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Abstract

We represent human body shape estimation from binary
silhouettes or shaded images as a regression problem, and
describe a novel method to tackle it using CNNs. Utiliz-
ing a parametric body model, we train CNNs to learn a
global mapping from the input to shape parameters used
to reconstruct the shapes of people, in neutral poses, with
the application of garment fitting in mind. This results in
an accurate, robust and automatic system, orders of mag-
nitude faster than methods we compare to, enabling inter-
active applications. In addition, we show how to combine
silhouettes from two views to improve prediction over a sin-
gle view. The method is extensively evaluated on thousands
of synthetic shapes and real data and compared to state-
of-art approaches, clearly outperforming methods based on
global fitting and strongly competing with more expensive
local fitting based ones.

1. Introduction

Human body shape estimation is an important problem
in computer vision, but has so far not received as much at-
tention as the closely related problems such as pose esti-
mation. The methods so far rely on hand-crafted features
and specialized algorithms with possible manual interac-
tion. In contrast, it has been shown repeatedly that utilizing
neural networks can lead to superior results for many prob-
lems such as classification [30], segmentation [34, 18],
pose estimation [48] and shape classification or retrieval
[47, 49, 17]. However, applying this technique to body
shape estimation has not been considered so far. Estimated
shapes can in turn be used for applications such as surveil-
lance [9], biometric authentication, image retouching [56],
rendering novel viewpoints [52, 7, 46] and also pose esti-
mation, since the integration of body shape knowledge sim-
plifies and improves pose estimation algorithms [54, 14]. A
current trend is that of medical and personal measurements,

garment and virtual cloth fitting [21, 50, 39, 36], which is
also the focus of this paper.

A practical human body shape estimation algorithm
should be accurate, robust, efficient and automatic. The ex-
isting algorithms do not satisfy these fundamental proper-
ties simultaneously. More accurate methods rely on manual
input and a fitting pose [56, 28, 39], while others operate un-
der more restrictive assumptions [5], or utilize handcrafted
features [31, 44, 33]. As a further common shortcoming,
most methods have prohibitive time complexity for practi-
cal applications [5, 51, 10].

In this paper, we propose an accurate, fully automatic,
and very fast method that avoids handcrafted features and
pose fitting by utilizing Convolutional Neural Networks
(CNNs) to estimate the 3D body shape of a person, with
garment fitting and personal measurements applications in
mind. We analyze four possible cases as inputs to the net-
work (a) a single frontal binary silhouette of the person
scaled to a fixed size, needed in case of missing camera
calibration information (b) the shaded image of the per-
son scaled to a fixed size, with the motivation that shading
withholds information complementary to the silhouette (c)
a frontal silhouette which assumes known camera parame-
ters and (d) two silhouettes simultaneously (front and side)
under known distance from the camera, which in fact is a re-
alistic assumption for the intended use-cases. In compliance
with the applications, we make the assumption that people
are wearing tight clothes and pose in a neutral stance that
allows mild pose changes, Fig. 3 (Top-left). Our method re-
lies on advances made in the field of Neural Networks and
a human body shape model [3] obtained from thousands of
3D scans [53, 37]. Utilizing a CNN of roughly the size of
AlexNet [30] our method learns a global mapping from the
input to the shape parameters. In fact, we learn an end-
to-end regression from an input silhouette to 20 parame-
ters that are used to recover the underlying body shape. In
addition, we show how to combine body views from two
silhouettes to improve prediction over a single view. In or-
der to comprehensively evaluate our method we validate it
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on thousands of body shapes, by computing error metrics
on measurements used in garment fitting, showing robust-
ness to noise and comparing it to state-of-the-art methods
that work under the same restrictive assumptions as (d).
We clearly outperform the state-of-the-art methods solely
based on global mapping [51, 10] for all four input types,
and strongly compete in accuracy with a method that addi-
tionally uses local iterative fitting [5], while being orders of
magnitude faster.

Contributions In summary, this paper has the following
contributions : (1) we present a fast and automatic system
for human shape and body measurements estimation, from
silhouettes or shaded images of people in garment fitting
like poses, by learning a global mapping to shape parame-
ters, (2) we present the first system to our knowledge, that
can accurately reconstruct human shapes from images uti-
lizing CNNs, (3) we show how to train from scratch an end-
to-end fully supervised regression from CNNs with binary
silhouette images as input, and demonstrate how to incorpo-
rate more evidence (e.g. a second view) in order to improve
prediction, (4) we thoroughly validate the method on larger
datasets, and demonstrate clear improvements in accuracy
and speed over the state-of-the-art.

