
Evaluating the Authoring Complexity of Interactive
Narratives with Interactive Behaviour Trees

Supplementary Document

1. INTERACTIVE BEHAVIOR TREES
Interactive Behavior Trees (IBT’s) address challenges in tra-
ditional Behavior Tree representations by facilitating free-
form user interaction and state persistence. IBT’s, as illus-
trated in Fig. 1(a) are divided into 3 independent sub-trees
that are connected using a Parallel control node. An IBT
tIBT = 〈tui, tstate, tnarr = {tarci |tarc1 . . . tarcm }, β〉 where: (1)
tnarr is the narrative definition with modular story arcs {ai},
each with their own independent subtree {tarci }. (2) tui pro-
cesses the user interactions. Fig. 1(b) illustrates the story
subtree. (3) tstate monitors the state of the story to deter-
mine if the current story arc needs to be changed. Fig. 1(b)
illustrates the story subtree. (4) β stores the state of the
story and its characters.

Story Subtree. tnarr is responsible for handling the narra-
tive progression and is further subdivided into subtrees that
represent a separate story arc. Fig. 1(b) provides an ex-
ample of tnarr while Fig. 1(c) illustrates each arc definition
tarc which is encapsulated as a separate subtree. This in-
troduces an assertion node which is checked at every frame
whether the current arc is still active before proceeding with
its execution. This minor extension to the story arc defini-
tion allows the story to instantaneously switch arcs at any
moment in response to the user’s interactions.

MonitorUserInput Subtree. tui monitors the different
interactions that are available to the user and can be eas-
ily changed depending on the application or device. Once
an input is detected, it sets the corresponding state in the
blackboard β which is queried by tstate to determine the cur-
rent state of the story, and the active story arc. Since tui
is executed in parallel with the other subtrees, we are able
to immediately respond and register the interactions of the
user and use it to influence the narrative outcome. Fig. 1(d)
illustrates an example.

MonitorStoryState Subtree. tstate contains separate sub-
trees for each story arc which checks if the precondition for

the particular arc is satisfied. If so, β is updated to reflect
the newly activated story arc which is used to switch the
active story in tnarr. Fig. 1(e,f) illustrates tstate and a sub-
tree used for checking the preconditions for the Honeypot
story arc. It may be possible for the preconditions of multi-
ple story arcs to be satisfied at any instance, in which case
the story arcs are activated in order of priority (the order in
which they appear in tnarr. It is also possible for multiple
story arcs to be active simultaneously if they are operating
on mutually exclusive characters and objects.

Message Passing and State Persistence. The overall
design of the IBT results in three subtrees that execute in-
dependently in parallel with one another. A blackboard β
is used to store the states of the characters and the story
and is used to communicate between the subtrees and also
to maintain state persistence. tui updates β when any input
signal is detected. For example, if the user places a hon-
eypot sticker, it triggers a honeypot in the world and sets
the appropriate flag in β . Tree tstate monitors β to check if
the preconditions of a particular story arc is satisified, and
updates the current arc. Finally, each arc subtree in tnarr
checks if it is the current active arc before continuing. Also,
the user input and the narrative execution can update story
and character state to influence the progression of the narra-
tive at a later stage. For instance, the bears may remember
how the user interacted with them at the beginning of the
story and this may impact their behavior later on.

2. AUGMENTED REALITY FRAMEWORK
Our framework models a virtual feedback loop between a
narrative and a user. It provides a narrative to the user
while at the same time captures the user’s reactions and in-
teractions and integrates them into the narrative. We define
an interaction vocabulary, which models how the user can
interact with the narrative.

Our approach is centered around the user and the interac-
tions available to the user. The user points the mobile device
at the marker. The interactive narrative is displayed on the
device screen, directly placed inside the captured real envi-
ronment. A variety of sensors is used to monitor how the
user interacts with the narrative. The low-level input data
of the sensors is interpreted in an interaction vocabulary
and reported to the behaviour tree controlling the narra-
tive. The behaviour tree reacts to the events reported by
the interaction vocabulary and changes the story plot ac-
cordingly. This allows the user to interact freely with the

InteractiveBehaviorTree(input: InputSignal)

MonitorStoryStateStory MonitorUserInput(input)

Sequence Parallel
| |

Blackboard

currentArc: PlayBallArc

selectedObject: BeachBall

... ...

