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1 Numerical Coarsening

We use a homogenization method to describe the coarse-scale be-
havior of a microstructure, and as the basis of our microstruc-
ture optimization. Such a method computes material parame-
ters for a homogenous material that approximates a structure.
In the following, we summarize the Numerical Coarsening ap-
proach [Kharevych et al. 2009] and highlight differences due to its
application to microstructures.

Harmonic Displacements To describe the deformation behavior
of the microstructure, a set of representative displacements have to
be computed for different load cases. These harmonic displace-
ments hab (see Figure 1 for an illustration) are defined as the solu-
tion to the following boundary value problem:

∇ · σ(hab) = 0 inside Ω

σ(hab) · n = 1
2
(eae

T
b + ebe

T
a ) · n on ∂Ω.

(1)

Here, ea is the unit vector along the a-th coordinate direction,
1
2
(eae

T
b + ebe

T
a ) describes the tractions on the surface ∂Ω of the

object domain Ω, and n is the surface normal. For tiled structures,
this surface is the boundary of the cell.

Considering symmetries, there are 3 and 6 distinct harmonic dis-
placements in 2D and 3D, respectively. From these displacements,
a 4-th order deformation tensor G can be defined per element:

Gklab = (ε (hab))kl . (2)

This tensor contains the Cauchy strain for every displacement, and
by considering the elasticity equation W = ε : C : ε as a bilinear
equation, the term GT : C : G describes the energy density for
any pair of harmonic displacements.

Coarsening The homogenized material stiffness tensor can then
be computed from the deformation behavior of the microstructure.
The deformation is first transferred from the harmonic displace-
ments of the microstructure to a coarse mesh consisting of only a
single voxel of the size of the cell. For the case where the corners of
the cell correspond to vertices of the fine mesh, this simply means
transferring the displacements at the corner. For the general case,
the displacement is transferred by computing a distance-weighted
interpolation of a set of nearest neighbors in the fine mesh, while
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Figure 1: Harmonic displacements of a microstructure cell in 2D.

adhering to the periodic boundary conditions. After the deforma-
tion has been transferred to the coarse mesh, a single coarse-scale
deformation tensor G can be defined in a manner similar to Equa-
tion (2). The coarsened material stiffness tensor for the coarse mesh
is then obtained analytically as

C = G−T :

(
k∑

i=1

Vi

V
GT

i : Ci : Gi

)
: G−1, (3)

where in the 2D (3D) case Vi is the area (volume) of element i in
the fine mesh, and V is the area (volume) of the entire cell. This ap-
proach differs slightly from Kharevych et al. [2009], where a coars-
ened material stiffness tensor is computed for every element in a
coarse tetrahedral mesh. Due to the periodic boundary condition
for microstructures, the strain in the coarse mesh is uniform, and
a single material stiffness tensor can be computed for the whole
cell. Note that we use the Voigt compressed matrix representation
to express all tensors. This is especially important when computing
G−1, which can be computed as a simple matrix inverse instead of
a more complex symmetric tensor inverse.

2 Microstructure Optimization in 3D

This section describes the changes necessary to transform the mi-
crostructure optimization described in Section 5 of the paper from
2D to 3D.

2.1 Regularization

Two of the regularization terms, the smoothness term and the
checkerboard term, rely on neighborhood information and have to
be adapted accordingly in a 3D environment.

Smoothness The approach for the smoothness term in 3D is
identical to the 2D case, except that we now use six neighbors in-
stead of four to compute the second-order finite difference approx-
imation. Assuming each component of α is associated with three
indices in 3D, such thatαi,j,k corresponds to the voxel (i, j, k), the
regularization has the form

Rs =
∑
i,j,k

(αi−1,j,k +αi+1,j,k +αi,j−1,k

+αi,j+1,k +αi,j,k−1 +αi,j,k+1

−6αi,j,k)2

(4)

Checkerboard patterns In 3D, checkerboard patterns include
structures that are connected by a single vertex or a single edge.
To cover these two cases, we will split the regularization term in
two components, Rcb,v and Rcb,e, respectively.