2. Related Work
Human body shape statistical models It is an ill-posed

problem to estimate the 3D geometry of a human body
from 2D imagery. Human body shape models regularize
the problem by constructing a parametric model, captur-
ing the inherently low degrees of freedom of human body
shapes [3, 38, 24]. Hence, the problem of shape estima-
tion boils down to estimating the parameters of the model.
The shape models can be augmented with pose changes rep-
resented by transformations in an embedded control skele-
ton [3, 24, 35]. We utilize a popular human body shape
model called SCAPE [3], generated on the combination of
two state-of-the-art human body databases [53, 37].

Silhouette matching for body shape estimation A
common approach leading to accurate 3D human body
shape estimations from imagery, is matching an input sil-
houette to that of the projected 3D shape by correspon-
dence [9, 22, 4, 6, 23, 56, 28]. Despite promising work [41,
42], it is difficult to establish correspondences between
silhouettes, especially in the presence of occlusions and
challenging poses. Thus, current methods require man-
ual efforts to estimate pose and shape by matching silhou-
ettes [9, 56, 28] and operate under assumptions on the view,
calibration, and error metrics utilized [22, 6, 28]. The re-
cent work of Lahner et al. [31] targets such a matching,
with accurate results, however, for a retrieval task. In con-
trast to previous methods that directly match silhouettes, we
formulate shape estimation from silhouettes as a regression
problem where global and semantic information on the sil-

houettes are incorporated by utilizing CNNs. This leads to
accurate, robust, and fast body shape estimations without
manual interaction, resulting in a practical system.

CNNs in applications With the rebirth of neural net-
works, classification and recognition tasks were revised [30,
45, 25] and demonstrated more accurate results than pre-
vious works. Building on them, there have been re-
cent works using CNNs with 3D shapes for tasks like
shape classification and retrieval [49, 47, 17], pose estima-
tion [48], image semantic segmentation [34, 18] and hu-
man re-identification [13]. Most of the methods working
on shapes though, tackle retrieval or classification applica-
tions and are geared towards rigid shapes (like chairs, tables
etc.). To a smaller extent, works like [48] and [29] tackle
regression with CNNs, however for human or camera pose
estimation. It has also been a common theme for most of
the previous methods that accept a 2D input to use an RGB
or grayscale image, often fine-tuning previous architectures
trained on similar inputs. Unlike the above, we newly intro-
duce a method that tries to solve a regression problem, for
accurate human shape estimation, by training a CNN from
scratch, on binary input images.

Mapping statistical models for body shape estima-
tion A more recent approach for estimating 3D body shapes
from silhouettes involves constructing statistical models for
both the 3D bodies and 2D silhouettes [5, 12, 11, 51, 44, 10]
by handcrafting features. Then, estimation is defined via a
mapping between the parameters of these two models. Lin-
ear [51] or more complex non-linear models [10] can be
defined. These methods rely on a global mapping between
2D and 3D and have been evaluated only on a limited set
of measurements. In a concurrent work, Dibra et al. [15]
define a fast mapping from specialized silhouette features,
projected at correlated spaces, to shape parameters utilizing
random forest regressors. A more refined version of [10],
that additionally performs a local fitting has been introduced
by Boisvert et al. [5], targeting applications similar to ours
under more restrictive assumptions. In general, the men-
tioned methods are not practical for real-time applications
due to their high running times. In particular, Boisvert et
al. [5] demonstrate a higher accuracy over the rest but on the
expense of an optimization procedure used for local fitting.
We also learn a global mapping from silhouettes to a para-
metric 3D shape model, improving accuracy and speed sig-
nificantly. Unlike the previous methods we utilize CNNs,
which allow us to train an end-to-end regressor robust to
mild pose changes and silhouette noise, and validate our re-
sults on thousands of 3D shapes spanning a great variety of
body shapes, with an extensive set of experiments varying
in the generality assumptions. We distinguish from other
CNN attempts like [40, 47], in that they utilize rigid 3D
shapes for matching and retrieval. We further illustrate that
our architectures work for different types of inputs such as
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Figure 1: System Overview. Top: One of the four input types (scaled frontal silhouette to a fixed height, shaded image, one
or two unscaled silhouettes) are fed to the Human Shape Network (HS-Net), to learn a global mapping and estimate human
shape parameters (β), which can be used to reconstruct the human body shape. Bottom: The HS-Net architecture for the one
view case.

multiple silhouettes, or images with shading information.