Story

…
SelectStory

(BeeArc, bee)
SelectStory

(HoneyArc, honey)
SelectStory

(BallArc, ball)

Loop
(forever)

 Sequence (AND)

Assert(currentArc != arcID)

Selector Parallel

SelectStory(storyArc: BehaviorTree, arcID: StoryArcEnum)

 | |

Loop
(until success)

storyArc

| |

(a) (b) (c)

MonitorCamera(input)

MonitorGesture(input)MonitorPress

MonitorTap(input)

 Sequence (AND)

MonitorUserInput(input: InputSignal)

Loop
(forever)

MonitorPress(input)

MonitorShake(input)

 Selector (OR)

MonitorStoryState

… CheckBeeArcCheckHoneyArc CheckBallArc

Loop
(forever)

 Sequence (AND)

CheckBeeArc

Assert(Bees) SetArc(BeeArc)Assert(!Flower)…

(d) (e) (f)

Figure 1: (a) Design formalism of Interactive Behavior Trees (IBT’s) with decoupled specification of user
input, narrative definition, and the impact of user input on story state. (b) Narrative subtree with
modular story arcs. (c) Each story arc definition is encapsulated in its own independent subtree
which first checks if this is the current active arc before proceeding with the narrative execution.
(d) Subtree to monitor user input. (e) Subtree that changes story state based on user input which
triggers branches in story arc. (f) An example subtree from (e) which checks if all the preconditions
for a particular story arc are satisfied before setting it as the current active arc.

narrative and branch into new subtress at any point in time.

2.1 Architecture Overview
Our architecture is composed of five principal components.
The user provides our platform with the data necessary to
create an interactive experience. A set of sensors monitors
the user and his interactions with the mobile device at all
times and forwards them to the interaction vocabulary. The
interaction vocabulary is processed in a next step, inter-
preting and analysing the incoming low-level input from the
sensors. These low-level input events are mapped to higher
level interactions. Additionally, the sensor data from the
camera is used in a camera pose estimation step to compute
the pose of the mobile device. The pose, together with the
high-level events is then forwarded to the behaviour tree.
The BT checks the input-events and adjusts the plot of the
narrative being shown accordingly. Finally, the currently
unfolding story is presented by a game engine, which is con-
trolled by the BT.

2.2 Augmented Reality
In an AR application, the real, physical world is merged with
a virtual world. In see-through AR, both worlds are merged
on the screen of a mobile device, capturing the real world
with it’s camera and overlaying a virtual, rendered world.

AR applications benefit from intuitive and versatile input
mechanisms, that is, the user can seemingly physically in-
teract with the virtual world. For see-through AR applica-
tions, the physical movement of the mobile device already
provides a straight-forward and easy understandable inter-
face to interact with the application.

Furthermore, in an AR application, not only can the user
physically interact with the virtual characters but the vir-
tual characters can interact with the physical world as well.
Using latest technologies, such as Simultaneous Localization
and Mapping (SLAM) [4] or Vuforia Smart Terrain, the en-
vironment is captured and integrated in the application. For
example, the user can place a box in a virtual canyon to clear
a path for the virtual characters to get over the canyon un-
harmed.

Implementation. AR technology is available in a broad
variety. Location-based and city-wide AR applications that
employ GPS information, accelerometer, and gyroscope data
to locate the user, see-through AR applications on mobile
devices that use just the camera, and projection-based AR
that project virtual content onto real geometry using static
calibrated projectors are the most common applications of
AR. In addition to the type of AR, the implementations
also differ in that some methods track a 2D marker image
[1] and other track 3D geometry [2]. In our specific case, the
stability and robustness of the AR implementation is the
most important factor, as an unstable implementation will
completely break immersion.

As fiducial and natural image marker based implementations
have been around longer than the alternatives, they are the
safe route when aiming for stable tracking [6]. We decided to
use the natural image marker based approach provided by
Qualcomm’s Vuforia [3]. Vuforia performs image registra-
tion by extracting image features, such as SIFT (cite Lowe,
2004) features and estimates the camera location and pose
in real-time.

