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Figure 1: Our example-based structure synthesis method can be used to generate structures with discrete elements (left),
continuous geometries (middle), and their mixtures (right); on different domains such as surfaces, bounding volumes, or curves.

Abstract

We present an example based geometry synthesis approach for generating general repetitive structures. Our model
is based on a meshless representation, unifying and extending previous synthesis methods. Structures in the example
and output are converted into a functional representation, where the functions are defined by point locations
and attributes. We then formulate synthesis as a minimization problem where patches from the output function
are matched to those of the example. As compared to existing repetitive structure synthesis methods, the new
algorithm offers several advantages. It handles general discrete and continuous structures, and their mixtures in
the same framework. The smooth formulation leads to employing robust optimization procedures in the algorithm.
Equipped with an accurate patch similarity measure and dedicated sampling control, the algorithm preserves local
structures accurately, regardless of the initial distribution of output points. It can also progressively synthesize
output structures in given subspaces, allowing users to interactively control and guide the synthesis in real-time.
We present various results for continuous/discrete structures and their mixtures, residing on curves, submanifolds,

volumes, and general subspaces, some of which are generated interactively.

1. Introduction

Repetition is an integral part of nature. Modeling repetitive
structures is thus essential but also challenging. A common
approach is controlling the large scale structure of an object
by direct modeling, and letting an algorithm automatically
add the details based on an example from the repetitive struc-
tures [MWT11]. This has led to many algorithms tailored
to particular applications with certain assumptions on the
structures to be synthesized. Each of these algorithms thus
come with application dependent constraints, which has been
hindering content creation with general repetitive structures.
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A classical approach for synthesizing repetitions is raster-
izing them into regularly sampled images and using neighbor-
hood matching based texture synthesis methods [WLKTO09]
to compute colors for each output pixel/voxel. This idea has
also been extended to geometry synthesis for certain geom-
etry representations [ZHW*06]. However, this raster based
representation can only model a limited set of structures.
Indeed, many repetitions in nature consist of individual el-
ements, which should be kept intact. This has led to using
geometric texture synthesis methods with discrete element
textures, where individual elements and their interactions are
utilized to describe the repetitive structure [MWT11,LGH13].
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The discrete elements also allow resolution independent syn-
thesis with object instancing.

However, there remain important challenges for discrete
element based texture synthesis. 1) Preservation of element
shapes comes at the expense of losing the ability of synthe-
sizing continuous structures. With the current techniques, it
is not possible to handle mixtures of continuous and discrete
structures in general domains. 2) Representing textures with
points makes the distinction between structure and sampling
ambiguous, unlike raster based textures. This translates into
critical dependence on initial distribution of point samples,
and non-trivial neighborhood definition and matching meth-
ods, which can result in unsatisfactory synthesis especially
when continuous structures are desired. 3) Content creation
with repetitive structures remains to be a challenge since the
current methods are designed for off-line texture synthesis
and do not support interactive artistic control for general
domains [MWT11,LGH13,XCW14].

We address these challenges by proposing a new method
for progressive synthesis of general repetitive structures, uni-
fying and extending previous texture synthesis techniques.
The structures can consist of mixtures of discrete and con-
tinuous elements with arbitrary distributions and attributes,
and reside in general domains including curved submanifolds.
This allows us to extend the space of synthesizable structures,
and robustly handle many structures in a unified framework.
The synthesis can be intuitively and interactively guided by
orientation and scaling fields defined along curves, surfaces,
or volumes in 2D or 3D. The output is then synthesized on
the fly automatically, allowing interactive texture brushing of
general repetitive structures.

This is made possible by adopting a meshless represen-
tation and optimization framework, inspired by similar gen-
eral approaches in geometry reconstruction [ABCO*01] and
physically-based simulation [MKB*10]. The structures in the
example and the output are first converted into a functional
representation. The functions are represented by point sam-
ples with attributes extracted from the structures. The texture
synthesis problem is then formulated as a smooth minimiza-
tion that matches patches from the output function to those
of the example function.

The generality of the meshless method allows us to seam-
lessly handle general structures. The functional representa-
tion results in a better neighborhood matching metric that
correlates well with the visual quality of the synthesized struc-
tures. The smoothness of the optimization problem leads to
robust minimization procedures with precise sampling con-
trol, which are essential to avoid bad configurations leading
to incomplete or distorted structures. We show a variety of ex-
amples that range from classical texture synthesis to mixtures
of continuous and discrete elements synthesized on user con-
trolled curved domains, to illustrate the utility of our method
in practice.

2. Related Work

Raster-based Texture Synthesis A classical approach to
synthesizing repetitive structures based on given examples
is to rasterize the example and the output, usually referred
to as texture synthesis. The structures are thus represented
as continuous values stored at regularly distributed sample
points. For synthesis, the stored values in the output image are
altered while keeping the point locations fixed. A texture im-
age of arbitrary size can be synthesized from a given example
image that contains a patch of the repetition using this tech-
nique [PL95, EL99]. Most texture synthesis methods work
by matching local neighborhoods such that for each neigh-
borhood in the output, there is a similar neighborhood in the
example [WLKTO09]. This idea has also been extended to col-
ors on meshes and 3D volumes [Tur01, KFCO*07, WLKTO09].
However, if the pattern consists of discrete elements, the in-
tegrity of individual elements can be lost with this method
since they are rasterized [MWT11]. Furthermore, the points
are assumed to stay fixed on a regular structure, and most
commonly on a 2D image. These limit the application of
raster-based texture synthesis to general structures.

