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Abstract. In this work, we revise the problem of human body shape
estimation from monocular imagery. Starting from a statistical human
shape model that describes a body shape with shape parameters, we
describe a novel approach to automatically estimate these parameters
from a single input shape silhouette using semi-supervised learning. By
utilizing silhouette features that encode local and global properties ro-
bust to noise, pose and view changes, and projecting them to lower di-
mensional spaces obtained through multi-view learning with canonical
correlation analysis, we show how regression forests can be used to com-
pute an accurate mapping from the silhouette to the shape parameter
space. This results in a very fast, robust and automatic system under
mild self-occlusion assumptions. We extensively evaluate our method on
thousands of synthetic and real data and compare it to the state-of-art
approaches that operate under more restrictive assumptions.

1 Introduction

Estimating human body shape from imagery is an important problem in com-
puter vision with diverse applications. The estimated body shape provides an
accurate proxy geometry for further tasks such as rendering free viewpoint
videos [53,49, 10, 48], surveillance [11], tracking [16], biometric authentication,
medical and personal measurements, virtual cloth fitting [17,51, 40, 36], and
artistic image reshaping [56]. Pose estimation is also tightly coupled with shape
estimation. Knowing the body shape significantly reduces the complexity and
improves the robustness of pose estimation algorithms and thus expands the
space of poses that can be reliably estimated [55, 2].

However, in contrast to pose estimation, body shape estimation has received
substantially less attention from the community. Most existing algorithms rely
on either manual input [56, 25, 40], restrictive assumptions on the acquired im-
ages [6], or require information other than just 2D images (e.g. depth) [50, 37,
23]. Furthermore, some of the methods have prohibitive complexity for real-
time applications [25, 6, 50]. For practical applications, it is essential to have an
automatic and fast algorithm that can work with images acquired under less
restrictive conditions and body poses.

In this paper, we propose a fast and automatic method for estimating the
3D body shape of a person from images, utilizing multi-view semi-supervised



2 E. Dibra, C. Oztireli, R. Ziegler, M. Gross

learning. Our method relies on extracting novel features from a given silhou-
ette of a single person under minimal self-occlusion like in a selfie, and a para-
metric human body shape model [3]. The latter is utilized to generate meshes
spanning a spectrum of human body shapes, from which silhouettes are com-
puted over multiple views, in poses compliant with the target applications for
training. We firstly estimate viewing direction with high accuracy, by solving
a classification task. Utilizing the information simultaneously captured in mul-
tiple synthetic views of the same body mesh, we apply Canonical Correlation
Analysis (CCA) [24] to learn informative bases where the extracted features can
be projected. A random forest regressor is then adopted to learn a mapping
from projected feature space to parameter space. This results in lower feature
dimensionality, reducing the training and test time drastically, and improves
prediction as compared to plain regression forests. We demonstrate our results
on real people and in a free-view-point video (supplementary [1]), and compre-
hensively evaluate our method by validating it on thousands of body shapes.
Contributions. In summary, the contributions of the paper are : (1) a fast
and automatic system for shape estimation from monocular silhouette/s under
no fixed pose and known camera assumptions, thanks to novel features that
capture robust global and local information simultaneously, (2) demonstration of
how CCA multi-view learning with regression forests can be applied to the task
of shape estimation, leveraging synthetic data and improving prediction over
random forests with raw data, (3) extensive validation on thousands of body
shapes via thorough comparisons to state-of-the-art on a new bigger dataset.

2 Related Work

General methods for shape estimation. Estimating 3D geometry of body
shapes from limited imagery is an inherently ill-posed problem. Early methods
used simplifying assumptions such as the visual hull [30] or simple body models
with geometric primitives [15,27,34]. Although these work well for coarse pose
and shape approximations, an accurate shape estimation cannot be obtained.

Human body shape statistical priors. Instead of assuming general ge-
ometry, human body shape model based methods rely on the limited degrees
of freedom for the possible body shapes. These parametric models are typically
constructed from collected 3D scans of people [3,22,39]. Utilizing such a prior
allows us to always stay within the space of realistic body shapes, and reduces
the problem to estimating the parameters of the model. Such models can also be
combined with articulation models to simultaneously represent pose as joint an-
gles or transformations, and shape with parameters [3,22, 35]. In this paper, we
combine state-of-the-art 3D body shape databases [54, 38] containing thousands
of meshes, and utilize a deformation model based on SCAPE [3].

