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Abstract

Automatic detection of salient image regions is a useful tool with applications in intelligent camera control, vir-
tual cinematography, video summarization and editing, evaluation of viewer preferences, and many others. This
paper presents an effective method for detecting potentially salient foreground regions. Salient regions are iden-
tified by eigenvalue analysis of a graph Laplacian that is defined over the color similarity of image superpixels,
under the assumption that the majority of pixels on the image boundary show non-salient background. In con-
trast to previous methods based on graph-cuts or graph partitioning, our method provides continuously-valued
saliency estimates with complementary properties to recently proposed color contrast-based approaches. More-
over, exploiting discriminative properties of the Fiedler vector, we devise an SVM-based classifier that allows us
to determine whether an image contains any salient objects at all, a problem that has been largely neglected in
previous works. We also describe how the per-frame saliency detection can be extended to improve its spatiotem-
poral coherence when computed on video sequences. Extensive evaluation on several datasets demonstrates and
validates the state-of-the-art performance of the proposed method.

1. Introduction

The ability to identify visually important content (see Fig-
ure 1) is a fundamental problem in image and video pro-
cessing. In particular, applications related to automated cin-
ematography and video editing benefit considerably from
methods for detecting salient image elements. For in-
stance, algorithms for intelligent camera control require
knowledge of which actions are potentially interesting to
the viewer [ZLZZ08, AWC10]. Similarly, saliency infor-
mation allows automatic video editing techniques to con-
sider viewer attention [DDN08, GL08, JSSH15], or to bet-
ter adapt to output display constraints [WHSL11, SSH11].
But even basic video processing techniques such as sta-
bilization [GKE11], summarization [EZP∗13], segmenta-
tion [LCL∗13], and compression [ZPS∗13] provide im-
proved results when the salient foreground is known.

Estimating saliency is a multidisciplinary problem. Ini-
tially founded on psychological and neuroscientific stud-
ies [KU85, Ros99], computational saliency detection has
become a highly active research area in computer vi-
sion [IKN98, HZ07, AHES09, GZMT10]. The literature
shows a considerable heterogeneity in the characterization

Figure 1: Saliency results on video. Top left: input video
frame. Top right: superpixel segmentation. Bottom left: our
per-frame saliency. Bottom right: final, temporally coherent
saliency. Note how spurious, salient background elements on
the car and sky are removed.

of saliency, as the utility of different definitions is largely
application driven, ranging from the detection of eye fixa-
tion points [IKN98] to accurate object segmentation masks
for video processing applications [FMK∗09]. Our method
is in the line of works that automatically identify and accu-
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source image SF [PKPH12] our result ground truth

Figure 2: Saliency computation based on concepts such as
global contrast and color uniqueness is less suitable for
multi-colored objects (first row), multiple unique colors (sec-
ond row), and cases where fore- and background are rather
similar (third row). The second column shows correspond-
ing saliency maps computed with a representative method
based on various contrast measures [PKPH12]. Our ap-
proach successfully handles such challenging cases and pro-
duces results closer to ground truth. Moreover, a unique fea-
ture of our approach is its ability to identify whether an im-
age contains any salient object at all (bottom row).

rately segment a salient foreground object from a less salient
background [AEWS08, CLL11].

Motivated by studies on the importance of contrast-based
stimuli, various measures of color contrast have been in-
vestigated and successfully employed for computational
saliency detection in images; see, e.g., [CZM∗11, PKPH12,
MTZM13] for an overview of recent works. While those
methods have been shown to produce good results in gen-
eral, natural images often violate some of their fundamen-
tal assumptions, which can lead to wrong saliency esti-
mates (see Figure 2 for examples). Therefore, various al-
ternative approaches based, e.g., on object detection, shape
analysis and other objectness measures have been proposed
[LSZ∗07, ADF10, LZLX11] in order to complement the
set of available tools for saliency detection. Computational
complexity is a further challenge that hinders the straight-
forward application of many image saliency algorithms to
video.