3. Shape Estimation Algorithm

3.1. Method Overview

Our goal is to design a fast and automatic system to ac-
curately estimate the 3D human shape from silhouettes or
images with shading information, for the garment fitting ap-
plication in mind. More specifically, we would like to learn
a global mapping from image evidence to parameters rep-
resenting the 3D shape utilizing CNNs. With respect to the
requirements (and privacy), we categorize image evidence
in two groups: silhouette and shaded image. For the first,
and least revealing case, extracting silhouettes in general
images is not yet fully-automatic, but for our application it
is realistic to assume that the person is wearing tight clothes
and posing in front of a uniform color background, which
simplifies the problem. For the second case on the other
hand, the requirement is that the clothing is as minimalis-
tic as possible, due to the fact that our training is based on
naked body shapes (Sec. 4). In practice, a shaded image
of a real person can be obtained by recovering the intrinsic
image [43]. A neutral pose, allowing mild changes, is a rea-
sonable assumption in both cases. While it is true that a 2D
image withholds ambiguity per se, our goal is to generate
the best approximating 3D mesh that explains the evidence.

A system overview is depicted in Fig. 1 (top), with the
input being one of the four input types : scaled frontal sil-
houette to a fixed height, shaded image, one or two un-
scaled silhouettes, and as output the reconstructed 3D hu-
man shape. We pose shape estimation as an instance of su-
pervised learning. Specifically, we solve a regression prob-

lem, where data is generated using a statistical human shape
model (Sec. 3.2) based on SCAPE [3]. Utilising parameters
spanning from the human shape space, various meshes are
reconstructed, from which we obtain silhouettes or shaded
images. The parameters themselves are the output, and are
used to reconstruct the 3D human shapes. In order to learn
a global mapping from the data to the parameters, we do not
need to handcraft features as in previous works [33, 44]. We
also do not apply local fitting, in contrast to previous works
that focus on accuracy [5]. Instead, inspired by recent trends
and outstanding results on various computer vision topics,
we train CNNs (Sec. 3.3) from scratch, to find the most
representative features and a mapping from the image ev-
idence to the human shape. This results in a very fast and
automatic system that clearly outperforms methods based
on global mapping [51, 10] and strongly competes with ex-
pensive methods that adopt local fitting [5].

In the following, we explain the human shape model in
Sec. 3.2, the CNN based learning method and architecture
in Sec. 3.3, the data generation in Sec. 4 and the results on
real and synthetic data in Sec. 5. In Sec. 6, we conclude
with a discussion of our method including limitations.

3.2. Shape Model

For human shape estimation problems, from a few cam-
era images [4, 44, 6, 22, 56, 28, 21], deformable shape
models are typically a method of choice, in particular
SCAPE [3]. That is mainly due to its simplicity. It is a low-
dimensional parametric model based on triangle deforma-
tions learned from 3D range scans of different people in dif-
ferent poses. The deformations due to body shape and pose
changes are captured simultaneously. Below we explain the



model adaptations to our needs, but we advise the reader to
refer to the original work [3] for more details. Here, SCAPE
is defined as a set of 12894 triangle deformations applied to
a reference template 3D mesh consisting of 6449 vertices,
with parameters α and β, responsible for pose and intrinsic
body shape deformations respectively. Estimating the hu-
man body shape implies estimating those parameters. Let
ei1 and ei2 be two edges of the ith triangle of the template
mesh, defined as the difference vectors between the vertices
of the triangle. Given α and β, each of such edges is de-
formed according to the following expression

e
′

ij = Ri(α)Si(β)Qi(Ri(α))eij , (1)

with j ∈ {1, 2}. Ri(α), Qi(Ri(α)) and Si(β) are ma-
trices corresponding to joint rotations, pose induced non-
rigid deformations and intrinsic shape variation, respec-
tively. In this work, we try to estimate the β parame-
ters. We learn the deformation space of body shapes by
stacking triangle deformations of meshes in full correspon-
dence, of different people under the same pose, and then
applying PCA. The learned transformations can be written
as s(β) = Uβ + µ, with U a matrix with orthonormal
columns, and µ the mean of the triangle transformations
over all the meshes. Our mesh set contains roughly 5000
different meshes gathered from two available datasets put
in full correspondence, from which 1500 are put aside for
testing and are not used for learning the model, as explained
in Sec. 4. The template mesh is computed as the mean over
the remaining meshes. After computing the per-triangle de-
formations from the template mesh over each mesh, we ap-
ply PCA in order to extract the components capturing the
largest deformation variations. We noticed that 20 compo-
nents are enough to capture more than 95% of the energy,
hence β ∈ R20.