Fitting body shapes by silhouette matching. Once a statistical model
of 3D shapes is defined, an error metric between the input silhouettes and those
of the projections of the parameterized 3D body shape can be minimized [11,
18,4,9, 21,56, 25]. Although this leads to accurate matching, despite promising
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results on deformable 2D shape matching [42,43], establishing correspondences
between the input and output silhouettes is a very challenging problem especially
when the body pose is not known or self occlusions are present. The simultane-
ous estimation of pose and shape is currently addressed by manual interaction
to establish and refine matching or pose estimation [11, 56, 25], and under cer-
tain assumptions on the error metric, camera calibration, and views [18,9, 25].
A recent work [29] aims at automatically finding a correspondence between 2D
and 3D deformable objects by casting it as an energy minimization problem,
demonstrating good results however for a shape retrieval task. Instead of fitting
silhouettes directly and locally, we consider a global mapping from silhouettes
to shape parameters that is invariant to various poses under mild self-occlusion
assumptions. This allows us to sidestep pose estimation, avoid any manual inter-
action, and estimate the shape parameters for imperfect silhouettes interactively,
all of which are essential components for a practical shape estimation system.

Fitting body shapes by statistical models. A recent body of works rely
on global mappings between silhouettes and 3D body shapes [6,13,14, 52, 46,
12]. These methods rely on a statistical model for body shapes as well as silhou-
ettes. In this case, the problem reduces to estimating this mapping by various
linear [52], or more complex techniques such as the shared Gaussian process la-
tent variable model [12]. In order to generate robust and accurate shapes, these
techniques typically require pre-defined and accurate poses [6,52,12], and have
been validated with limited measurements except for the recent work of Boisvert
et al. [6]. The running times can also be prohibitive for real-time applications [6,
13]. We also define a mapping from the silhouette to a statistical shape space.
However, we aim at robustness to pose changes and silhouette noise via com-
puting specialized features, projecting them at correlated spaces and training a
regressor with random forests. This allows close to real-time performance, un-
locking further applications. We present an extensive evaluation of our shape
estimation with thousands of test cases and tens of body measurements.

Multi-view learning. Canonical Correlation Analysis (CCA) [24] and Kernel-
CCA [20] are statistical learning techniques that find maximally correlated linear
and non-linear projections of two random vectors. The projected spaces learn
representations of two data views such that each view‘s predictive ability is mu-
tually maximized. Hence, information present in either view that is uncorrelated
with the other view is automatically removed in the projected space. That is a
helpful property in predictive tasks. The aforementioned methods have been used
for unsupervised data analysis with multiple views [19], fusing learned features
for better prediction [41], reducing sample complexity using unlabeled data [26],
or when multiple views are hallucinated from one single view [33]. A generalized
version of CCA [45] has also been proposed but for a classification and retrieval
task. Despite its power, CCA in combination with regression has found little
usage since its proposal [26]. It has only been empirically evaluated for linear re-
gression [33], and utilized for an action recognition classification task [28]. To the
best of our knowledge, we are the first to apply CCA in a non-linear regression
task for shape estimation, illustrating its power for such non-linear problems.
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Fig. 1: Overview of our system. Training: Silhouettes from 36 views are extracted from
meshes generated in various shapes and poses (Sec. 3.2). A View Classifier is learned
(Sec. 3.4) from extracted silhouette features (Sec. 3.3). View specific Regression Forests
are then trained to estimate shape parameters by first projecting features in CCA
correlated spaces (Sec. 3.5). Testing: The extracted features from an input silhouette
are used to first infer the camera view, and then the shape parameters by projecting
them into CCA spaces and feeding them into the corresponding Regression Forest.

3.1 Method Overview

The goal of our system is to infer the 3D body shape of a person from a single or
multiple monocular images fast and automatically. Specifically, we would like to
estimate the parameters of a 3D body shape model (Sec. 3.2) such that the cor-
responding body shape best approximates the 3D body of the subject depicted
in the input images. Despite the ambiguity that the 2D silhouette withholds, the
projection of the transformed mesh in the image should at least best explain it.