Geometric Texture Synthesis Instead of rasterizing dis-
crete structures, they can be directly represented with discrete
elements. The goal is then to synthesize a distribution of
these elements that resembles a given example [BBT*06,
IMIMOS8, HLT*09, AAPWS10,MWT11,MWLT13,AKA13,
LGH13,DHM13, HWFL14]. The methods mainly differ in
the representation of the structures and the definition and
matching of element neighborhoods. For simpler example
patterns, it is sufficient to match aggregated neighborhood
statistics for all elements [OG12,ZHWW 12, HSD13]. How-
ever, for more complex examples, individual neighborhoods
of elements need to be matched [MWT11, AKA13], unless
more elaborate distance metrics based on element shapes are
utilized [LGH13].

Most of these methods are designed for particular appli-
cations and hence operate under certain assumptions on the
space, shapes, and arrangements of the elements. A notable
exception is the work by Ma et al. [MWT11] that can syn-
thesize element distributions in 2D, 3D, or on surfaces with
variable element shapes arranged in arbitrary configurations,
thanks to their point-based representation of element shapes.
Our method also works with point samples for arbitrary do-
mains and shapes of discrete elements. However, unlike geo-
metric texture synthesis methods, it can synthesize continu-
ous, as well as mixtures of discrete and continuous structures
interactively. This is due to a new formulation of the neighbor-
hood matching problem in a meshless framework that allows
careful sampling control and better convergence behavior.

Most general geometric texture synthesis methods are orig-
inally designed for off-line texturing of defined regions. Re-
cent efforts utilize and extend texture synthesis methods for
generating repeated patterns in paintings [KIZD12a,LBDF13,
LFB*13,KCG*14,LBW*14,XCW14]. However, these tech-
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niques are designed for particular interaction scenarios and
output. In contrast, our progressive synthesis method can be
used to generate general structures interactively.

Continuous Geometry Synthesis Since the previously
mentioned methods cannot be used to synthesize continu-
ous structures when the domain is not a 2D or 3D volume,
several other methods have been developed to synthesize
continuous geometry for terrains [ZSTR07], mesh-based ge-
ometry [ZHW*06, LHGMO05] or 3D models [MMOS]. In ad-
dition, structured 2D pattern synthesis along curves has been
recently proposed in [LBW™14] and [ZLL13], and later made
suitable for fabrication in [ZJL14]. The continuity assumption
comes at the expense of the possibility of losing shapes of
individual elements, similar to raster-based texture synthesis
methods. Furthermore, the structures should have applica-
tion specific representations for these methods to work. Our
method can handle continuous synthesis in general domains
in combination with discrete elements, and for all structure
representations once they are converted into point samples.

3. Overview

Our method is based on geometries represented by point
samples with associated attributes (Section 4.1). In order to
robustly compare the input exemplar and the synthesized
structure, point data is converted into a functional represen-
tation encoding both the spatial configuration and attributes
in the form of a sum of Gaussians (Section 4.3). A similarity
measure between two smooth functions is then constructed
(Sections 4.2 and 4.3). As in previous neighborhood-based
texture synthesis approaches, our optimization alternates a
matching step for local neighborhoods, and a merging step
where point locations and attributes are updated according to
the matching (Section 5.1). Our smooth formulation allows
the computation of analytic gradients, thus robust methods
such as the gradient descent can be applied. A multi-scale ap-
proach is used to optimize first large scale structures and then
fine details, and a dynamic sampling control strategy based
on the presented similarity measure guarantees the generation
of a proper number of output samples (Section 5.1). Several
large-scale control possibilities are presented in Section 6.1.

Our geometry representation based on points and attributes
allows to model different kinds of structures in the same
framework. Continuous structures (Figure 1 center, Figure 13)
can be generated by storing a scalar or vector as attribute at
each point location (for example, the surface normal vector).
Discrete elements can be synthesized by either represent-
ing them with multiple points or with single samples (Fig-
ure 1 left). With the same optimization procedure, point data
representing mixtures of discrete elements and continuous
structures can be processed (Figure 1 right, Figure 18).
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4. Measuring Structure Similarity

In this section we first present a flexible and powerful geomet-
ric representation that allows us to define a robust similarity
measure between the generated and the example geometries
that serves as the basis for synthesis. We strive to design
a measure that accurately describes general structures and
their similarities, accepts an adaptive and efficient discrete
representation, and is smooth for utilizing robust and efficient
optimization procedures.

4.1. Geometry Representation

In order to derive a general method for synthesizing new
geometry from a set of examples, we need a general way
of representing arbitrary geometries. We allow that they
can have different dimensionality (1D/2D/3D) with possi-
bly non-manifold connections. One obvious option would
be to choose simplicial complexes (line segments, trian-
gles, tetrahedra) as the underlying discrete representation
[LGH13,ZQC*14]. However as we do not want to deal with
explicit connectivity between vertices, we choose to follow
the general point-based representation of Ma et al. [MWT11]
and treat material connectivity implicitly. That is, we repre-
sent all geometries by a set of tuples

{(xj,a;),i=1..n} )

where x; € RY are the point locations and a; € Rd/ is a vector
of associated continuous attributes and encode additional ge-
ometric or appearance information. Choosing such a general
representation allows us to cover a large variety of different
applications as we will see later.