2.3 Interaction Vocabulary
1. Movement. is used to make the narrative react to

the position of the user. Camera input is interpreted
using CPE, giving us an accurate estimation of the
device position in the virtual world. This allows us to
make characters look at the user, throw balls to the
user or, in general, interact with the users position in
the virtual world.

2. Look. is used to interact with the narrative based on
the angle at which the user looks at the scene. The
direction of the device is again estimated using CPE
and is done in the same pass as the position estimation.

3. Taps. are very short series of touch events. The user
can tap on an object to initiate an interaction. Low-
level touch events are recorded over a certain amount
of time and constantly analysed by the interaction vo-
cabulary. A series of touches is interpreted as a tap, if
the duration between the start of the series and the end
of the series is smaller than a specified threshold value
and if the delta position between each consecutive pair
of events and the start and end event is smaller than
a tolerance threshold value.

4. Longpresses. are longer series of touch events. The
user can press on objects for a longer time to influence
them in a different way than when tapping them. As
with taps, long presses are discovered by looking at a
series of low-level touch events over a certain amount of
time. A series of touches is interpreted as a long press,
if the duration between the start of the series and the
end of the series is larger than a specified threshold
value and if the delta position between each consec-
utive pair of events and the start and end event is
smaller than a tolerance threshold value.

5. Shaking. can be initiated by shaking the device in any
direction. Shaking is implemented by approximating
the integral over the amplitude of the accelerometer
events in quarter second frames and comparing the re-
sulting value with a threshold value. This will trigger
start and end shake events with an accuracy of a quar-
ter second.

6. Gestures are used to express desires and wishes to
characters. We use the HyperGlyph library to detect
single stroke gestures. When compared to a $1 rec-
ognizer [5], HyperGlyph rejects and confirms matches
more accurately.

3. EXAMPLE OF INTEGRATING USER IN-
PUT

One example that was shown in the naive approach towards
state persistance was the difference between the bears play-
ing ball with the user or without him. Fig. 2 and Fig. 3 show
the corresponding BT’s of those subtrees.

We wanted to have a BT that is designed in a general way
to make it possible to monitor the whole interaction of this
game. Fig. 2 shows the design of such a BT, where two
characters play ball with each other. First, we need to check
which character currently holds the ball to decide which one
throws the ball. The other character will catch it, which is

directly done in the ”ThrowTo” node. After completing this,
the BT will simply loop again over those interactions until
the ball was thrown n times. This number can be directly
assigned by the developer.

To integrate the user in this game of playing ball, we need
to modify the BT. There are two challenges we have to take
care of:

• User as a participant: The user should be seen as
an active participant that the character can throw the
ball to.

• Wait for user interaction: If the user has the ball,
the characters need to wait for the user to throw it
back into the scene.

We solved the first challenge by using a probability selector.
The character currently holding the ball can throw the ball
either to the other character or to the user. By assigning
probabilities to each possible branch, the character will ran-
domly throw to the user or to the other character. Using
this, it is possible for all characters in the game to see the
user as simply another character in the story.

The second challenge can easily be solved by first checking
if either of the two characters hold the object and otherwise
we will enter the subtree UserThrowBall in which we will
wait until the user reintroduces the ball into the story and
one of the characters picks it up.

Fig. 4 shows another small example of a subtree in our story
definition. The subtree Talking lets the bears talk to each
other. During this conversation the second bear asks for a
beach ball. The first bear can not help him and the sec-
ond bear does not want to talk anymore. He is sad and
leaves the first bear, while the other one is also sad, be-
cause he couldn’t help his friend. Therefore, he decides to
ask the user for help. After this subtree the story will not
continue until the user interacts with them by e.g. throwing
the ball into the story or spawning the bees. This example
shows very nicely how the user can be actively involved as
a participant to move the story forward. As described in
the paper the Interactive Behavior Tree (IBT) monitors the
user interaction in a separate subtree called MonitorUser-
Input, which is able to change the global state depending
on the user input. Using the global state the MonitorSto-
ryState subtree decides which story arc should be executed
by modifying the variable currentArc in the blackboard.
The Story subtree will change the narrative according to this
variable. We will shortly explain how the story can continue
depending on the user.