An overview of our system is depicted in Fig. 1. The input to the shape
estimation algorithm is a 2D silhouette of the desired individual under minimal
self-occlusion (e.g. a selfie), which can be computed accurately for our target
scenarios, by learning a background model through Gaussian mixture models
and using Graphcuts [7]. The word “selfie” here is used interchangingly to de-
scribe the activity of taking a selfie in front of a mirror, and also as a label for
poses representing mild self-occlusion (Fig. 2). We then compute features ex-
tracted from the silhouettes (Sec. 3.3). These are first used to train a classifier
on the camera viewing direction (Sec. 3.4). The features from silhouettes of a
particular view are then projected into bases obtained by CCA, such that the
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view itself and the most orthogonal one to it (e.g. front and side) are used to
capture complementary information into the CCA correlated space, and fed to a
Random Forest Regressor (Sec. 3.5) trained for each camera view. At test time,
the extracted features from an input silhouette are used to first infer the cam-
era view, and then the shape parameters by projecting them into CCA spaces
and feeding them into the corresponding Regression Forest. The parameters are
used to generate a mesh by solving a least-squares system on the vertex positions
(Sec. 3.2). The generated mesh can then be utilized for various post-processing
tasks such as human semantic parameter estimation, free view-point video with
projective texturing, further shape refinement [56, 6], or pose refinement [25].

3.2 Shape as a Geometric Model

We utilize the SCAPE model [3], which is a low-dimensional parametric model
learned from 3D range scans of different people in different poses that captures
correlated deformations due to shape and pose changes simultaneously. Specifi-
cally, SCAPE is defined as a set of triangle deformations applied to a reference
template 3D mesh. Estimating a new shape requires estimating parameters «
and [, which determine the deformations due to pose and intrinsic body shape,
respectively. Given these parameters, each of the two edges e;; and e;s of the
i'" triangle of the template mesh (defined as the difference vectors between the
vertices of the triangle), is deformed according to the following expression

e;; = Ri(2)Si(8)Qi(Ri())eyj. (1)

with j € {1,2}. The matrices R;(«) correspond to joint rotations, and
Q;(R;()) to the pose induced non-rigid deformations, e.g. muscle bulging. S;(53)
are matrices modeling shape variation as a function of the shape parameters 5.
The body shape deformation space is learned by applying PCA to a set of meshes
of different people in full correspondence and same pose, with transformations
written as s(f8) = UfS+ p, where s(f) is obtained by stacking all transformations
Si(8) for all triangles, U is a matrix with orthonormal columns, and g is the
mean of the triangle transformations over all meshes (please refer to Anguelov
et al. [3] for further details). We therefore obtain the model by computing per-
triangle deformations for each mesh of the dataset from a template mesh, which
is the mean of all the meshes in the dataset (Fig. 2 left), and then applying PCA
in order to extract the components capturing largest deformation variations. We
chose to use 20 components (3 € R?°).

We would like to estimate the shape parameters 5 regardless of the pose. We
take the common assumption that the body shape does not significantly change
due to the range of poses we consider. Hence, we ignore pose dependent shape
changes given by Q;(R(«)). Decoupling pose and shape changes allows us to
adopt a fast and efficient method from the graphics community known as Linear
Blend Skinning (LBS) [31] for pose changes, similar to previous works [38, 25].
Starting from a rest pose shape with vertices vi,...,v, € R* in homogenous
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Fig. 2: 6 meshes from our database. The leftmost one is the mean mesh in the rest pose.
The others are from different people in various poses.

coordinates, LBS computes the new position of each vertex by a weighted com-
bination of the bone transformation matrices T4, ..., T, in a skeleton controlling
the mesh, and skinning weights w; 1, ..., w; »» € R for each vertex v;, as given by
the following formula:

m m

’

vi=Y wi;Tyvi= Y w;;T; | vi (2)
i=1 i=1

In our model, the skinning weights are computed for a skeleton of 17 body
parts (1 for the head, 2 for the torso, 2 for the hips and 3 for each of the lower
and upper limbs) for the mean shape mesh using the heat diffusion method [5].
It has to be noted that w; ; > 0 and w; 1 + - - - + w;m = 1.