However, unlike Ma et al. [MWTI11], we do not use the
point samples themselves as the representation for the neigh-
borhoods. Instead, we construct auxiliary smooth functions
defined in terms of these samples, and compute a matching
measure based on these functions, as we explain next.

4.2. Continuous Similarity Measure

In order to construct a robust similarity measure for our point-
based geometry representation, we first study the problem of
measuring similarity between two continuous functions and
will then show how to perform a meshless discretization in
order to derive the actual numerical scheme.

Similarity Error Density Let us first consider the prob-
lem of measuring local similarity between an output function
f(x) and the example function e(x). For this purpose, we de-
fine a window function w(.) to delimit a local neighborhood
(Figure 2, a) and a discontinuous mapping function m(x) that
matches the output domain point X to a matching point within
the example function. Using these definitions, we can define
the similarity error density for the location x and a current
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Figure 2: (a) The example and output functions, (b) their dis-
crete representation as a sum of Gaussians, (c) the quadrature
points q; and their matching points my, (d) the final matched
output function, which now has the same shape as the exam-
ple function e in the region defined by the window function
w.

matching m(x) as

S(f(x),e(m(x))) = /n [f(x+s) —e(m(x) +s) |2 w(s)ds.
@3]
The size and shape of the window function w characterize the
actual matching. Large support sizes demand for large scale
structures to match well, while smaller sizes only require
small scale details to match.

Similarity Error The toral similarity error is then given
as

T = /Q S(E(x), e(m(x)))dx, 3)

where Q is a subspace in the output. The idea is now to
minimize this total error alternatively for m(x) by finding
the best matching neighborhoods for the current solution
f(x), and the output function f(x) by finding the most similar
output to the example, given the matching. Hence, we follow
the common idea of neighborhood matching based texture
synthesis methods, but reformulate it in a general way to
handle different types of structures in the same framework.

Once the structures in the example and output are converted
into their smooth functional representations, the measure T
gives a robust two-way matching.

4.3. Discrete Similarity Measure

Similarity Error Density In order to turn this continuous
minimization problem into a numerically treatable form, we
need to discretize the functions as well as the integrals in-
volved. We achieve this by a general geometry representa-
tion, and a combination of analytic and numerical integration
with meshless methods. Both output and example geometries,
{(xi,a;),i = 1..n} and {(e;,b;),i = 1..m} respectively, are
transformed into corresponding continuous functions as

f(x) = Y aig(x—xi.0)
e(x) = ) big(x—e;,0), “

that is, we place Gaussians g(x,0) = e MO g an point
locations that ‘smear’ the point attributes into their neighbor-
hood (Figure 2, b). Switching to a sum-of-Gaussians repre-
sentation for the point data allows us to encode both their
spatial configuration and attributes into the shape of contin-
uous functions and to use the presented similarity measures
for continuous functions. As shown in the supplementary
material, the similarity error density (2) can be analytically
evaluated by representing the window function w with a Gaus-
sian or a box function. If the latter is chosen, the evaluation
results in the discrete error density measure

S(f(x),e(m(x))) =
Yii(ai-a))g(xi —x;,v/20)
—2Y,;(a;-bj)g((x; —x) — (¢; —m(x)),/20)
+Y;;(b;-bj)g(e; —ej,v/20), )

where the points e; and x; are in the neighborhood defined
by the window function, for the example and output domains,
respectively, and the equality is up to a constant. Hence,
the functions f and e are replaced by their representations
with the sets of point locations and attributes. The resulting
discrete similarity measure for the case when a Gaussian of
width & is chosen for representing the window function, i.e.,
w(s) = g(s,0), is shown in the supplementary material. For
numerical efficiency, we usually truncate Gaussians below
a given threshold value, making similarity density measure
local. Thus, we only consider the points that are 39 distance
apart from x in the output, and m(x) in the input example.

Similarity Error This discrete similarity density can now
be used to measure the total similarity 7' between a syn-
thesized point set and the example point set as defined in
Equation 3. This requires computing another integral over
all points in the output domain. Note that the first and last

© 2015 The Author(s)
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terms in Equation 5 do not depend on x. However, the second
term involves the mapping function m(x) that assigns each
point x € Q to the point in the input example domain with
the matching neighborhood. This makes it impossible to take
the final integral analytically. Hence, we resort to a numerical
scheme where the output domain Q is sampled with a regular
grid. Since the integrand is a sum of shifted Gaussians of stan-
dard deviation o, it has a fixed effective bandwidth, allowing
us to use an optimal spacing between the grid points.

Let q;, denote the background integration points, all having
a constant integration domain associated (Figure 2, c, right).
Furthermore, let m; = m(qy) the associated best matching
location for the quadrature points in the example domain
(Figure 2, c, left). This then leads to the discrete similarity
error

T= Zs(f(qk)7e(mk))7 (6)
k

which compares the geometric neighborhood structure in the
output around each quadrature point q to the best matching
corresponding neighborhood in the example set.

