, f
k ψk(x) (6)

where ψk(x) is the k-th Chebyshev polynomial, cp, f
k the corre-

sponding Chebyshev coefficient at pixel p of frame f , and Np, f

is the smallest degree required to obtain an error
∥∥∥gp, f − ḡp, f

∥∥∥
∞

which is smaller than tvi(Lp
a ). This defines a perceptually loss-

less approximation of gp, f which is determined by Np, f + 1 co-
efficients cp, f

0 , . . . , cp, f
Np, f

.

We implement our computation of the Chebyshev series as out-
lined by Broucke [30]. For simplicity we consider normalized
lumipaths, i.e. the domain and the range of all lumipaths is
scaled such that all of them lie in the standard Chebyshev do-
main gp, f : [−1, 1] → [−1, 1]. This normalization process can
be easily inverted based on the provided peak luminances πα
and πβ and the images Iα and Iβ.

Note that since each basis polynomial ψk has a domain D :=
[−1, 1] and its range ψk(D) is also a subset of [−1, 1], the total
‖gp − ḡp‖∞ error of the approximation is bounded by the sum
of the absolute values of the infinite remaining coefficients of
the series. When approximating a function with m continuous
derivatives on [−1, 1], the approximation error of a Chebyshev
series truncated at n elements has a convergence rate of O(n−m)
when n→ ∞ [31]. As such, when operating on “well-behaved”

functions, a common stopping criterion is given by the sum of
the absolute values of a small number of elements. In prac-
tice, our algorithm truncates the series when the absolute sum
of the next three elements is below the allowed error threshold.
An example of an approximation of a function by Chebyshev
polynomials of different orders is illustrated in Fig. 5.

In our unoptimized Matlab implementation, computing lumi-
paths for every pixel of a FullHD image takes approximately
3-5 seconds. Decoding this information to reconstruct the rep-
resented functions for all pixels takes an additional 0.1-1 sec-
onds. Importantly, this computation could be significantly sped
up through parallelization as each pixel is independent of the
rest of the image.

4.2. Coding

As discussed previously, an approximated but visually lossless
representation of a lumipath ḡp, f can be specified by a Np, f tuple
of Chebyshev coefficients

(
cp

0 , . . . , c
p, f
Np, f

)
.

In practice, these coefficients are highly correlated over space
and time which allows for further compression of the data. In
this section we present a suitable coding approach, which quan-
tizes Chebyshev coefficients and reorganizes them into monochrome
video sequences (Fig. 6). H.264 is then used as a standard video
coding method [32] for efficient compression. As our results
show in the next section, we achieve very reasonable bitrates
with this approach, which shows that CDR is a suitable solu-
tion for the distribution challenge. Our method for CDR video
coding still leaves room for improvement, however. Better use
of the nature of the provided data could provide improved data
rates (see Sec. 6 for further discussion).

We represent all lumipaths in an image-like format, which then
allows the application of a video codec. We compute the max-
imum degree N := maxp, f Np, f and set cp, f

k := 0 for k > Np, f ,
which leads to a representation ḡp, f (x) =

∑N
k=0 cp, f

k ψk(x) of the
function described in Equation 6, but with a fixed parameter N.
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Figure 5: A function is approximated with different numbers of parameters
(top). The absolute value of the error between the original function and the
reconstructed representation is shown in a larger scale (bottom).

Each lumipath ḡp, f is now specified by an N-tuple

cp, f :=
(
cp, f

1 , . . . , cp, f
N

)
. (7)

To get an image-like representation, we represent the tuples cp, f

of all pixels of a frame by coefficient matrices Cf
k
∈ Rh×w for k

from 1 to N, which by construction have the same pixel resolu-
tion h × w as I f

α and I f
β . We uniformly quantize all entries of

all matrices Cf
k

to 8-bit integers [33] obtaining N matrices C̄ f
k .

A bitdepth of 8 is used because it corresponds to the maximum
bit depth for images which are supported for compression by
the main profile of H.264. Fig. 6 shows the first 8 coefficient
images for a frame of sequence Gunman. It can be observed
that the energy and variance in the coefficient images drops
rapidly with increasing coefficient index. Most of the infor-
mation is concentrated within the first coefficients. Coefficients
often have uniform values over large image regions. We further
observed very smooth behavior over time. Thus, the informa-
tion content of such coefficient images and videos is relatively
limited in practice as compared to the images and videos them-
selves, making them very well compressible.