To check for structures connected by a single vertex, Rcb,v has to
cover patches of 2 × 2 × 2 voxels. For these patches, there are
four configurations that are undesirable and will not be covered by
Rcb,e. These are the only configurations for which a binary solution



should lead to a regularization value larger than 0. This condition
can be formulated as

Rcb,e =
∑
i,j,k

(αi,j,k −αmin)(1−αi+1,j,k)

(1−αi,j+1,k)(1−αi,j,k+1)

(1−αi+1,j+1,k)(1−αi+1,j,k+1)

(1−αi,j+1,k+1)(αi+1,j+1,k+1 −αmin)

+(1−αi,j,k)(αi+1,j,k −αmin)

(1−αi,j+1,k)(1−αi,j,k+1)

(1−αi+1,j+1,k)(1−αi+1,j,k+1)

(αi,j+1,k+1 −αmin)(1−αi+1,j+1,k+1)

+(1−αi,j,k)(1−αi+1,j,k)

(αi,j+1,k −αmin)(1−αi,j,k+1)

(1−αi+1,j+1,k)(αi+1,j,k+1 −αmin)

(1−αi,j+1,k+1)(1−αi+1,j+1,k+1)

+(1−αi,j,k)(1−αi+1,j,k)

(1−αi,j+1,k)(αi,j,k+1 −αmin)

(αi+1,j+1,k −αmin)(1−αi+1,j,k+1)

(1−αi,j+1,k+1)(1−αi+1,j+1,k+1)

(5)

Structures that are connected by a single edge can be detected by
looking at patches of 2× 2× 1 voxels, similar to the regularization
in 2D. The only

Rcb,v =
∑
i,j,k

(1−αi,j,k)(αi+1,j,k −αmin)

(αi,j+1,k −αmin)(1−αi+1,j+1,k)

+(αi,j,k −αmin)(1−αi+1,j,k)

(1−αi,j+1,k)(αi+1,j+1,k −αmin)

+(1−αi,j,k)(αi+1,j,k −αmin)

(αi,j,k+1 −αmin)(1−αi+1,j,k+1)

+(αi,j,k −αmin)(1−αi+1,j,k)

(1−αi,j,k+1)(αi+1,j,k+1 −αmin)

+(1−αi,j,k)(αi,j+1,k −αmin)

(αi,j,k+1 −αmin)(1−αi,j+1,k+1)

+(αi,j,k −αmin)(1−αi,j+1,k)

(1−αi,j,k+1)(αi,j+1,k+1 −αmin)

(6)

3 Numerical Methods

The indirect relationship between the coarsened stiffness tensor
C(h(α)) and the activationsα through the harmonic displacements
h(α) defined in Equation (1) has to be taken into account when
computing the derivatives of the microstructure optimization prob-
lem introduced in the paper. When the chain rule is applied to this
problem, the Jacobian of the harmonic displacements with respect
to the activations emerges. Since these quantities are effectively
linked by the solution of an elasticity problem, given the boundary
tractions defined in (1), we use the adjoint method to compute the
Jacobian. For this, we take the derivatives of both the minimization

condition∇xUel = 0 and the constraints c = 0 with respect to α:

∂2Uel

∂hab ∂α
+

∂2Uel

∂hab
2

dhab

dα
= 0

∂c

∂hab

dhab

dα
= 0.

(7)

Solving this system of equations for the desired Jacobian dhab/dα
requires only a single sparse matrix decomposition.

4 Compression Test Data
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Figure 2: The stress–strain measurements for the base material
and the three structures tested in the compression test. The tangents
of the linear part of the curve describes the Young’s modulus of the
structure.

Figure 2 shows the data from the compression tests of the base ma-
terial and three synthesized structure. We determined the Young’s
modulus of the structures by fitting a linear polynomial to the linear
part of the stress–strain curve.

References

KHAREVYCH, L., MULLEN, P., OWHADI, H., AND DESBRUN,
M. 2009. Numerical coarsening of inhomogeneous elastic ma-
terials. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 51.