3.3 Feature Extraction

We extract novel features from the scaled silhouettes as the input to our learning
method. These features are designed to capture local and global information on
the silhouette shape, and be robust to pose and slight view changes. For each
point in the silhouette, two feature values are calculated, namely the (weighted)
normal depth and the curvature. In order to extract these, we first compute the
2D point normal for every point in the silhouette, and then smooth all normals
with a circle filter of radius of 7 pixels. As different people have different sil-
houette lengths, we sample 1704 equidistant points from each silhouette starting
from the topmost pixel of the silhouette. The sample size is set according to
the smallest silhouette length over all our training data. Our feature vector per
silhouette then consists of 3408 real valued numbers.

The normal depth is computed as follows. For any point from the sampled set,
we send several rays starting from the point itself and oriented along the opposite
direction of its normal, until they intersect the inner silhouette boundary. The
lengths of the ray segments are defined as the normal depths as illustrated in Fig.
3 (left). The normals are represented in green and the ray segments in red for two
different points in the silhouette. We allow an angle deviation of 50 degrees from
the silhouette normal axis. The feature for a point is defined as the weighted
average of all normal depths falling within one std. dev. from the median of all
the depths, with weights defined as the inverse of the angle between the rays
and the normal axis.
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Fig. 3: (left) Normal depth computation in 2 different points. The arrows are the sil-
houette normals. The normal depth is computed as the weighted mean of the lengths
of the red lines. (middle) 3D measurements on the meshes used for validation. (right)
Noisy silhouette.

The normal depth is a feature inspired by 3D geodesic shape descriptors [44,
47], and different from the Inner-Distance 2D descriptor [32] used for classifica-
tion of different object types while being noise sensitive, and the spectral features
utilized in [29] for a shape retrieval task. The main ideas behind our feature are
(a) for the same individual in different poses, under mild self-occlusions, the fea-
tures look very similar with small local shifts, (b) each point feature serves as a
robust body measurement, correlated with the breadth of the person in various
parts of the body, which is analogous to estimating body circumference at each
vertex of the real body mesh, and (c) the feature is robust to silhouette noise due
to the median and averaging steps. The measure might differ though in some
parts of the silhouette (e.g. elbow) for the same person in different poses. In order
to alleviate this limitation, we apply smoothing on small neighborhoods of the
silhouette. The curvature on the other hand is estimated as the local variance of
the normals. Despite being a local feature, it provides a measure of roundness,
especially around the hips, waist, belly and chest, which helps in discriminating
between various shapes.

We illustrate that the combination of normal depth that captures global
information on the silhouette and curvature encoding local details leads to esti-
mators robust to limited self-occlusions, and discriminative enough to describe
the silhouette and reconstruct the corresponding shape in Sec. 4.

3.4 View Direction Classification

To increase robustness with respect to view changes, we decided to train view-
specific Regression Forests for 36 viewing directions around the body. In order to
discriminate between the views, we train a Random Forest Classifier utilizing the
3408 features extracted (Sec. 3.3) from 100, 000 silhouettes of people in multiple
poses, shapes and views, having as labels the views numbered 1 to 36. We achieve
a high accuracy of 99% if we train and test on neutral and selfie-like poses. The
accuracy decreases to 85.7% if more involved poses (e.g. walking, running etc)
are added. However, by investigating class prediction probabilities, we observed
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that false positives are assigned only to the views that are contiguous to the
view with the correct label. As it will be shown in Sec. 4, Table. 2, a 10 degree

view difference has a low reconstruction error when the features are projected
into CCA bases.

3.5 Learning Shape Parameters

We pose shape parameter estimation as a regression task. Given the silhouette
features, using supervised learning, we would like to estimate the shape parame-
ters such that the reconstructed shape best explains the silhouette. To make the
features more discriminative, we propose to correlate features extracted from sil-
houettes viewed from different directions. More specifically, we apply Canonical
Correlation Analysis (CCA) [24] over features extracted from a pair of silhouettes
from two camera views.

At training time, the views are selected such that they capture complemen-
tary information. While the first one is the desired view from which we want
to estimate the shape (one of 36 views), the second one is chosen to be as or-
thogonal as possible to the first, e.g. (front and side view). Because the human
body is symmetric, a complementary view to a desired one is always searched
in the zero to 90 degree angle range to that view. In practice, we round the
complementary view to the closest extreme (i.e front or side view) to ease the
offline computations.