A compressed representation of all lumipaths is obtained by
storing (i) one integer value which represents the degree N,
(ii) two floating point values representing the minimum and
maximum value used for 8-bit quantization, and (iii) an en-
coded representation of the image sequences C̄1

k , . . . , C̄
F
k for k =

1, . . . ,N which is obtained with H.264. Fig. 7 shows the indi-
vidual bitrates for each of the coefficient image sequences of a
CDR video example. As suggested by Fig. 6, we can observe

k=1 k=2 k=3 k=4

k=5 k=6 k=7 k=8

Figure 6: Coefficient images C̄1
k of sequence Gunman.

that the bitrate rapidly drops for coefficients with higher index
values.
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Figure 7: Bit rates of individual coefficient sequences of sequence Gunman for
a quantization parameter of 30.

5. Results

We tested our system on a number of video sequences obtained
from three short feature films, Tears of Steel1, Big Buck Bunny2and
Lucid Dreams of Gabriel 3. As it is impossible to visualize
HDR imagery with traditional SDR displays, in this work all
results are presented with tonemapped images. It is important
to note that these representations do not show the full extent
of our method. We used Adaptive Logarithmic Mapping [34]
to tonemap HDR frames for presentation as it is easily imple-
mented and only requires a single input parameter.

5.1. Evaluation

Our system allows precise local control of luminance when
grading for any display in the dynamic range hull. A compari-
son of a sample grading produced by the authors of this paper
and automatic methods can be seen in Fig. 11, top. It is in-
teresting to note that content creators may intend to maintain
a particular luminance contrast in their scenes, which could be
lost through global tone mapping operations. Notice the loss

1Tears of Steel - Old Man, Pannel, Gunman, Rockets scenes, copyright (CC)
Blender Foundation (www.mango.blender.org).

2Big Buck Bunny - Bunny, Bird and Peach scenes, copyright (CC) Blender
Foundation (www.bigbuckbunny.org).

3Lucid Dreams of Gabriel - Car scene, copyright Disney Research, ETH
Zurich (www.disneyresearch.com/luciddreamsofgabriel).
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of contrast between the background and foreground in the Old
Man and Pannel scenes, and the excessively dark man in the
Gunman scene when the views are interpolated linearly. In con-
trast, automatic methods such as Display Adaptive Tone Map-
ping [4] can preserve the appearance of the scene across mul-
tiple dynamic ranges (Fig. 9), but they do not allow the artistic
freedom enabled by the localized editing of lumipaths as we do
in our method. Such methods also do not account for the ef-
ficient approximation and distribution of the generated content
to a multitude of different target displays. Another fundamental
difference is that display adaptive tone mapping only utilizes
single source grading for deriving any intermediate gradings.
Our method in contrast uses the maximum and minimum grad-
ing.

To showcase some possibilities of artistic gradings that can be
achieved using our method, we point the reader to Fig. 11, bot-
tom. Notice that the Rockets scene can be graded to either em-
phasize the details near the rocket motor, or create a bloom ef-
fect to convey the brightness of the flames. The Bird and Peach
scenes are graded to give greater emphasis on either the main
object or the background of the scene. In the Car scene, grading
can be used to create the sensation of a cloud above the scene,
or that of a sunny day.

Gradings as presented above can be efficiently encoded using
the method presented in Section 4. When using H.264 video
coding, the FFmpeg library was employed and a group of pic-
tures size of 24 was used for all sequences, while the quantiza-
tion parameter (QP) was varied to control the loss of quality.
Fig. 8 shows the data rates for the lumipaths of five sample
scenes, with an average of 1.52 Mbit/s for the highest quality
setting, which corresponds to approximately 13% of the current
business-to-consumer distribution bandwidth used for 1080i50
television signals.

5.2. Perceptual Validation

We performed a perceptual experiment to test whether the dis-
tortions introduced due to lossy coding of the lumipath infor-
mation would lead to visually noticeable artifacts. In our user
study, we showed video content to our subjects on a SIM2
HDR display [35]. The CDR video, which was created with
minimum and maximum grades at 100 and 4000 nits, respec-
tively, was sampled over the continuous dynamic range at 700,
1500, and 3000 nits. We performed a 2 alternate forced-choice
procedure (2AFC) on a set of 5 videos (Bird, Car, Gunman,
Peach and Rockets). After a short training session where com-
pression artifacts were explicitly pointed out, participants were
tasked with selecting the video with better quality. The compar-
ison was always performed between a reference uncompressed
video sample with either itself (in which case the choice was at
chance), or the same sample compressed using a quality param-
eter QP ∈ {30, 40, 50}. 16 volunteers participated (5F, 11M),
aged 25 to 36 with normal or corrected-to-normal vision.