In this paper we propose a highly effective method for
computational saliency estimation, which has complemen-
tary properties to the above mentioned techniques and shows
similar or better performance on standard benchmarks com-
pared to current state-of-the-art. Our algorithm is based on

the basic assumption that most of the image boundaries are
covered by non-salient background. Background color priors
and local color similarities are encoded in a graph structure
defined over a superpixel segmentation of images or video
frames. We then show that the Fiedler vector of the corre-
sponding graph Laplacian is a very effective and robust way
to compute saliency masks. In particular, our formulation al-
lows us to determine whether a salient object is present at
all by training a support vector machine using properties of
the Fiedler vector. This problem has largely been neglected
in previous works, which always highlight some regions as
salient, even if an image contains background only. In ad-
dition, differently from previous approaches that use vari-
ous heuristics or graph-cut segmentation to binarize saliency
maps, the entries of the Fiedler vector yield both a continu-
ous estimate and a content-adaptive binary partition. Finally,
we describe an extension of the per-frame saliency detection
to video, which improves the spatiotemporal coherence of
the results.

Despite its computational simplicity, we show in our ex-
amples and evaluation that our method compares favorably
to the recent methods and efficiently handles various im-
age and video types that are challenging for previous ap-
proaches. To demonstrate the complementary nature of our
method, we also show that the performance can be further
increased when combining our approach with a recent color
contrast-based technique.

2. Related work

The pre-attentive human visual system is driven by bottom-
up, low-level stimuli such as color, contrast, orientation of
edges, disparity and sudden movements [KU85]. Depend-
ing on the nature of their features, methods that model
bottom-up visual saliency can be categorized into biolog-
ically inspired or computationally based approaches. Bio-
logically inspired methods [IB05, IKN98, HKP06, KB01]
are generally built upon the visual attention architecture
proposed by Koch and Ullman [KU85], in which biolog-
ically motivated features are first selected, then processed
with center-surround operations such as Difference of Gaus-
sians that extract local gradients, and finally linearly com-
bined to form the saliency map. Recently, methods such
as [JEDT09,Bor12] investigated the combination of biologi-
cally motivated features based on low-level stimuli with top-
down memory-dependent information such as face or object
detectors. Those methods show improved performance but
at the same time they establish a dependency with the im-
age context that might not always be desirable. Biologically
inspired methods aim to determine eye fixations, i.e. a set
of points or blobs in the image that are likely to attract the
viewer’s eye attention. As a result, saliency maps are often
blurry and highlight sparse local features, making their us-
age in computer vision applications such retargeting or im-
age segmentation impracticable [CZM∗11].
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In contrast, computational methods are often inspired by
biological principles but strongly focus on their practical us-
age in computer vision and graphics. Central to those ap-
plication is the ability to determine salient objects, instead
of eye fixation points. Hence, an important aspect to con-
sider is the ability to segment and assign a uniform saliency
value to the entire salient object [CLL11,AEWS08], preserv-
ing edges and producing a pixel-level accurate saliency map.
Furthermore, it has been noted in [PKPH12, WWZS12] that
there is great variability of results in methods implementing
the same visual cues with different computational models.
For this reason, the choice of the computational model be-
comes as important as the visual cues it is based upon.

Perceptual research studies indicate that color-based con-
trast is a fundamental cue to determine bottom-up visual
attention [PLN02, EKK03]. As a result, many interpreta-
tions of color contrast have been proposed in recent years.
Among those one can distinguish between methods that per-
form the analysis in the frequency domain [HZ07, GMZ08]
and methods operating directly in color space. Achanta
et al. [AHES09] interpret saliency as the dissimilarity of
a pixel from the mean image color. Different variants of
patch-based methods measure the dissimilarity of square im-
age patches [GZMT10,WKI∗11,DWM∗11]. The exhaustive
nearest-neighbor search performed by those methods be-
comes impractical even for mid-resolution images, such that
downsampling or dimensionality reduction is often neces-
sary. To reduce the computational complexity, other methods
measure contrast using image histogram bins [CZM∗11] or
abstract the image into superpixels and upsample it to pixel-
level using bilateral filters [PKPH12]. Most contrast-based
methods rely on the notion of color uniqueness and distri-
bution [LSZ∗07, PKPH12]. Intuitively, distinct colors con-
centrated in a small region should belong to a salient object.
Recently, these concepts have been extended by Margolin et
al. [MTZM13] to also integrate pattern distinctiveness and
high-level cues.

