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A Behavior Trees for Narrative Authoring

This section outlines naive approaches to using behavior trees for
authoring interactive narratives, highlighting its problems and jus-
tifying the need for interactive behavior trees

Monitoring User Interactions. Fig. 1 illustrates a naive approach
to monitoring user interactions in a BT. This requires the subtree
that monitors user input to be inserted into the narrative tree at all
points where user selects how the narrative proceeds, thus produc-
ing a tight coupling between the narrative definition and user in-
teraction. Reducing the number of instances in the narrative where
user input is monitored severely limits interactivity, while free-form
interaction increases the complexity of the tree. Also, user input can
be monitored only at the granularity of a single node in the tree, and
not at every frame. These complications produce a tradeoff between
complexity in the narrative and degree of interactivity.
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Figure 1: Handling user interaction in a traditional Behavior Tree.
The MonitorUserInput subtree is required at all points in the nar-
rative tree where the user selects how the narrative proceeds, re-
sulting in unnecessary large trees.

Figure 2: A naive approach to handle state persistence in Behavior
Trees.

State Persistence. Behavior Trees traditionally don’t have any
means of explicitly storing the past state of the characters involved
in the narrative, where the current state of the story is implicit in
the current active node. Fig. 2 illustrates a simple narrative where
the bears choose to include the user in the game of catch contin-
gent on whether the user playfully interacted with the bear at the
beginning of the story. A traditional BT requires a branch at the
very beginning of the narrative where the presence or absence of
the playful rub produces two largely redundant tree definitions with
minor variations in its ending.

B Belief State Computation

Alg. (1) outlines the algorithm for computing belief states b for
each type of node in the behavior tree using a visitor design pattern.
We keep track of a set of failure states bf which are potential states
that have failed during certain execution paths of the BT leading up
to that particular node. For an affordance node, the postconditions
of the affordance are simply applied to all states in the belief state.
For a condition node, there are three possible cases for each state in
the belief state: (1) If the conditions are satisfied, there is no change.
(2) If the conditions are not satisfied, the state is moved to bf . (3) If
the condition cannot be evaluated by the partially specified state, we
add the needed attribute values to the state and also add the negation
of the desired attributes to the set of failed states. The belief states
of other control nodes are computed similarly.

C Computing Cyclomatic Complexity for Be-
havior Trees

Fig. 3 illustrates the equivalent control flow representations for the
different control nodes used for defining behavior trees, which are
used to compute its cyclomatic complexity. All subsequent calcula-
tions of c(.) assuming that the behavior trees are converted to their
equivalent control flow graphs.

Leaf Node. A leaf node tleaf represents an atomic command in
a BT which returns either success or failure. If it is in the “run-
ning” state, it continues executing itself until it succeeds or fails.
Fig. 3(a) shows the CFG for a leaf node. Depending on the number
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Figure 3: Control flow graphs for the different control nodes used in Behavior Trees.

of return states in the particular leaf node implementation, we have
p(tleaf) = {0, 1, 2} and s(tleaf) = {1, 2}. If the leaf node im-
mediately returns success or failure without using the running state,
we have c(tleaf) = 1. If the leaf node can enter the running state,
the complexity is c(tleaf) = 2.

Sequence Node. A sequence node tseq returns failure if any one of
its child nodes fails, else it returns success. If a child returns “run-
ning”, it simply continues executing this child until it has reached
failure or success. Fig. 3(b) illustrates the CFG for tseq. To calcu-
late c(tseq) of tseq with a set of m child nodes {ti|t1, t2 . . . tm},
we need to consider that each child node may be its own subtree
with multiple decision points.

p(tseq) =

m∑
i=1

p(ti), s(tseq) = 2,

∴ c(tseq) =

m∑
i=1

p(ti) (1)

Selector Node. The selector node tsel returns success as soon as its
first child node returns success, and produces a similar control flow
graph as compared to tseq (Fig. 3(c)). Hence, c(tsel) = c(tseq).