We first apply PCA to reduce the dimensionality of the extracted features
from 3408 to 300 in each view. Then, we stack the PCA projected features for all
mesh silhouettes from the first and second views into the columns of the matrices
X and X, respectively. Then, CCA attempts to find basis vector pairs b; and
bs, such that the correlations between the projections of the variables onto these
vectors are mutually maximized by solving:

arg max corr(b] Xy, b2 Xs), (3)
b1,bo€RN

where N = 300. This results in a coordinate free mutual basis unaffected
by rotation, translation or global scaling of the features. The features projected
onto this basis thus capture mutual information coming from both views. The
subsequent basis vector pairs are computed similarly, with the assumption that
the new projected features are orthogonal to the existing projected ones. We use
200 basis pairs with CCA projections covering 99% of the energy.

The final training is done on the 200 projected features extracted from one
view, which is one of the 36 views we consider. These projected features are input
to a Random Forest Regressor [8] of 4 trees and a maximum depth of 20. The
labels for this regressor are the 20-dimensional shape parameter vectors 8. Each
component of 3 is weighted with weights set to the eigenvalues of the covariance
matrix defined in Sec. 3.2 in the computation of the shape deformation space,
and normalized to 1, to emphasize the large scale changes in 3D body shapes.
At test time, the raw features extracted from a single given silhouette are first
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classified into a view. These are then projected with the obtained PCA and
CCA matrices for that view to obtain a 200 dimensional vector. The projected
features are finally fed into the corresponding Random Forest Regressor, in order
to obtain the desired shape parameters .

4 Validation and Results

Previous shape-from-silhouette methods lack extensive evaluation. Xi et al. [52]
demonstrate results on two real images of people and 24 subjects in synthetic
settings, Sigal et al. [46] validate on two measurements and two subjects in
monocular settings, and Balan et al. [4] report silhouette errors for a few indi-
viduals in a sequence and height measurement for a single individual. To the best
of our knowledge, only Boisvert et al. [6] perform a more extensive validation, for
220 synthetic humans consisting of scans from the CAESAR database [39], and
four real individuals’ front and side images. We present the largest validation
experiment with 1500 synthetic body meshes as well as real individuals.

Data Generation. In order to learn a general model, we merge two large
datasets [54, 38] consisting of 3D models extracted from the commercially avail-
able CAESAR dataset 1. We select 2900 meshes from the combined dataset for
learning the shape model, leaving out around 1500 meshes for testing and exper-
iments. In order to synthesize more training meshes, we sample from the 20 di-
mensional multivariate normal distribution spanned by the PCA space (Sec. 3.2),
such that for a random sample 8 = [81, B2, ..., B20], it holds that 8 ~ N (u, X)
with ¢ being the 20-dimensional mean vector and X' the 20 x 20 covariance ma-
trix of the parameters. To synthesize meshes in different poses, we gather a set of
animations comprising of various poses (e.g. selfie, walking, running, etc.). After
transferring a generated pose to the template mesh using LBS, we compute the
resulting per-triangle deformations R,;. For a given mesh with parameters 3, the
final pose is then given by egj = R;S;(B)e;;, where e;; are the edges of the
template mesh (Sec. 3.2).

As the training set, we randomly generate 100000 samples from the multi-
variate distribution over the § parameters, and restrict them to fall into the
43 x Std.Dev range for each dimension of the PCA projected parameters to
avoid getting unrealistic human shapes. We project the generated meshes in
each of the 36 camera viewpoints around the mesh (Sec. 3.4). The silhouette is
computed by projecting all the mesh edges for which two coinciding triangles
have normals pointing in opposite directions. The silhouettes are then uniformly
scaled such that the height of the bounding box is equal to 528 pixels, and the
width to 384 pixels. For testing, we evaluate our method with the meshes left
out from the training dataset, as well as on real images.