4.4. Discussion

The proposed similarity error 7 measures how well each
neighborhood in the output matches to its neighborhood
in the input example. Thus, it follows the patch based tex-
ture synthesis approaches that rely on a Markov Random
Field model [KEBKOS5]. Similar to these raster based ap-
proaches, it conceptually compares functions defined in the
whole domain. However, the free parameters are no longer
only the functional values, but also the point locations them-
selves. Similar to meshless surface reconstruction methods,
the functions are adaptively represented such that only rel-
evant structures are sampled. Representing structures with
point samples gives us full flexibility in handling structures
of different kinds and their combinations. This is contrast
with methods that rely on certain assumptions on what the
point samples represent and design the matching metrics
accordingly [LGH13,LBW™*14,XCW14].

Neighborhood matching metric We thus share the gen-
erality of point sampling based discrete element texture syn-
thesis methods [MWT11, MWLT13]. In contrast to these
methods, however, we do not directly match difference vec-
tors in the neighborhoods. Defining matching metrics di-
rectly on points is challenging, as the matching scores criti-
cally depend on the sampling in that case. Indeed, previous
works [MWT11,MWLT13] have a one-way matching score,
where each vector x; — x; for X; in the neighborhood of x; in
the output is matched to the most similar vector in the input
example. This implies that for output point sets where the
points do not completely represent the desired structures, the
matching energy will still be low, as illustrated in Figure 3.
In contrast, our energy utilizes a two-way matching, leading
to lower energy values only when the neighborhoods in the
output and input are structurally similar (Figure 3).

(© 2015 The Author(s)
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Example Output 1 Output 2

Figure 3: We show two different outputs for each input ex-
ample. For both outputs 1 and 2, the neighborhood matching
energy defined by Ma et al. [MWT11, MWLT13] stays the
same due to the one-way matching the pairs difference vec-
tors from the output to those in the input example. In contrast,
our method has 2 times higher energy for the wrong output 1
for each example.

The sampling dependency of previous methods [MWT11,
MWLT13] also means that the neighborhoods of only sam-
ple points are matched. Thus, depending on the sampling,
some neighborhoods might be left unmatched, if they are cov-
ered with less samples. In contrast, we separate the structure
representation (sample points X; and e;), and neighborhood
matching (quadrature points qy), enforcing that all neighbor-
hoods are matched equally well, regardless of the sampling.
With the previous methods, the q; and my, are constrained to
be among Xx; and e;, respectively. We will see in Section 7 that
this results in better preservation of local structures, which
is very important especially when continuous structures in
general domains are to be synthesized.

Attributes The representation of output and example func-
tions in Equation 4 is different from previous attribute repre-
sentations, where they are treated as additional point locations.
Treating attributes as scaling factors for the Gaussians signifi-
cantly reduces the dimensionality of the matching problem,
especially when the attributed a; live in high dimensional
spaces. Since we regularly sample the output domain, this
is an important consideration. Furthermore, we do not need
to consider relative scaling between the spatial domain and
the attributes, as in the previous works [MWT11, MWLT13].
If the attributes are discrete, we snap to the closest discrete
value after each optimization step, as described in Section 5.
Equation 4 implies that putting two points at the sample lo-
cation, or doubling an attribute (assuming it is scalar) at that
location results in the same representation. As we elaborate in
the next section, we avoid such cases by carefully controlling
the density of the points, and optimizing for the attributes and
the point location separately.

Smooth approximation The smooth representation with
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Algorithm 1: Multi-scale Local-Global Solver

1 initialize x;

2 initialize window size &

3 loop multiScalellterations times

4 loop samplingControllterations times

5 loop localGloballterations times

6 matching: {m;} < argmingp,} 7

7 merging: {x;},{a;} < argmingyy 0y T
8 end

9 sampling control: add/remove x; based on P(-)

10 end
1 8« a-d where a € [0,1]
12 end

sums of Gaussians (Equation 4) allows us to compute analytic
integrals and derivatives, which are essential for efficient and
accurate synthesis via well-established optimization methods,
as we will illustrate in the next sections.

5. Structure Synthesis

The smooth representation of the structures allows us to for-
mulate a robust optimization procedure with standard opti-
mization methods. Our optimization follows the same basic
iterative steps of previous neighborhood-based texture syn-
thesis methods: a matching step for the neighborhoods, and
a merging step that computes the positions of the sample
points based on the matched neighborhoods. However, un-
like previous methods, the matching measure is decoupled
from the sampling points that represent the structures, i.e.,
we have the quadrature points q; to measure how well the
neighborhoods match. This distinction allows us to robustly
handle the matching step, regardless of how the structures are
sampled or represented.

5.1. Multi-scale Local-Global Solver

To synthesize the output point set, we minimize the total error
T defined in Equation 6 with respect to the point locations
x; and attributes a;. We perform this optimization with an
alternating approach as outlined in Algorithm 1, where each
step is guaranteed to decrease the similarity error 7.

Local Step: Matching We first compute the best match for
each quadrature point neighborhood by finding the matching
my, for each quadrature point q;. A notable property of this
approach is that the matching point my, for a given q; can
be optimized independently of the other quadrature points
since 0T /omy, = 0S/dmy,. This makes this local step of the
problem highly parallelizable. We employ a simple gradient
descent procedure to find the best matching locations. The
necessary gradients dS/0dmy, are given in the supplementary
material. This optimization is prone to get stuck in a local
minimum and not finding the best match. Therefore we run

this optimization with five different random initial positions
for my and choose the best match. The repetitive pattern of
the input exemplar guarantees the existence of many good
local minima, thus we found five seeds to be sufficient for the
optimization to succeed.