Loop Node. The loop node tloop is used to repeatedly execute
its child node tc until a certain condition is met. A loop node may
only have a single decorator or leaf node as its child and does not
define how to traverse through multiple children. The following
termination conditions may be used: (1) loop until success, (2) loop
until failure, (3) loop N times, (4) loop forever. Fig. 3(d) illustrates
the loop node which terminates when its child node returns success.
It has only one termination node, and an additional decision point
is introduced for looping.

p(tloop) = 1 + p(tc), s(tloop) = 1,

∴ c(tloop) = p(tc) + 2 (2)

The same calculations apply for a loop node that repeats until fail-
ure. For tloop which repeats a fixed number of times.

p(tloop) = 1 + p(t), s(tloop) = 2,

∴ c(tloop) = p(t) + 1 (3)

Fig. 3(e) illustrates a loop node that never returns. Since the node
never terminates and has neither a decision point nor an exit point,
we only need to consider the child of the loop node.

p(tloop) = p(t), s(tloop) = 0,

∴ c(tloop) = c(t) (4)

Parallel Node. The parallel node tpar executes its child nodes in
parallel and has two types depending on the termination condition:
(1) Selector Parallel: It executes until any child node returns suc-
cess or all of them return failure. (2) Sequence Parallel: It executes
until any child node returns failure or all of them succeed. Fig. 3(f)
illustrates the control flow graph of a selector parallel node. An ad-
ditional node “Sync” is used to symbolize the synchronization bar-
rier between the child nodes and termination. The sequence parallel
node exhibits similar behavior and both their complexity measures
can be calculated as shown below.

p(tpar) = 2 ·
m∑
i=1

p(ti), s(tpar) = 2,

∴ c(tpar) = 2 ·
m∑
i=1

p(ti) (5)

C.1 Behavior Tree Naive Approach CC

Behavior Trees (Naive Approach). Fig. 1 illustrates the naive
approach to authoring interactive narratives using BT’s. This BT
tBT = 〈tmu, {ai|a1 . . . am}〉 comprises a subtree tmu which mon-
itors user input and story branching, and m story arc subtrees,
where ai represents the ith arc with |ai| nodes. However, these
subtrees are tightly coupled together as the user input must be mon-
itored between each node of each story arc to ensure freeform user
interaction. The number of decision points for each story arc ai,
p(ai) = |ai| ·p(tmu)+p(ai), and tBT has two exit points. Hence,
the cyclomatic complexity c(tBT) is calculated as follows:

c(tBT) =

m∑
i=1

(|ai| · p(tmu) + p(ai)) (6)



Algorithm 1 Belief State Computation

{Affordance Node}
function visit (t,b,bf )

for all s ∈ b do
s = Ωt(s)

return 〈b,bf 〉

{Condition Node}
function visit (t,b,bf )

for all s ∈ b do
if Φt(s) == FALSE then

b = b- s
bf = bf ∪ s

else if Φt(s) ==? then
{Precondition cannot be evaluated by partial state s}
b = b− s
sp = s ∧Φt

sn = s ∧ ¬Φt

b = b ∪ sp

bf = bf ∪ sn

return 〈b,bf 〉

{Sequence Node}
function visit (t,b,bf )

for all tc ∈ t do
visit(tc, b, bf )

return 〈b,bf 〉

{Selector Node}
function visit (t,b,bf )

bt = b
b = ∅
for all tc ∈ t do
〈bc,b

f
c 〉 = visit(tc,bt,b

f )
b = b ∪ bc

bt = bf
c

return 〈b,bf 〉

{Loop Node}
function visit (t = 〈r , tc〉, b, bf )

if tc 6= null then
bc = visit(tc, b,bf )
if r 6= RepeatUntilSuccess then

b = b ∪ bc

return 〈b,bf 〉

{Parallel Node}
function visit (t,b,bf )

if SelectorParallel then
same as for selector node

else
same as for sequence node

return 〈b,bf 〉

D Augmented Reality Framework

Augmented Reality (AR) applications benefit from intuitive and
versatile input mechanisms where the user can seemingly physi-
cally interact with the virtual world. For see-through AR appli-
cations, the physical movement of the mobile device serves as a
direct means of exploring the digital content superimposed in a real
environment, where, not only can the user interact with the virtual
characters using the host of sensors available on the device, but the
virtual characters can interact with the physical world as well.

Implementation. We used a natural image-based tracking ap-
proach [Ababsa and Mallem 2004] which registers the 2D marker
image and estimates the camera location and pose in real-time for
stable tracking. We used the implementation provided by Vu-
foria [Qualcomm 2010]. Additional image markers can also be
tracked and used as triggers in the AR application, for example, to
instantiate new objects in the world, which may branch the narra-
tive in a different direction. The game application was implemented
using the Unity3D game engine using a data-driven character ani-
mation system. The animation functionality is exposed to the au-
thor using a set of routines including LookAt(obj), Reach(target),
Reach(target) etc. which can be invoked from BT’s. For more de-
tails of the animation system, please refer to [Shoulson et al. 2013].
The narrative was authored using an extended version of the BT li-
brary described in [Shoulson et al. 2011]. The current version of
the game was deployed and tested on multiple portable devices in-
cluding Sony Xperia Tablet Z, Apple iPad 3rd generation, Apple
iPad Mini Retina, and Apple iPad Air.