While such contrast-based methods have proven to be
very effective, their basic assumptions do not always hold,
as illustrated in Figure 2. Therefore, recent research has also
focused on additional visual cues. With a basic motivia-
tion similar to our work, Wei et al. [WWZS12] note that
image boundaries are most likely to be part of the back-
ground and introduce a measure of saliency based on the
color-based geodesic distance between interior image re-
gions and boundaries. Their method produces good results
in high-recall areas, but it may suffer from non-smooth back-
grounds, producing noisy saliency maps. As we demonstrate
in Section 4, our approach effectively resolves such issues
and produces more globally coherent saliency maps. User-
defined background pixels are typically also employed for
graph-cut based binary image-segmentation [YS04]. Alexe
et al. [ADF10] combine multiple objectness cues such as
color contrast, edge density and multiscale saliency into a
Bayesian framework to determine the existence of an object

(a) (b) (c) (d)

Figure 3: Graph augmentation with background prior. (a)
Source image, (b) saliency map computed without our graph
augmentation, (c) saliency map using our method, and (d)
ground truth. The boundary prior and our graph augmenta-
tion are key to separating the background from the salient
foreground object.

withing the image. In [LZLX11], the discriminative power
of geometric cues such as concavity and symmetry is taken
into consideration. Their research, motivated by experimen-
tal tests on humans, suggests that the convex side of a curved
boundary tends to be figural, leading to successful salient ob-
ject detection. Yang et al. [YZL∗13] employs graph-based
manifold ranking to detect salient foreground pixels. The re-
cent method of Liu et al. [LCLS14] exploits PDEs to de-
scribe the evolution of visual attention in saliency diffusion.
In contrast to those methods, our algorithm has the benefit of
guaranteeing to identify a single connected foreground ob-
ject rather than individual salient (super-) pixels, and further-
more is able to distinguish between images with and without
salient foreground objects.

3. Algorithm

We first explain the basic algorithm on a per-image (per-
frame) basis, and then extend the approach to video se-
quences.

3.1. Image representation

As a first step our algorithm decomposes an input image
into superpixels, as they provide an effective and percep-
tually meaningful level of abstraction, and remove unnec-
essary detail such as small scale non-salient structures and
noise [PKPH12]. To segment the image into superpixels we
use a variant of [ASS∗12] as proposed in [PKPH12], which
is fast and preserves discontinuities such as edges well.

The superpixel-decomposition of the image induces an
undirected graph G = (V,E) where the vertices V corre-
spond to superpixels and the edges E represent an adjacency
relationship between the superpixels. Similarly to segmenta-
tion algorithms such as [SM97], we model only local rela-
tionships, i.e. (i, j)∈ E only if the superpixels corresponding
to the nodes vi,v j share contiguous pixels in the image. We
assign each node vi the mean Lab color of the superpixel it
belongs to, denoted as ci. The Lab color space is chosen be-
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Figure 4: Saliency computation using the Fiedler vector. In
our approach the input image on the top left is represented
by a graph structure that encodes color similarities between
superpixels and a background color prior computed from the
image boundary. The Fiedler vector of the graph Laplacian
results in a continuously-valued saliency estimate for every
superpixel, illustrated by the saliency map on the bottom left
and the plot.

cause its Euclidean metric mimics the human color percep-
tion. Each edge (i, j) is assigned a positive weight wi, j that
measures the color similarity between superpixels vi and v j,
higher values corresponding to higher similarity:

wi, j =
1

‖ci− c j‖2 + ε
(1)

where ε is a small constant (to avoid infinite weights).

Performing a straightforward partitioning of the graph,
e.g., using RatioCut [HK92], to separate the superpixels into
potential fore- and background regions is not sufficient to
obtain a reliable salient object estimate. A quantitative eval-
uation on the MSRA dataset showed that the performance
is substantially below state-of-art methods. See also Fig-
ure 3(b) for a representative saliency result.

We therefore incorporate a simple prior assuming that
the majority of boundary superpixels belongs to non-salient
background, motivated by recent studies in gaze prediction
which indicate that humans have a tendency to focus atten-
tion on the center of an image. This is also reflected in var-
ious photographic rules and utilized in saliency estimation
techniques such as [WWZS12]. This prior is integrated by
augmenting the graph with a background node b and a set of
edges U connecting b to the nodes forming the image bound-
aries, i.e., to those superpixels that are in immediate contact
with the image border.

The augmented graph is hence Ga = (Va,Ea) with Va =
V ∪{b} and Ea = E ∪U . The edge weights in U model the
confidence of a node in being part of the background. We use
the Euclidean distance to the mean boundary color, which

Figure 5: Robustness to salient objects being part of the im-
age boundaries. From left to right: source, our saliency map
Scont, ground truth saliency.

was demonstrated to be effective in [AHES09]: we assign
the mean boundary color to b and compute the weights of
the edges in U with Eq. (1). With this formulation, most of
the edges in U are likely to be attached to background su-
perpixels and carry high weight, while few edges (if any) are
attached to salient regions and have low weights.