We performed ANOVA analysis on the results of the experiment
and found a number of interesting interactions. Answers for

QP = 50 and QP = 40 were found to be significantly different
from the reference (σ � 0.001 and σ = 0.043, respectively).
In addition, both QP = 30 and QP = 40 were found signifi-
cantly different from QP = 50 (σ � 0.001 and σ = 0.012).
No difference was found between the reference and QP = 30.
These results suggest that participants were unable to see the
difference in quality between the uncompressed material and
the QP = 30 version, but could clearly distinguish it from
QP = 40 and QP = 50. The values presented above are shown
in Fig. 10.

Participants were also more likely to see differences in the Peach
sequence than the Car, Gunman and Rockets sequences (σ <
0.05). This could be explained by the fact that the video shown
in Peach was computer generated and had a very clear image
edge separating the slow-moving object of interest from a flat,
motionless background - making compression artifacts stand
out particularly strongly. No significant interactions were found
for the brightness parameter.

These results indicate that the lumigraph data of CDR video can
be compressed in a visually lossless way at QP30 to about 13%
(1.52 Mbit/s) of the corresponding video bitrate on average.

Bird CarQP Gunman Peach Rockets
1.477
0.871
0.552

30
40
50

1.110
0.787
0.534

2.903
1.411
0.659

0.768
0.400
0.300

1.318
0.397
0.221

Figure 8: This figure shows the total bitrates of the lumipaths for five se-
quences. The bitrates are expressed in Mbit/s and obtained by encoding with
different quantization parameters. These sequences are used for the perceptual
experiment.

880NIT 1660NIT 2440NIT 3220NIT

Figure 9: Display Adaptive Tone Mapping can be used to generate content for
displays with different luminance levels, but does not allow for precise artistic
control of content.

6. Discussion

Our method is not without limitations. In this work we pre-
sented a formulation and implementation of a novel content
creation and distribution paradigm. While we demonstrated
that our method results in a low bandwidth overhead and al-
lows full artistic freedom, many of the components that we
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*** σ < 0.001

Figure 10: This figure shows the results of our user study, averaged over all
sequences and brightness levels. Our supplementary material contains the raw
data and full statistical analysis for this experiment. The values on the Y-axis
represent the ratio at which the reference was considered to have better quality,
with a value of 0 meaning the reference was preferred in every trial.

presented could be engineered for better performance. For ex-
ample, a more sophisticated human visual system model could
replace our current model for better predicting the threshold
luminances, which could help reduce the number of polyno-
mial basis coefficients while still maintaining a visually loss-
less representation (Section 4). While the editable lumipaths
give the user full control over luminance during dynamic range
mapping, our current implementation does not allow a similar
control over chrominance, although the colors in the maximum
and minimum gradings can be adjusted without any limitation.
Formulating a representation for chrominance that is analogous
to lumipaths, as well as extending our dynamic range map-
ping interface to support such a representation is left as future
work. Further, more dedicated approaches for compression of
lumipath image sequences (e.g. inspired by depth coding ap-
proaches [36]) could reduce bitrates even further.

7. Conclusion

We presented CDR video, a novel representation of pixel-level
luminance as a function of display dynamic range. We intro-
duced dynamic range mapping as a new approach for content
creation targetting displays with different dynamic ranges. An
efficient approximation of CDR video through a polynomial se-
ries approximation was presented, as well as coding that con-
sumes only 13% of current standard business-to-consumer dis-
tribution bandwidth. Together, these components form an end-
to-end solution for content production and distribution for the
wide variety of emerging HDR displays.
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Figure 11: (Top) shows a comparison of results color graded with our method, as compared to a naive linear interpolation between the SDR and HDR graded
versions. Notice that our system allows for local control of the grading at each point of the dynamic range hull. (Bottom) Two gradings obtained using our system
are shown in contrast to showcase different artistic possibilities that can be achieved using our system.
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