Global Step: Merging After having found best matches
for all quadrature points, we adapt the output point set struc-
ture to be as similar as possible to these local neighborhoods
as demanded by the similarity metric, i.e., we minimize T
for all output points x; and attributes a;. This is a globally
coupled nonlinear optimization problem. We again employ a
gradient descent procedure where we sequentially optimize
the points and attributes, one after the other, in a Gauss-Seidel
manner. Optimizing first for points x;, combined with a sam-
pling control stage as explained below, prevents points from
clustering to compensate for the difference in attributes. The
required gradients 7' /0x; and 0T /da; are provided in the
supplementary material.

Choosing such a simple optimization scheme allows us to
parallelize this step due to the local support of the window
function w, and to have a consistent decrease in the energy at
each step. The non-convexity of our similarity error function
leads to the presence of multiple local minima. For the goal
of geometry synthesis this is expected, as there are multiple
configurations exhibiting the desired structures. It is in fact
an advantage: having different regions ending up in differ-
ent local minima increases the diversity among generated
configurations.

Multi-scale Optimization Once the optimization con-
verges sufficiently for a given window size, the best con-
cense has been found for this feature size. However, this
compromise can result in geometries where local features
are not close to example features. In order to fix the smaller
scale structures, we apply a multi-scale optimization where
we decrease the window size starting from the initially pro-
vided window size, such that the algorithm can continue the
descent to improve the local small scale details. By going

Input example

SLADAC

[Ma et al. 2011] Ours

Figure 5: Given the input example with points and normals
(top), outputs point sets are synthesized (second row) and re-
constructed (third and fourth row) using moving least squares
surfaces [OGGO09]. Our representation and synthesis algo-
rithm accurately handles such continuous structures.
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Initialization

[Ma et al. 2011] Ours

Example

Initialization

[Ma et al. 2011] Ours

Example

Figure 4: Different initializations computed by copying patches of different sizes from the example to the output are used for each
synthesis result. For all initializations, our method can generate accurate discrete (left) as well as continuous (right) structures.
The previous methods require copying of considerably larger patches to initialize the synthesis, resulting in less randomness and
a patchy look as illustrated in the left-topmost synthesis result. When continuous structures are present (right), even such large

patches are not sufficient to generate accurate structures.

from larger to smaller scales, we make sure that the larger
structures, which are harder to reproduce, are matched first.
The optimization then continues with refinements in smaller
scales.

Sampling Control So far we assumed that the regions
in the output domain always contain the optimal amount of
points regarding the similarity measure, i.e., that there is no
mismatch in the number of points and that errors only occur
from non-optimal point locations and attributes. However,
too many or too few points in a region impair our similar-
ity measure, as for all point sample based texture synthesis
methods. If there are not enough points, the structures in the
example will be partially reproduced. Conversely, too many
points will result in excess points that force the optimization
to destroy structures to accommodate the extra points. In or-
der to prevent this, we employ a sampling control strategy
during the optimization, based on the same principle of our
similarity error density measure.

In order to detect the deviation in the sampling density
around a quadrature point we define a sampling error density
function

Poxm(x) = [ (F(x-+5) — e(mx) +9)w(skds ()

that measures the signed difference between the output and
example functions. However, here f(-) and e(-) are special
instances of the two functions where a; = b; = 1 such that
solely point locations are taken into account. If P(x,m(x)) <
0 for a given point x, the function e in the example domain
is on average larger than the output f, implying removal of
points. Similarly, P(x,m(x)) > 0 calls for adding a point to
match the functions f and e. For robustness, we introduce

(© 2015 The Author(s)
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a threshold € = 10~ and add a new point in vicinity of the
quadrature point if P < —€, or remove an unnecessary point if
P > €. Once a new random point is added, we optimize for its
location and attribute, and decide to keep the optimized point
or not by checking whether the energy increases or decreases.
The same check is performed for the case of removing a
point.

5.2. Discussion

Robustness to initialization Our two-way neighborhood
matching, as discussed in Section 4.4, combined with the
optimization algorithm presented in the last section makes
our method robust to initializations, as compared to the previ-
ous methods that critically depend on the initial distribution
of points in the output [MWT11, MWLT13]. We illustrate
the robustness to initialization in Figure 4. It is especially
important for synthesizing continuous structures (Figure 4,
right), where even a single neighborhood mismatch can lead
to visually disturbing reconstructions (Figure 5).

Control sampling Dynamically controlling the sampling
by adding and removing points in the optimization is a key
component for interactive synthesis, where the user contin-
uously extends the region he wants to texture by brushing
(Section 6.2). This is in contrast with the previous offline dis-
crete element texture synthesis methods. Adding/removing
points for interactive synthesis has recently been explored for
2D drawing applications [XCW14], and proposed as an opti-
mization method for shape processes via MCMC [LGH13].
In contrast to these approaches, our technique offers a general
unified adding/removing strategy that is interleaved with the
optimization steps that move the points for accurate place-
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ment. Such accurate placement takes considerably more time
to obtain by merely adding entities [LGH13].