3.2. Saliency estimation

Denote n = |Va|. We compute an eigendecomposition of the
weighted graph Laplacian matrix L ∈Rn×n of Ga:

Li, j =


−wi, j i 6= j, (i, j) ∈ Ea

∑(i,k)∈E wi,k i = j
0 otherwise

. (2)

The eigenvector f corresponding to the second smallest
eigenvalue, also known as the Fiedler vector, represents an
optimal soft segmentation of Ga according to a relaxed, con-
tinuously valued RatioCut objective [vL07] by minimizing

min
f

∑
i, j∈E

wi, j( fi− f j)
2. (3)

The entries of this vector can be interpreted as a one-
dimensional (linear) embedding of Ga, where vertices are
closer to each other if they are connected by large weights.

We found that this property of the Fiedler vector f pro-
vides a meaningful, continuously valued saliency score (see
Figure 4 for an illustration). We can derive either a saliency
score Scont ∈ [0,1]n or a binary partition Sbin ∈ {0,1}n. Both
measures are based on the sign of the entries of the Fiedler
vector. Entries having the same sign as the entry fb cor-
responding to the background node b will be less salient
than those having the opposite sign. Hence we define the
continuously-valued saliency score Scont as:

Scont =−sign( fb) · f (4)

This sign-corrected Scont is then scaled to the range [0,1],
possibly with pre-cropping of the value range such that the
resulting mean saliency is at least 0.1 [PKPH12].
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Figure 6: Left: example of a plot of a Fiedler vector for a
non-salient image. Right: 2D plot of features used for distin-
guishing images with (in blue) and without (in red) salient
foreground. The x-axis represents scaled eigenvalues corre-
sponding to respective Fiedler vectors, while the y-axis is
the residual of a linear fit to respective Fiedler vectors. The
dotted line shows the decision boundary of the trained SVM.

A binary partition is obtained by discretizing the entries of
the Fiedler vector f . This operation can be performed based
on the sign of fb, such that entries having opposite sign to fb
are defined as salient:

Sbin(i) = 1 if fi · fb ≤ 0, Sbin(i) = 0 otherwise (5)

To subdivide the graph into more than two partitions, i.e., to
identify multiple individual salient objects, the entries of f
can be interpreted as points in R and partitioned by a clus-
tering algorithm such as k-means.

The above approach is quite robust even in challenging
cases where the salient object is actually part of the image
boundary. As long as the majority of the superpixels is part
of the background, the graph partitioning correctly distin-
guishes between salient and non-salient areas (see Figure 5).

3.3. Detection of non-salient images

Existing methods for saliency estimation are generally un-
able to identify whether an image actually contains a salient
foreground object or not, simply because they are designed
to find the most salient pixels or image regions (see Figure
2). We discovered that the properties of the Fiedler vector
allow us to devise a simple yet reliable test whether a salient
foreground region is present in an image.

On the one hand, the eigenvalue associated with the
Fiedler vector indicates how strongly connected the graph
is [vL07]. For images without any sufficiently separable
foreground object, we can hence generally expect a larger
eigenvalue than for images containing one or more fore-
ground objects. On the other hand, a 2D plot of the sorted
elements of the Fiedler vector reveals an S-shaped structure
in the presence of foreground objects (Figure 4), while non-
salient images such as stochastic textures feature a more lin-
ear structure (Figure 6). Hence, as a second indicator, we

Source Image SF [PKPH12] GMR [YZL∗13]

Figure 7: Examples of texture images used for training
an SVM-based classifier to distinguish between images
with and without salient foreground, and the correspond-
ing saliency maps produced by existing methods. Since these
methods have been designed to always identify the most
salient regions in an image, they cannot distinguish between
images with and without salient foreground. Our SVM-based
classifier identifies such images as non-salient.

perform a linear regression on the sorted elements of the
Fiedler vector and measure the residual error.

The combination of these two features results in two well
separable sets of 2D points and provides strong discrimi-
native power to decide whether a salient object is actually
present in an image or not. We trained a linear SVM clas-
sifier [CST10], using images of simple textures as non-
salient examples [VS14] (see Figure 7) and the images
from the benchmark datasets below as salient examples, and
evaluated the classification performance using 10-fold cross-
validation. The SVM classifier consistently achieved a cor-
rect classification performance of 96% for distinguishing be-
tween images with and without a salient foreground, while
other methods for saliency estimation always detect at least
some salient regions (see Figure 7).