One could learn the deformation space due to joint ro-
tations Ri(α) applying a similar procedure. In contrast to
Si(β) though, the same human mesh but in different poses
should be used by applying a similar procedure. We how-
ever, are not interested in estimating α, but want to estimate
β only. This also relates to the important fact that the in-
trinsic shape Si(β) should not change over different poses.
Similarly, pose induced deformations Qi(Ri(α)) are also
not needed, due to the fact that our application expects a
neutral standing pose, allowing mild pose changes around
it. Taking the common assumption that the body shape does
not significantly change due to the range of poses we con-
sider, we decouple pose changes from shape changes. In
this way, solving equation 1 boils down to solving a sim-
plified version of it hence e

′

ij = Si(β)eij . This is a com-
mon assumption used in previous works as well [37, 28],
where fast pose changes are performed adopting an effi-
cient method from the graphics community instead, known
as Linear Blend Skinning (LBS) [32]. Reconstructing a new
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Figure 2: The three architectures considered for two input
silhouettes. (a) both silhouettes are input as two channels
(b) each silhouette is input into two separate convolutional
layer (CL) blocks and outputs of the CL are concatenated
through a Merge layer (c) same scenario however with a
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shape utilizing SCAPE involves solving a least-squares sys-
tem over newly estimated shape parameters, which runs in
milliseconds.

3.3. Learning A Global Mapping

We pose the global mapping as an end-to-end regression
problem, from 2D input image to shape parameters. We
achieve this by training from scratch a CNN similar to that
of AlexNet [30] and adapting it to our inputs and regression
task, as depicted in Fig. 1 (bottom). Regarding the number
of input images we distinguish two cases : A frontal sin-
gle view image, coming in different forms, and two images
simultaneously, from front and side.

One View The frontal view image can come in three
forms. Firstly, a frontal binary silhouette of the human in
a neutral pose, scaled to a fixed height is considered. This
is the most general case, and assumes unknown camera cal-
ibration, hence the need for a fixed scaling. Second, if the
camera parameters are known, e.g. when the person stands
a known distance away from the camera, the input is a fixed
size image of varying silhouette size and height. Estimating
the real 3D shape from a 2D input silhouette is an ill-posed
problem per se, due to the fact that a silhouette can repre-
sent various body shapes, even though we strive to recon-
struct the shape that best explains it. Utilizing silhouettes
only, has the advantage that no personal information is re-
vealed, which is important for privacy protection. Allowing
the problem to be a bit more relaxed, by adding further in-
formation, we lastly consider the case of using additional
image cues such as shading, complementary to the scaled
silhouette, similar to [22]. In order to synthetically generate
training data, we render images with shading under Lam-
bertian assumptions. In practice a similar result could be
achieved by extracting the intrinsic image [43]. The input
size for all the mentioned methods is set to 264 × 192 pix-
els. For each case, the single channel input images, along
with the known shape parameters, are fed into our Human



Shape Network (HS-Net), which learns the mapping from
input to the shape parameters β. HS-Net is a modifica-
tion of Alexnet [30] customized to a regression problem,
our various input types, intended application and the avail-
able hardware. The network consists of five convolutional
blocks, followed by three fully connected layers as illus-
trated in Fig. 1 (bottom). Each layer is followed by an ac-
tivation layer (ReLu). In addition, dropout layers are uti-
lized between fully connected layers to avoid overfitting and
max pooling is used after the first, second and fifth convo-
lutional blocks. The network is trained from scratch, since
the available pre-trained models are geared towards classifi-
cation and RGB or grayscale images, while we tend to learn
regression from binary images. We experimented with dif-
ferent optimization algorithms and observed that the best
results were obtained using RMSProp 1 and Adadelta [55].
We decided to utilize the Adadelta optimizer due to its ca-
pacity to automatically adjust the learning rate and prevent
it from becoming too small.