Quantitative Experiments. We distinguish two test datasets, D1 and D2.
D1 consists of 1500 meshes neither used to learn the parametric shape model nor
to train the regression forests (RF) and D2 of 1000 meshes used to learn the para-
metric model but not to train the RF. These meshes consist of 50% males and

! http://store.sae.org/caesar/
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Fig.4: Visual results for predictions on 4 test meshes. From left to right: predicted
mesh, ground truth mesh, the two meshes frontally overlapping, the two meshes from
the side view, silhouette from the predicted mesh, input silhouette.
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Fig.5: Visual results for predictions on 3 females. From left to right: the two input
images in a rest and selfie pose, the estimated mesh - same estimation is obtained for
both poses, the two silhouettes from which features are extracted for each pose, the
silhouette of the estimated mesh.
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Table 1: Comparisons to state-of-the-art methods, variations of our method (RF, CCA-RF-1, CCA-
RF-2) and ground truth, via various measurements. The measurements are illustrated in Fig. 3
(middle). Errors are represented as Mean+Std. Dev and are expressed in millimeters. Note that we
operate under a significantly more general setting than the state-of-the-art methods, please refer to
the text.

Measurement [6] [13] [52] RF CCA-RF-1 CCA-RF-2 GT
A. Head circumference 10+12 23+27 50+£60 16+13 13+10 8+8 13+9
B. Neck circumference 11+13 27434 59472 13 £10 10+8 T+7T 6+6
C. Shoulder-blade/crotch length 445 52465 119+150 22418 18+9 18 £17 14+£11
D. Chest circumference 10+12 18+22 36+45 38 £31  30+24 25 +24 24+24
E. Waist circumference 22423 37439 55462 35 +28 29425 24 +24 16+14
F. Pelvis circumference 11+12 15£19 23428 33 £26  30+25 26 £ 25 14+12
G. Wrist circumference 9+12 24430 56+£70 10 £8 615 5+5 545
H. Bicep circumference 174£22 59476 146+177 16 £13  13+11 11+11 9+£10
I. Forearm circumference 16+20 76£100 182+230 14 £11 11+9 9+8 8+8
J. Arm length 15421 53473 1094141 19 £14 15412 13+12 848
K. Inside leg length 6+7 9412 19424 26 £19 23418 20+19 949
L. Thigh circumference 9412 19425 35444 22 £ 18 19+16 18 +17 11+11
M. Calf circumference 6+7 16+21 33+42 18 £13 14412 12+12 748
N. Ankle circumference 14416 28+35 61£78 10 £7 18+6 6+6 545
O. Overall height 9412 21427 49462 60 + 45 50442 43 +41 14411
P. Shoulder breadth 6+7 12415 24431 15+ 14 13+6 6+6 12411

50% females, and are in roughly the same rest pose. In order to properly quan-
tify our method, similar to Boisvert et al. [6], we perform 16 three-dimensional
measurements on the meshes, which are commonly used in garment fitting as
illustrated in Fig. 3 (middle). For the measurements represented with straight
lines, we compute the Euclidean distance between the two extreme vertices. The
ellipses represent circumferences and are measured on the body surface. For each
of the 16 measurements, we compute the difference between the one from the
ground truth mesh and the estimated mesh. We report the mean error and the
standard deviation for each of the measurements in Table 1. We name our main
method CCA-RF, with CCA applied to the features before passing them to the
random forest, specifically CCA-RF-1 and CCA-RF-2 respectively tested on
D1 and D2. Similarly, RF, for the method trained on raw features and tested on
D1. The last table column provides the ground truth (GT) mean errors for D1,
computed between the original test meshes and their reconstructions obtained
by projecting them into the learned PCA space. This provides a lower limit for
the obtainable errors with our 20 parameters shape model.

Before analyzing the results, it is crucial to highlight the differences between
the settings and goals of the methods we compare to. Boisvert et al. [6] employ
a setting where the pose is fixed to a rest pose and the distance from the camera
is also fixed. The shape estimation method is based on utilizing silhouettes from
two different views (front and side), with the application of garment fitting in
mind. The same setting is considered for the other two methods mentioned
above [13,52]. In contrast, we train and test for a more general setting, where
we have a single silhouette as the input at test time, the pose can change, and
no assumptions on the distance from the camera are made. Furthermore, our
tests involve a significantly larger dataset with high variations.