6. Controlling Structures

We control the synthesized structures in a two-scale approach,
where the small scale geometry is given by the example, and
the large scale behavior is controlled by the user, similar to
the existing methods [MWT11,MWLT13]. The main strength
of our structure definition and synthesis method is that we can
accurately handle arbitrary structures represented in various
forms. This turns our method into a powerful tool for users
to create complex general output structures interactively, in
contrast to the previous methods offline [MWT11,MWLT13],
or interactive [KIZD12a, XCW14] methods. In this section,
we first show how the generic definition can be leveraged to
generate and control various types of output representations
by simply changing what the point locations and attributes
represent. We then show how orientation and scaling fields
can be used to steer the structure synthesis by specifying
geometries of different dimensions.

6.1. Structure Representations

Our point samples can represent a variety of structures
sparsely, ranging from discrete to continuous. This allows us
to handle different structures, and their mixtures, in the same
framework.

Continuous Structures Continuous geometry can be
achieved by storing scalar and/or vectorial point attributes.
A scalar value, such as a point color or radius, can be as-
signed and used for texturing and rendering, i.e., to extract
an isosurface. Equipping each particle with a vector-valued
surface normal attribute further allows to employ recent mesh-
less surface reconstruction techniques [OGGO09] within our
framework to synthesize high-quality surfaces.

Discrete Elements A discrete element can be represented
by one or more samples in our framework. Representation
with a single sample works well for cases where collisions
are not a problem, such as the leaves in Figure 1. However,
for more complex structures, we should have a sufficient
sampling [MWT11,LGH13]. We represent such discrete ele-
ments with multiple points, often sampled on the surface of
the element, and sometimes equipped with normals. Points
belonging to a single element are added, removed, and moved
together in the optimization, by treating them as a single point,
i.e. by setting x; = X for all points x; in the discrete structure,
and optimizing with respect to xg. Note that the optimiza-
tion procedure stays exactly the same as for the continuous
structures.

Mixtures of Structures The common definition for con-
tinuous and discrete structures allows us to handle their mix-
tures seamlessly, since both are represented and optimized
in the same way. An example synthesis results with structure
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Figure 6: The guiding fields can be defined along curves,
surfaces, or volumes to control the large-scale geometry.

mixtures containing discrete elements such as the organic
structure and the discrete gems is illustrated in Figure 16. We
can also use mixtures of discrete and continuous attributes
if the structures require such a representation. As an exam-
ple, we used a grouping attribute for the points to synthesize
the structure in Figure 12, such that each bean is assigned a
different grouping number. Note that this does not prevent
the beans to exhibit random variations, as they are still rep-
resented as continuous structures with surface points and
normals.

6.2. Large-scale Control

The large scale geometry is intuitively controlled by the user
as orientation and scaling fields are defined along curves,
triangular surfaces, or bounded volumes. We first discuss
how our system can be extended to handle rotation and scale,
and then explain how these guiding geometries are defined.

Rotation and Scale We extend the optimization to account
for orientation and scale of the output geometry by adding a
rotation R(x) and scaling factor s(x) to the similarity error
density shown in Equation 2, resulting in

= / I£(x +5) — e(s(x)R(x) (m(x) +5)) > w(s)ds. (8)

Note that since R and s define fixed fields independent of
the synthesized function f, no modification to the derivatives
and hence the optimization procedure is required. As implied
by the expression, in practice, we implement this optimiza-
tion by rotating and scaling the example e for each point x.
Note that in the discretized energy, X is represented by the
quadrature points, and hence these fields are also stored at the
quadrature points. Once they are stored, we can then run the
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Figure 7: The structures grow in real-time as the user in-
teractively brushes (orange circle indicate brushing region).

same optimization. The fields R and s depend on the design
metaphor utilized as discussed next.

Brush strokes With our system we can generate new ge-
ometries by drawing lines in 3D space. Quadrature points are
automatically generated along and near the drawn lines. The
drawing direction can be exploited to automatically set the
rotation R of each quadrature point, such that the direction
of the input example is aligned with the stroke tangent. The
scaling factor s is manually set by the user as she/he draws
the strokes. The user can also control the brush size, which
determines the region to be textured. Examples of this type
of control is given in Figures 6, top, 7, and the accompanying
video. The brush direction defines the orientation, and the
varying scaling factors smoothly change the pitch.

Triangular surfaces The guiding fields can also be de-
fined on surfaces. As an example, we used the principle cur-
vature directions as an orientation field in Figure 6, middle.
Hence, we can add fine-scale details to existing surface ge-
ometries with our technique, as we further illustrate in the
next section.

Volumetric synthesis This naturally extends to 2D and 3D
volumes, where the fields are defined throughout the ambient
space. The user can also utilize a 3D surface to shape the
output structure as shown in Figure 6, bottom, and the chair
example in Figure 1. The quadrature points are sampled inside
the provided volume to avoid unnecessary computations.

7. Results and Discussion
7.1. Implementation and Parameters

For our representation, ¢ gives the standard deviation of the
Gaussians used in defining the functions f. The parameter 6
determines the smoothness of the matched functions, which
in turn depends on the sampling of the structures. If the struc-
tures are sampled densely in the input example, we can set it
to lower values to capture smaller scale details. Thus, in our
implementation, it is set to the average spacing between the

(© 2015 The Author(s)

Computer Graphics Forum (© 2015 The Eurographics Association and John Wiley & Sons Ltd.

points e; in the example. Once G is set, the optimum spacing
of the quadrature points qy in the output can be analytically
determined as the Gaussians are band-limited. The parameter
 determines the spatial extent of the window function w. The
neighborhood size and hence the & is provided by the user
based on the expected scale of repetitions.