Interaction Vocabulary. Using the sensors available on the mo-
bile device, the user can interact with the virtual characters in the
following ways: (1) Moving the device to focus on different ob-
jects and characters. (2) Tapping on objects and characters to pick
them up or interact with them. (3) Shaking the device. (4) Ges-
tures to communicate user intent. (5) Using image markers to trig-
ger objects (e.g., a honey pot sticker can be used to create a honey
pot for the bears) in the world. The mode and effect of interac-
tions is completely decoupled from the narrative and can be easily
changed depending on the platform used without impacting the nar-
rative definition.

E Scenario Definition

Table 1 outlines representative affordances that were used to author
the interactive narratives described in the main document.

F User Study Data

Table 2 provides the raw data that was collected during the user
study for reference.
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Affordance IsInfatuated(Character c):
Precondition Φ:

InScene(self) ∧ InScene(c);
Postcondition Ω:

InfatuatedWith(self, c);

(a)

Affordance WinLove(Character c, Ball b):
Precondition Φ:

InScene(self) ∧ InScene(c)
∧ HoldsBall (self, b)
∧ InLove(self, c)

∧ EnchantedBy(c, b);
Postcondition Ω:
¬Holds (self, b)
∧ Holds (c, b)

∧ InLove (c, self);

(b)

Affordance Flirt(Character c):
Precondition Φ:

InScene(self) ∧ InScene(c)
∧ InfatuatedWith(self, c);

Postcondition Ω:
EnchantedBy(c, self);

(c)
Affordance TryToBuyBall(Vendor v, Ball b):

Precondition Φ:
InScene(self) ∧ InScene(v)

∧ ¬HasMoney(self) ∧ ¬InScene(b);
Postcondition Ω:
NeedsMoney(self);

(d)

Affordance GetMoney(Treasure t):
Precondition Φ:
¬HasMoney(self) ∧
¬NeedsMoney(self);
Postcondition Ω:
HasMoney(self);

(e)

Affordance BuyBall(Vendor b, Ball b):
Precondition Φ:

InScene(self) ∧ InScene(vendor)
∧ Holds(v,b) ∧ HasMoney(self);

Postcondition Ω:
Holds(self,b) ∧ ¬ Holds(v,b);

(f)

Affordance Greet(Character c):
Precondition Φ:

InScene(self) ∧ InScene(c)
∧ ¬Panic(self) ∧ ¬Panic(c);

Postcondition Ω:
Knows(self, c) ∧ Knows(c, self);

(g)

Affordance GiveBall
(Character c, Ball b):

Precondition Φ:
InScene(self) ∧ InScene(c)
∧ ¬Panic(self) ∧ ¬Panic(c)

∧ Holds(self, b) ∧ ¬Holds(c, b);
Postcondition Ω:

¬Holds(self, b) ∧ Holds(c, b);

(h)

Affordance ThrowBall
(Character c, Ball b):

Precondition Φ:
InScene(self) ∧ InScene(c)
∧ InScene(b) ∧ ¬Panic(self)
∧ ¬Panic(c) ∧ Holds(self, b)

∧ ¬Holds(c, b);
Postcondition Ω:

¬Holds(self, b) ∧ Holds(c, b);

(i)

Affordance ConverseHappily
(Character c):
Precondition Φ:

InScene(self) ∧ InScene(c)
∧ ¬Panic(self) ∧ ¬Panic(c)
∧ Knows(self, c)∧ Knows(c, self);

Postcondition Ω:
IsHappy(self) ∧ IsHappy(c);

(j)

Affordance Argue(Character c):
Precondition Φ:

InScene(self) ∧ InScene(c)
∧ ¬Panic(self) ∧ ¬Panic(c)
∧ Knows(self, c)∧ Knows(c, self);

Postcondition Ω:
¬IsHappy(self) ∧ ¬IsHappy(c);

(k)

Affordance AskForBall
(Character c, Ball b):

Precondition Φ:
InScene(self) ∧ InScene(c)
∧ ¬Panic(self) ∧ ¬Panic(c)
∧ Knows(self, c)∧ Knows(c, self)

∧ ¬Holds(c,b);
Postcondition Ω:

AskedBall(self, c) ∧ Wants(self, b);

(l)

Affordance PickUp(User u):
Precondition Φ:

InScene(self) ∧ ¬Holds(u, self);
Postcondition Ω:

IsAttached(self) ∧ Holds(u, self);

(m)

Affordance ThrowBallToUser
(User u, Ball b):
Precondition Φ:

InScene(self) ∧ ¬ Panic(self)
∧ InScene(b) ∧ Holds(self, b);

Postcondition Ω:
¬InScene(b) ∧ ¬ Holds(self, b);

(n)

Affordance PickUpBall(Character c):
Precondition Φ:

InScene(self) ∧ InScene(c)
∧ ¬IsAttached(self)
∧ ¬Holds(c, self);
Postcondition Ω:

IsAttached(self) ∧ Holds(c, self);

(o)
Affordance Drop(Character c):

Precondition Φ:
InScene(self) ∧ InScene(c)

∧ Holds(c, self);
Postcondition Ω:
¬IsAttached(self)
∧ ¬Holds(c, self);

(p)

Affordance EatHoney(Character c):
Precondition Φ:

InScene(self) ∧ InScene(c);
Postcondition Ω:
IsHappy(c);

(q)

Affordance Drop(User u):
Precondition Φ:

InScene(self) ∧ Holds(u, self);
Postcondition Ω:

¬IsAttached(self) ∧ ¬Holds(u,
self);

(r)

Affordance FlyToFlower(Flower f):
Precondition Φ:

InScene(self) ∧ InScene(f);
Postcondition Ω:
AtFlower(self);

(s)

Affordance AskUserForBall
(Character c, Ball b):

Precondition Φ:
InScene(c) ∧ ¬InScene(b)

∧ ¬Panic(c) ∧ WantsBall(c, b);
Postcondition Ω:

InScene(b) ∧ ¬WantsBall(c, b);

(t)

Affordance TakeFromCharacter(Character
c, Object b):
Precondition Φ:

InScene(c) ∧ InScene(b)
∧ Holds(c, b);

Postcondition Ω:
¬ InScene(b) ∧;

(u)
Affordance WaveAtUser(User u):

Precondition Φ:
InScene(self) ∧ Panic(self);

Postcondition Ω: none

(v)

Affordance DismissUser(User u):
Precondition φ:

InScene(self) ∧ Panic(self);
Postcondition δ: none

(w)

Affordance ShakeHead(User u):
Precondition Φ:

InScene(self) ∧ Panic(self);
Postcondition Ω: none

(x)
Affordance StopBeePanic(Bees b):

Precondition Φ:
InScene(self) ∧ InScene(b)

∧ AtFlower(b);
Postcondition Ω:
¬Panic(self);

(y)

Affordance StartBeePanic(Bees b):
Precondition Φ:

InScene(self) ∧ InScene(b);
Postcondition Ω:
Panic(self);

(z)

Affordance Pet(User u):
Precondition Φ:
InScene(self);

Postcondition Ω:
IsHappy(self);

(α)

Table 1: Overview of representative affordances used to author the interactive narrative. The affordance owners (self) are not shown as
parameters in the affordance definition for simplicity.



Table 2: Measured raw data from user study

Proficiency Method Time to Author ta Number of Bugs nb Subjective Difficulty ds Number of Clicks nc User ID

expert SG 25 526 5 964 12
expert IBT 6 11 3 239 12
expert IBTA 5 0 2 263 12
expert SG 53 234 5 1412 11
expert IBT 10 72 3 392 11
expert IBTA 6 0 1 304 11
expert SG 49 145 5 584 10
expert IBT 19 45 3 333 10
expert IBTA 15 0 1 263 10
novice SG 145 456 4 1432 9
novice IBT 101 230 3 981 9
novice IBTA 63 0 1 441 9
novice SG 123 443 5 1543 8
novice IBT 75 124 3 894 8
novice IBTA 45 2 2 680 8
novice SG 100 230 5 987 7
novice IBT 78 187 3 785 7
novice IBTA 54 0 2 568 7
novice SG 110 560 5 1430 6
novice IBT 89 334 3 1023 6
novice IBTA 56 0 1 680 6
novice SG 98 552 5 889 5
novice IBT 89 243 3 803 5
novice IBTA 47 0 2 432 5
expert SG 53 187 5 584 4
expert IBT 37 23 3 125 4
expert IBTA 19 0 1 108 4
novice SG 149 38 5 513 3
novice IBT 93 2 0 812 3
novice IBTA 61 0 0 1368 3
expert SG 77 345 5 789 2
expert IBT 33 24 3 565 2
expert IBTA 17 12 2 230 2
expert SG 92 234 5 1021 1
expert IBT 45 43 2 564 1
expert IBTA 34 0 1 343 1