Even though our method operates under a significantly more general setting
than the previous works [6, 13, 52], with a single silhouette input and no distance
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information, it outperforms the non-linear and linear mapping methods. The
mean absolute error for all the models is 19.4 mm for CCA-RF-1 and 16.18 mm
for CCA-RF-2. The errors are very close to those of GT, illustrating the accuracy
of our technique. Note that some errors for CCA-RF-2 are smaller than those
of the GT, due to the different training as explained above. The higher error for
D1 is due to the body shapes that cannot be represented with the parametric
model learned from the rest of the shapes. The error is higher for the overall
height, due to the fixed scale in the training and testing silhouettes that we use.
It is important to note the differences in errors between the RF' and CCA-RF-1.
There is an overall decrease of error when CCA is utilized, which shows that the
projection with the CCA bases significantly improves prediction. Additionally,
we evaluate the performance of our method when the input comes from a less
favorable view, the side view, achieving an error of 22.45 mm which is very close
to the one from only the frontal view. For completeness, we compare also to
Helten et al. [23], who utilize an RGB-D camera for capturing the body shapes,
and a full RMSE map per vertex to measure the differences. Using two depth
maps, fitting to the pose and testing only on 6 individuals they report a mean
error of 10.1 mm while we have a mean error of 19.19 mm on 1500 meshes.

Poses, Views and Noise. We investigated accuracy in the presence of
silhouette noise, various poses, and different or multiple views. We run the ex-
periments with the data setup D1, explained above. For each experiment, we
show the mean and standard deviation either of the accuracy gain or of the
errors over all the body measurements in Table 2.

The first three columns show the accuracy gain of applying CCA-RF to the
front view (F), side view (S) or when concatenating both views together (FS),
as compared to RF. A larger gain is obtained in the side view as compared to
the front view, due to additional information that is injected from the frontal
view (the most representative one) in the projected space. An even bigger gain is
obtained if both views are utilized for training and testing. This is very imporant,
as it shows that having potentially more views improves the predictor. In fact,
we have observed that utilizing the same amount (100000) of training data, and
training and testing on two views with the raw features, degrades the result as
compared to just one view. This is alleviated with the CCA projection, improving
the results as singular view noise in the data is removed.

The fourth column (VE), displays the errors obtained by testing on features
extracted from a view 10 degrees rotated from the frontal view, for a CCA-RF
trained on the frontal view. The column for (VG) displays the gain of CCA-RF
over RF for the same scenario. The CCA-RF is again more accurate, however
the error for both is generally low, implying that a classification error of the
camera view of 10 degrees can be allowed in our system. (N) demonstrates the
error due to random noise added to the silhouettes, as in Fig. 3 (right), show-
ing robustness to noise to a certain extent. (P12) shows the error induced by
training only on a rest pose, and testing on 12 different poses as in Fig.2, as
compared to testing on the same meshes in a rest pose, and (P1) describes the
same measurement, however by training on 12 poses and testing on a different
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Table 2: Columns 1-3 show accuracy gain of applying CCA for the Frontal, Side and Frontal Side
view altogether, over raw features. (VE) shows the error due to 10 degree view change and (VG), the
gain of applying CCA. (N) is the error due to silhouette noise. (P12) shows the error of testing on
12 poses different from the training one, and the rest (Columns 8-11) demonstrate the errors while
gradually adding more difficult poses from the training ones. Mean and Std. Deviation is computed
over all the body measurements.

Measurement (F) (S) (FS) (VE) (VG) (N) (P12) (P1) (W) (R) (PWR)
Mean (mm) 4952 66 22 18 23 93 1.7 16 3.9 8.5
Std. Deviation (mm) 2.4 2.6 40 19 15 1.8 56 1.0 1.0 2.3 5.2

unseen one, demonstrating robustness to pose changes under minimal self oc-
clusions. The last three columns demonstrate similar measurements, however,
by increasing the articulations in the poses, with (W) consisting of poses from a
walking sequence, (R) from a running sequence (supplementary [1]), and (PWR)
combining all poses we have. The error increases in the latter case especially due
to the introduction of poses with more self occlusions. However, when trained on
individual sequences, the errors are lower, implying that for an application where
a certain activity is known, one could adapt specialized regressors, especially due
to the very fast training in the low dimensional spaces.