In the synthesis algorithm (Algorithm 1), the optimization
by gradient descent is run till the average movement of the
points x; is below a threshold € = 1079 or the maximum num-
ber of iterations (we used 30) is reached. The step size for the
gradient descent is set to 0.03. After this optimization, each
quadrature point is checked for the condition on P as defined
in Section 5.1, and a point is removed or added accordingly.
These steps are repeated for a new shrunken neighborhood
size by setting o = 0.9. Once the new neighborhood size is
half of the original size, the algorithm is stopped. We use a
kd-tree to speed up neighborhood queries.

7.2. Analysis and Comparisons

Our new matching metric combined with the synthesis algo-
rithm with sampling control leads to accurate reproduction
of repeated patterns, independent of the initializations and
complexity of the structures (please see Sections 4.4 and 5.2
for discussions on these properties). We illustrate robustness
to initial conditions in Figures 4 and 5. As illustrated in Fig-
ure 4, top row, utilizing the initialization strategy proposed
by Ma et al. [MWT11] leads to preservation of structures
when continuity is not essential, although the resulting syn-
thesized point sets look quite similar to the initializations
with visible patches from the input example. However, con-
tinuous structures cannot be accurately synthesized with this
technique [MWT11], as shown in Figure 4, top row, right.
Furthermore, even small changes in the initial point sets can
lead to convergence to bad local minima, resulting in dis-
torted structures with the method of Ma et al. [MWTI11]
(Figure 4, second and third rows). In contrast, our algorithm
is not affected by the initialization. This property is especially
important if the resulting point sets are used for reconstruct-
ing smooth surfaces, as shown in Figure 5.

Contrary to Ma et al. [MWT11], our smooth formulation
does not require solving a linear system at each iteration.
We can thus achieve better performance which also allows
for interactive results, and use input examples with a large
number of points (usually more than 1000), which is essential
for representing continuous structures. Figure 8 shows the
convergence behavior for a point set of 1000 points for the
input examples shown in Figure 7, top (2D), and Figure 18,
bottom (3D). Table 1 shows the run time for the results in
Figures 7 (bottom), 18 (bottom) and 1 (center), achieved with
our method and with the technique of Ma et al. [MWT11]. An
interactive brush was used for the helix example in Figure 7,
thus the presented run time refers to the points within the
brush (around 100). We run our method until convergence,
and the one by Ma et al. [MWTT11] for 10 iterations, as in the
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Example #in.put #ou_tput Run time | Run time
points points Us Ma et al.
helix 600 100 4s 12s
sand 1600 7200 2 min 9 min
chair 1100 23000 6 min 40 min

Table 1: Run times for three different results.

Disc. similarity error T

30 60 90 50 100 150 200 250
#iterations #iterations

Figure 8: Discrete similarity error 7 as a function of the
number of iterations for the optimization of 1000 points in
the output. On the left, the 2D grid input in Figure 7, on the
right, the 3D beach input in Figure 18, bottom is analyzed.

log time

_—

6 65 7
log output size
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Figure 9: Run time for one iteration for our method (blue)
and Ma et al. [MWT11] (red). On the left image, the input
exemplar contains 100 points, and the output structure varies
from 300 to 3000 points. On the right, the output structure
contains 1000 points, and the input exemplar varies from 100
to 1000.

mentioned work. The neighborhood size in these three exam-
ples was about one fourth of the size of the input. Moreover,
in Figure 9 we present the time required to run one iteration
for the two methods, with different input and output sizes.
One can notice that our method scales better with respect to
the input and output size, due to our simpler gradient descent
based optimization. The results were tested on a PC with an
Intel i7-3770K CPU.

The neighborhood size, provided by the user, offers control
over the scale of expected repetitions in the input and output.
We illustrate its effect on the synthesis results in Figure 10.
A bigger size can be used to preserve large scale structures,
while a smaller size leaves room for more randomness.

Our technique allows for interactive brushing in general
domains, and synthesizing mixtures of continuous and dis-

@ o (b)

Figure 10: Influence of the neighborhood size in the input
example (top, red circle) on the synthesized result (bottom).

crete structures. We provide examples of such results in the
next sections.

7.3. Synthesis Examples

We applied the technique to synthesize various structures
ranging from discrete to continuous in different domains
including curves, surfaces, and volumes. Some of the con-
trolling domains are sketched interactively (please also see
the accompanying video). For all the continuous structures
in 3D, except for the one in Figure 13, we used points with
normals sampled on the surface in the examples, synthesized
the output point cloud with normals, and reconstructed the
results with a moving least squares based surface reconstruc-
tion method [OGGO09]. For the example shown in Figure 13,
we reconstructed the isosurface by placing a metaball (blob)
at each point location. Locations and sizes of the metaball
are optimized according to the input. For discrete structures
in 3D, we simply kept the original geometry representation,
e.g. if the points are vertices of a mesh in the input example,
the same mesh also appears in the output. For some of the
results, we also included colors as attributes, as depicted in
the corresponding figures.

In Figure 1, models of wooden sticks (discrete elements)
have been placed on the hut surface shown in red.