3.4. Extension to video

Thanks to the computational efficiency of our algorithm, it
can be easily used to process entire videos. In our experi-
ments (see supplemental video) we found the algorithm to
be sufficiently temporally stable, such that computation on
a per-frame basis can be sufficient for many applications.
Several options exist to enforce explicit temporal coherence
if required. One idea would be to explicitly extend the di-
mensionality of the underlying graph structure and the cor-
responding Laplacian to the temporal dimension. This, how-
ever, could be problematic in terms of memory requirements
for longer video sequences, and limits interaction of pixels
to their direct neighbors only.

We instead propose to utilize an approach for efficient
high dimensional filtering [KK11] as a temporal regularizer
of the per-frame saliency results. The individual saliency
maps represent the unary terms in a fully connected CRF,
while the pair-wise connections are based on a 6D feature
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Figure 8: Precision, recall, and F-measure for MSRA [CZM∗11, AHES09] (left), SED1 [AGBB12] (middle), and
ImgSal [LLA∗13] (right).

space including color and the spatiotemporal pixel positions,
analogous to previous works using a similar approach for
regularizing object segmentation [LKG11] or depth [YG14].
The CRF converges after only a few iterations to a tempo-
rally coherent saliency estimate and can be implemented ef-
ficiently on a GPU [KK11], adding only negligible computa-
tional overhead to the overall saliency computation pipeline.

4. Results and evaluation

In order to estimate the quality of our computed saliency
maps with respect to previous works, we evaluate the per-
image saliency maps on three different standard datasets,
each of them with manually labeled ground-truth saliency:
the MSRA [CZM∗11, AHES09] dataset with 1000 images,
SED1 [AGBB12] with 100 images, and ImgSal [LLA∗13]
consisting of 50 images.

In accordance with [BSI12] we compare our results to the
top four performing methods: context-aware saliency (CA

[GZMT10]), global-contrast (RC [CZM∗11]), context-prior
(CB [JWY∗11]), and generic-objectness (SVO [CLCL11]).
Furthermore we include comparisons with more recently
developed state-of-the-art approaches that showed the best
overall performance on these benchmarks: saliency filters
(SF [PKPH12]), geodesic saliency (GSSP [WWZS12]), and
graph manifold ranking (GMR [YZL∗13]). We also com-
bine our method with the contrast-based saliency filters SF

[PKPH12] approach by simple averaging of the saliency
maps (denoted by OURS+SF) in order to demonstrate the po-
tentially complementary nature of our approach to contrast-
based techniques.

Similar to evaluations in previous works we binarize the
saliency maps using the image dependent adaptive threshold
proposed by Achanta et al. [AHES09], defined as twice the
mean saliency of a given saliency map S:

Ta =
2

W ×H

W

∑
x=1

H

∑
y=1

S(x,y), (6)

where W and H are the width and height of the saliency map
S, respectively.

In order to provide a unique score that weighs the trade-off
between precision and recall we also compute a combination
of the two, the F-measure, which is defined as:

Fβ =
(1+β

2) ·Precision ·Recall
β2 ·Precision+Recall

. (7)

Following the experimental setups of previous approaches
that emphasize the importance of precision over recall, we
set β

2 = 0.3.

Quantitative evaluation. The performance evaluation on
the three datasets in Figure 8 shows that our algorithm is
comparable to current state-of-the-art approaches. The qual-
itative comparison in Figure 9 confirms the quantitative anal-
ysis, showing that our saliency maps are very close to ground
truth and often less cluttered than previous approaches, with
salient objects uniformly highlighted and well segmented
from the background.

The evaluation also shows the complementary proper-
ties of our algorithm to contrast-based methods such as SF

[PKPH12]. Despite both methods alone performing already
very well, even a rather simple combination (OURS+SF)
readily produces a performance gain. This can be explained
by our method addressing limitations of contrast-based tech-
niques such as difficulties caused by multicolored objects,
multiple unique colors and strong color similarities between
background and foreground (shown in Figure 2 and Fig-
ure 9).

Binary heuristics. There are at least three possible ways
to binarize a continuously valued saliency map Scont: our
sign-based split described in Eq. (5), k-means clustering,
or the adaptive threshold proposed in [AHES09]. We have
discovered that in terms of their F-measure they all yield
comparable performance on these datasets. We found that
k-means provides slightly better precision at the expense of
recall, and sign-based split has slightly better recall at the
expense of accuracy compared to adaptive thresholding.