Algorithm Speed. The method is significantly faster than previous works,
allowing for interactive applications. The method of Boisvert et al. [6] needs 6
seconds for body shape regression, 30 seconds for the MAP estimation, and 3
minutes for the silhouette based similarity optimization, with 6 seconds for their
implementation of sGPLVM [13] (on an Intel Core i7 CPU 3GHz and single-
threaded implementation). We, on the other hand, reach 0.3 seconds using a
single threaded implementation on an Intel Core i7 CPU 3.4GHz (0.045 seconds
for feature computation, 0.25 seconds for mesh computation, and 0.005 seconds
for random forest regression), with even more speed-up opportunities as the
feature computation and mesh vertices computation can be highly parallelized.

Qualitative Results. In Fig. 4, we show example samples from our tests.
In each row, first the predicted mesh is shown along with the ground truth
test mesh. Then, their overlap is illustrated. This is followed by the side views,
and the silhouette of the estimated mesh and the input silhouette. Note that
the input silhouettes are in different poses, but we show the estimated meshes in
rest poses for easy comparisons. Our results are visually very close to the ground
truth shapes even under such pose changes.

Finally, we show an experiment where real pictures of three females are taken
in a rest and a selfie-like pose along with the estimated meshes in Fig. 5. It
is important to note that despite the pose change, the retrieved mesh for each
person is the same. Another important observation is that even though the input
is scaled to the same size, the estimated parameters yield statistically plausible
heights, which turned out to be sufficient in obtaining an ordering based on
relative height between the estimated meshes. We believe that this is due to
the statistical shape model, where semantic parameters like height and weight
are correlated in the PCA parameter space. To the best of our knowledge, no
previous work can resolve this task. For example, in the work by Sigal et al. [46],
the mesh needs to be scaled if no camera calibration is provided.
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5 Discussion and Conclusions

In this paper, we presented a novel technique that estimates 3D human body
shape from a single silhouette. It allows different views, poses with mild oc-
clusions, and various body shapes to be estimated. We extensively evaluated
our technique on thousands of human bodies, by utilizing one of the biggest
databases available to the community.

In the scope of this paper, we focused on shape extraction from a single
silhouette because of its various applications such as selfies or utilizing limited
video footage. However, this is an inherently ill-posed problem. Further views can
be incorporated to obtain more accurate reconstructions, similar to methods we
compare to. This would lead to a better estimation especially in the areas around
the belly and chest, hence decrease the elliptical body measurement errors.

The accuracy of our method is tied to silhouette extraction. For the difficult
cases of dynamic backgrounds or very loose clothes, the large scale silhouette
deformations would skew our results. This could be tackled by fusing results
over multiple frames. Unlike [13] though, our results always remain in the space
of plausible human bodies. For small scale deformations (Fig. 3 right), we show
in Tab. 2 (N) that our results stay robust.

We assume that the silhouettes come in poses with limited partial occlu-
sion. Under this assumption, we showed robustness, the same mesh estimation
is achieved from different poses (e.g. Fig. 5). However, under more pronounced
occlusions, our results start degrading (Tab. 2 (PWR)), which could be alleviated
by increasing the number of training poses and utilizing deeper learning.

Although we aimed at precise measurements for the evaluation, errors due
to discretization are inevitable, hence a standardized procedure on a standard
mesh dataset is needed as a benchmark. We believe that this work along with
that of Boisvert et al. [6] has set an important step towards this direction.

Since our system is designed for a general setting, we apply a fixed scale to the
silhouette, losing height information. We showed a fairly good performance on
estimating the relative height and demonstrate better absolute height estimation,
if camera calibration is incorporated (supplementary [1]).

Our fast system, running in minutes for training and milliseconds for execu-
tion in single core CPU’s, while being memory lightweight due to the low feature
dimensionality, could be integrated into smart phones, allowing body shapes to
be reconstructed with one click of a button. Simultaneously, it can be used for
3D sport analysis, where estimation of a 3D shape of a player seen from a sparse
set of cameras can improve projections of novel-views.

Finally, we showed how CCA, which captures relations in an unsupervised
linear way, can be used to correlate different views in the data to improve the
prediction power and speed of the algorithm. We believe that capturing non-
linear relations with Kernel CCA’s or deep architectures should lead to even
better results. Our method illustrates the utility of CCA for other vision appli-
cations where two or more views describing the same object or event exists, such
as video-to-text matching or shape from various sources of information.
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