The output structures representing the intertwined helix
in Figure 11 and the chain in Figure 12 have been interac-
tively generated along curves. The user draws a curve and
specifies orientation and scaling fields along it, and the points
are then synthesized accordingly. For smaller input examples
(less than about 500 points), the output can be synthesized
in real-time with a brushing interface, as in Figure 7 for the
2D grid and the 3D helix. The continuous surfaces have been
reconstructed offline using moving least squares. Synthesiz-
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ing continuous surfaces onto a triangular surface is shown
in Figure 14. The input surface, shown on the left in red,
defines the global shape of the structure, i.e., the deep-water
waves. With our method we can synthesize small-scale cap-
illary waves onto the surface, improving the realism of the
water surface. In the same way, bumps have been generated
on the stone structure in Figure 17. An example of using
bounded volumes is presented in Figure 1. A 3D model of
a chair is included, as shown on the right in red, defining
the global shape. The chair is sampled by quadrature points
during initialization, and then the volume is synthesized by an
organic structure. In a post-processing step, the borders of the
reconstructed output structure are cut using the same model
of the chair. The structure in Figure 13 has been generated
using metaballs of different sizes. Branches at the extremities
are thinner, thus generated from smaller metaballs than the
ones close to the main branch. Like in the case for moving
least squares, our control sampling strategy is essential to
reconstruct continuous, connected structures from the point
clouds.

As our method generalizes previous approaches, we can
simply combine discrete and continuous attributes. We
present several examples to illustrate such mixed structures.
The ivy example presented in Figure 1 shows a continuous
ivy structure that is synthesized along a curve, similarly to the
intertwined helix (Figure 11). The leaves and flowers are dis-
crete elements represented as proxy samples in the input point
set. Other examples using mixed structures are shown for a
stone wall, a decorative object with gems, and a beach with
shells in Figures 15, 16 and 18, respectively. In these cases,
around 20 points have been sampled on the surface of each
discrete element. In addition, the beach example shows how
using different sand patterns as input affects the generated
continuous surface.

7.4. Limitations

The structure representation and thus the synthesis algorithm
depends on a smooth approximation with Gaussians. As de-
scribed in Section 7.1, we determine a global standard devi-
ation given by ¢ for the Gaussians based on point spacing,
to accurately capture the structures. This was sufficient for
reproducing a variety of structures as presented. However, an
adaptive ¢ can further improve the results, especially when
there are far apart tight clusters of points in the input example.

Similar to the previous methods, we utilize a neighbor-
hood size to capture the repetitions in the input examples.
As shown in Figure 10, this size is an example-dependent
parameter and thus should be provided by the user for artistic
control, reflecting his/her view of the scale of repetitions in
the example. However, if there are repetitions of different
scales in the same example, setting a single size can be detri-
mental for the preservation of the repetitive structures at the
other scales. In particular, we encountered this problem only
in some of the discrete-continuous mixtures we experimented
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Figure 11: The spiral is synthesized by specifying orientation
and scaling fields along a curve.

Figure 12: The chain is synthesized with surface normals as
attributes, and reconstructed with a smooth surface definition.

with, where samples representing discrete elements have a
considerably larger scale of repetitions than the ones compos-
ing continuous structures. As illustrated in Figure 18, top, the
arrangement of the sea shells (each of which is regarded as
a discrete element) is not fully preserved, since the scale of
the repetition of that pattern is much larger than that of the
continuous background. On the other hand, purely continuous
or discrete exemplars are not affected by this limitation, as
these structures usually exhibit repetitions of similar scales,
allowing us to use our approach for further applications, such
as painting [KIZD12b].

Moreover, like in the other neighborhood-based texture
synthesis methods, our exemplars are required to have a repet-
itive enough pattern. This allows our matching optimization
with multiple initial positions to avoid bad local minima,
which would distort the synthesized structures.

8. Conclusion

We presented a new method for synthesizing general repeated
structures given by an input example. In contrast to previ-
ous geometric texture synthesis methods, our technique offers
treating continuous and discrete structures residing on general
domains in the same framework, exhibits better and initial-
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Figure 13: Metaballs of different sizes are used to reconstruct
a continuous surface along a curve.

Figure 14: Capillary waves synthesized onto coarse mesh
defining the deep water waves.

Figure 15: The mixture of the discrete elements of stones of
lighter color and continuous background wall are synthesized.

ization independent preservation of structures, and allows for
interactive repetitive synthesis of general structures.

Future work

We presented only a few applications of our method in
the scope of this paper. Our method can be utilized in all
applications where repetitive structures are utilized for syn-
thesizing missing or augmenting existing structures. Some
immediate applications are surface and image reconstruc-
tion, completion, consolidation, inpainting, or superresolu-

Figure 16: Another example of synthesizing mixtures of dis-
crete elements (gems) with continuous structures.

Figure 17: Our method can also be used to synthesize contin-
uous structures on surfaces.

tion. The technique can be combined with physical or fab-
rication constraints for simulations or fabrication oriented
design. By adding a time dimension, similar to previous meth-
ods [MWLT13], it can also be used for animation generation,
and in combination with physical simulations.

The technique is well-suited for interactive authoring of
such difficult structures. We utilized a simple stroke drawing
interface for real-time results. It can be extended with more
sophisticated and possibly application dependent metaphors
for interactive synthesis.
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