Parameters. The only relevant parameter in our algo-
rithm is the quality of the superpixel segmentation. In our ex-
periments we found regularly shaped, compact superpixels
to work best. The size or number of superpixels solely influ-
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SRC CA [GZMT10] RC [CZM∗11] GSSP [WWZS12] SF [PKPH12] GMR [YZL∗13] OURS G

Figure 9: Qualitative comparison of the results of our algorithm (OURS) with ground truth (G) and several other state-of-
the art approaches. Our method consistently produces a foreground-background separation close to ground truth. From left
to right: source image (SRC), context-aware saliency (CA [GZMT10]), global-contrast (RC [CZM∗11]), geodesic saliency
(GSSP [WWZS12]), saliency filters (SF [PKPH12]) and graph manifold ranking (GMR [YZL∗13]).

ences the preservation of small image details. We employed
the superpixel implementation proposed in [PKPH12] and
simply used 250 superpixels for all our results. If desired,
the upsampling proposed in that paper could be employed to
recover fine salient structures that were removed during the
superpixel segmentation.

Running time. The average running time on images from
the above datasets, measured on an Intel Core i7-3820QM
2.7 GHz with 16 GB of RAM, is approximately 0.1 sec-
onds, with most of the time required for the superpixel com-
putation and the eigendecomposition of the Laplacian ma-
trix. Even though our current prototype implementation in
Python is not optimized for speed, its performance is already
comparable to other fast state-of-the-art methods outlined
in [CZM∗11]. The additional regularization step depends on
the respective shot length. For example, regularizing a shot
of 250 frames takes about 0.5 seconds.

Video results. Due to the lack of established ground truth
data for video saliency, we demonstrate the video perfor-
mance and saliency quality of our method by computing
saliency on a short movie [Dis14] with various types of
challenging real world scenes. Please see Figure 10 for ex-
ample frames and the supplemental video for longer video

sequences. Note how inconsistencies between per-frame
saliency maps are effectively removed.

Limitations. In its current formulation our method is par-
ticularly effective for the detection of single salient objects.
For example, in Figure 3 our algorithm correctly detects the
salient object with the strongest separation from the back-
ground, but fails to detect the remaining pieces. Multiple
salient objects (Figure 11) could be retrieved by repeatedly
segmenting the salient region [LZLX11] or using a sliding
window approach [FWT∗11]. For the latter, the shape of the
Fiedler vector might well serve as an additional indicator of
the number of salient objects within the window.

5. Conclusions and future work

We presented a method that combines the assumption of
image boundaries covered mostly by background with soft
graph segmentation using the Fiedler vector, yielding a
continuously-valued solution to salient foreground detection
and segmentation. Our approach exhibits a comparable per-
formance to the state-of-the-art on several benchmarks. We
furthermore showed that it is possible to train an SVM-based
classifier on properties of the Fiedler vector to distinguish
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Figure 10: More saliency results on video. Top left: input
video frame. Top right: superpixel segmentation. Bottom left:
our per-frame saliency. Bottom right: final, temporally co-
herent saliency. Please also refer to the supplemental video
for the full sequences.

between images with and without an actual salient fore-
ground, a unique feature of our approach. We described a
simple and efficient extension to temporally regularize per-
frame saliency maps, which makes the method applicable
to video. The method is straightforward to implement and
practically parameter-free, making it a good candidate for
practical applications and further development.

As discussed in the limitations, an interesting direction
for future work is the detection of multiple salient objects.
Moreover, as the integration of our method with the contrast-
based saliency filters shows, already simple combinations of
different computational saliency methods with complemen-
tary properties can lead to improved accuracy of the com-
puted saliency maps. In particular, in the context of au-
tomated cinematography and intelligent video editing, ac-
tors are usually the most important elements in a video. Our

input superpixels our result ground truth

Figure 11: Failure cases. In the case of multiple discon-
nected objects our current algorithm correctly detects only
the most salient one. Non-salient objects with distinctive col-
ors cause the method to fail in some instances.

method is negligent with respect to such higher-level knowl-
edge. A principled approach for automatically combining
low-level saliency detection with techniques for actor detec-
tion and tracking (e.g. [GR13]), possibly involving machine
learning, could be a promising direction for future research.
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