Two Views In compliance with the realistic scenario of
estimating the body shape and the body parts measurements
as accurately as possible, we additionally opted for the us-
age of two silhouettes simultaneously, where the person is
seen from a full frontal and side view. This setting also
assumes known camera parameters, same as the methods
we compare to [51, 10, 5], which translates to knowing the
distance from the camera. One of the challenges of this
case is how to combine multiple view inputs in a way that
the convolutional network can use them coherently. We ex-
plore and evaluate three different approaches to achieve this.
The first approach, utilizes a model architecture very simi-
lar to the one view case, however the input images from the
different views are stacked along the channel dimension to
form two channel images, see Fig. 2 (a). These two channel
images are then fed into the network for training. By vi-
sualizing the output filters (supplementary [1]) for different
layers on various test images, we observed that the network
learns some filters more pronounced towards frontal views,
while others favor the side views. For the second approach,
the architecture differs from the previous case, in that we
add a Merge layer similar to the view pooling layer of [47],
after two sets of convolutional layers with shared weights
for each view, followed by fully connected layers. The in-
put images from each view are fed into two separate five
layer convolutional networks and merged using a concate-
nation operation, see Fig. 2 (b). The third approach distin-
guishes from the second one in that the merge layer per-
forms a Max operation over each dimension, see Fig. 2 (c).
The motivation behind the last two approaches, was to al-
low the network to separately learn features from individual
images and then fuse them more discriminatively through
a merging layer. The merge layer with max operation im-

1http://www.cs.toronto.edu/ tijmen/csc321/slides/lecture slides lec6.pdf

proves learning and subsequently the estimation accuracy
(see Tab. 1) over the two channel network, as it combines
evidence at a later stage of learning. All three methods lead
to improvements over the one view case, which we demon-
strate in Sec. 5, where the merging with max operation per-
forms the best.

4. Data Generation

Our method is based on training a CNN hence it re-
quires numerous training and validation data. Gathering a
big number of human shapes is a highly non-trivial task -
due to the need of specialized equipments for scanning peo-
ple, the difficulty of finding large numbers of them, and
more importantly, due to the necessity of scanning them
under minimalistic clothing, in order to better capture the
intrinsic shapes. Unfortunately, there exists no freely avail-
able dataset of real human body shapes along with mea-
surements. A feasible solution though, would be to learn a
parametric shape model from a small subset of body shapes
capturing body shape variances and generate synthetic data
from it. Taking advantage of the commercially available
CAESAR dataset 2, containing people in an almost naked
apparel, researchers have released two datasets [53, 37],
consisting of meshes obtained by fitting a template mesh
to subsets of the CAESAR dataset. We merge these two
datasets and construct a larger one, to enable learning a
more general shape model. One of them [53], consists of
around 1500 registered meshes in correspondence, however
of higher resolution than the other dataset [37]. The reso-
lutions respectively are 12500 vertices 25000 triangles and
6449 vertices 12894 triangles. Mesh resolution is not so
important for our application, hence we map the higher res-
olution meshes to the lower resolution ones. This also im-
proves the computation time. To achieve that, we first ex-
tract a template mesh, as the mean mesh of each dataset, and
then apply non-rigid ICP [2] to the two template meshes.
Afterwards, closest points in both meshes are computed, us-
ing barycentric coordinates in the closest triangle. The re-
trieved mapping can be applied to all the remaining meshes
due to the same mesh connectivity. Roughly 3000 meshes
are selected from the combined dataset to learn the shape
model, leaving out around 1500 meshes for experiments
and validation. Applying the method from Sec. 3.2, we ex-
tract 20 principal components from the triangle deforma-
tions that capture most of the variance. For synthesizing
new meshes, we sample from the 20 dimensional multivari-
ate normal distribution spanned by the PCA space, where
for a random sample β = [β1, β2, ..., β20], it holds that
β ∼ N (µ,Σ). µ and Σ are the 20-dimensional mean vector
and the 20 × 20 covariance matrix respectively. For train-
ing, we generate 100000 meshes from the multi-variate dis-

2http://store.sae.org/caesar/



tribution over the β parameters. To avoid potentially un-
realistic humans, we restrict the parameters to be in the
±3 × Std.Dev range in each PCA dimension. We gen-
erate silhouettes by projecting the meshes into frontal and
side views, and shaded images by rendering the meshes
with shading under lambertian assumptions, similar to [47].
These are fed to the respective CNNs, by first scaling them
to 264×192 pixel resolution. Our evaluation and testing set
comprises of the meshes left out from the training dataset,
as well as of real images of people standing in front of a
wall.