1. Throw the beach ball to the first bear. If the ball
was thrown to the first bear, we will enter the story arc
PlayBallArc. The first bear picks up the ball, gives it
to the second one and both are happy. They will start
playing ball with the user.

2. Throw the beach ball to the second bear. If the
ball was thrown to the second bear, the story enters
the story arc SadBearArc. The second bear will pick

it up and will thank the user. The first bear is sad,
because he couldn’t give him the ball. In the end, they
are both friends again and also start playing ball with
the user.

3. Throw the soccer ball. Throwing the soccer ball
leads to executing the WrongBallArc. The bears are
not interested in the soccer ball. Therefore, the first
bear will simply shake its head to indicate that this is
the wrong ball and continues to ask the user for help.

4. Spawn Bees. Spawning the bees results in execut-
ing the BeesArc. Upon seeing the bees, the bears will
panic and try to escape the bees. The only way to dis-
tract the bees is to spawn flowers. The bears will stop
panicking and the second bear will continue asking the
user for help.

5. Place the honey pot. This leads to enter the Hon-
eyArc. The bears simply love honey. That is why
they will quickly forget about the ball and start eat-
ing honey. If the user takes away the honey pot, both
bears will be sad and the second bear continues asking
the user for help. Otherwise, the story will end after
both bears have eaten for a while.

4. REFERENCES
[1] F.-e. Ababsa and M. Mallem. Robust camera pose

estimation using 2d fiducials tracking for real-time
augmented reality systems. In ACM SIGGRAPH
VRCAI, pages 431–435, 2004.

[2] Y. Park, V. Lepetit, and W. Woo. Multiple 3d object
tracking for augmented reality. In Mixed and
Augmented Reality, 2008. ISMAR 2008. 7th
IEEE/ACM International Symposium on, pages
117–120, Sept 2008.

[3] Qualcomm. Vuforia Developer SDK, 2010.

[4] G. Tuna, K. Gulez, V. Gungor, and T. Veli Mumcu.
Evaluations of different simultaneous localization and
mapping (slam) algorithms. In IECON 2012 - 38th
Annual Conference on IEEE Industrial Electronics
Society, pages 2693–2698, Oct 2012.

[5] J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures
without libraries, toolkits or training: A $1 recognizer
for user interface prototypes. In Proceedings of the 20th
Annual ACM Symposium on User Interface Software
and Technology, UIST ’07, pages 159–168, New York,
NY, USA, 2007. ACM.

[6] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A
survey. ACM Comput. Surv., 38(4), Dec. 2006.

ThrowTo(a1)ThrowTo(a2) Assert(HoldsObject)Assert(HoldsObject)

 Selector (OR)

PlayBall(a1: Actor, a2: Actor)

 Sequence (AND)

a1 a1 a2 a2

 Sequence (AND)

Loop
(n times)

Figure 2: PlayBall. A simple BT that authors a
game of playing ball between two charac-
ters.

 Selector (OR)

PlayBallWithUser(a1: Actor, a2: Actor)

 Probability
Selector (OR)

 60% 40%

 Probability
Selector (OR)

 60% 40%

 Sequence (AND)

Assert(HoldsObject)

a2

Assert(HoldsObject)

a2

Loop
(n times)

ThrowTo(a2)

a2

ThrowToUser

a2

ThrowTo(a1) ThrowToUser

a2a2

UserThrowBall

 Sequence (AND)

Figure 3: PlayBallWithUser. A modification of
Fig. 2 in which the user is integrated into
the game.

IsSad

ReachTo(a2) GoTo(target)

PleadToUser

 Sequence (AND)

StoryBT(a1: Actor, a2: Actor, target: Vector3)

| |Talking(a1, a2)

Sequence
Parallel

a1

a2

a2

a1

Figure 4: Example subtree of the story definition.
This BT shows another small example of
a subtree in our story definition. The two
bears are talking to each other and the
second bear gets sad. The first bears asks
the user for help.

	Interactive Behavior Trees
	Augmented Reality Framework
	Architecture Overview
	Augmented Reality
	Interaction Vocabulary

	Example of Integrating User Input
	References