5. Validation and Results

Our method targets the application of human body shape
and body parts estimation. In order to assess its reliabil-
ity, one can not rely only on the visual reconstruction of
the mesh. Rigorous quantitative experiments are neces-
sary, especially of measurements over various important
body parts. If the latter can be estimated accurately, fit-
ting clothes virtually or even buying clothes online becomes
more intuitive and appealing. Measuring different body
parts consistently in real datasets is difficult, as even the
most trained individuals are reported to deviate up to 10
mm [20]. Hence, we evaluate on synthetic meshes, obtained
by fitting a parametric model to real people scans from the
CAESAR dataset, similar to the methods we compare to [5].
Performing the evaluations on this dataset, in addition to
the shapes being very close to the real ones, has the advan-
tage that they are in full correspondence. Thus, it becomes
easy to automatically measure various body parts. Addi-
tionally, the poses adopted from the real human scans, devi-
ate from the neutral pose specified by experimenters while
they are being scanned, Fig. 3 (top-left). These meshes are
quite realistic and in compliance with the variation of the
poses that people adopt for our target applications. Differ-
ent openings of the arms, legs and even shoulders can be
noticed, while we show results of more pronounced poses
in the supplementary material [1]. In our experiments, we
apply the same measurements as in [5], Fig. 3 (top-right).
For our evaluation we use 1500 meshes and 4 real people
on 16 body measurements, which to the best of our knowl-
edge is the most complete one so far, as compared to related
work. Boisvert et al. [5] evaluate on 220 meshes and 4 real
people, Xi et al. [51] on 24 meshes and two real people,
Sigal et al. [44] for two measurements only on two subjects
and Balan et al. [4] for silhouette errors and height measure-
ment on a few individuals.

General Training and Set-Up details For each of the
100000 generated meshes, Sec. 4, we generate silhouettes
from frontal and side views, as well as shaded images un-
der lambertian assumptions with Maya3. As preprocessing,

3http://www.autodesk.com/products/maya/

the images are centered, normalized to the [0,1] interval and
fixed to the 264×192 pixels resolution for all the cases. The
resolution was chosen such that it neither impedes learning
of shape variations, nor is too big, due to the hardware and
time constraints we had. We use 95000 images for training
and 5000 for the network validation. As explained above,
the testing is performed on 1500 unseen samples and real
human ones. The network architecture is detailed in Fig. 1
(bottom) for the one view input case. For the various ex-
periments that we perform, we change the networks as ex-
plained in Sec. 3.3 and adopt the following nomenclature :
HS-1-Net-S and HS-1-Net for the scaled and unscaled input
silhouette and HS-1-Net-Im for the scaled shaded image in-
put. Training usually converges between 15-25 epochs de-
pending on the experiment. The batch size was set to 32, to
not be a proper divisor of the number of training samples per
epoch, which is equal to half of total training samples. This
provides an easy way to simulate shuffling without hitting
memory constraints for such big datasets. We also experi-
mented with batch normalization [27] right after the convo-
lutional layers, resulting in slight error increase. Applying
batch normalization after the fully connected layers though,
caused the network to converge to constant functions.

We experimented with the RMSprop, Adagrad [16] and
Adadelta [55] optimizers, in order to minimize the manual
learning rate adjustments. We observed that RMSprop (with
an initial learning rate of 0.001) and Adadelta (with decay
rate of 0.95) converged faster than Adagrad, also with a
smaller test error. Thus, all the reported experiment results
are for the models trained using Adadelta. We experimented
with the squared loss, with and without multiplying the last
fully-connected layer by custom weights. The weights are
set to be the eigenvalues of the covariance matrix obtained
from PCA, during the data generation step Sec. 3.2 and nor-
malized to 1, such that we emphasize large scale changes
in 3D body shapes. As expected, using squared loss with
custom weights performed better. For all the networks, we
utilized Glorot uniform weight initialization [19].

For the two view case, we used the best performing net-
work configurations from the one view case, however the
architectures were modified to fit the input extension, as
shown in Fig. 2. The two selected views were the frontal
and the side one. We also distinguish between three cases
here : HS-2-Net-CH for the input silhouettes passed as two
channels of a single image, HS-2-Net-MM for separately
training the two inputs as different single channel images
and applying a merge layer, that performs a max operation
over each dimension right after the output of the last convo-
lutional layers (CL), and HS-2-Net-MC for the same archi-
tecture that concatenates the output of CL, instead of max
operation. All the CL have shared weights.

Quantitative Experiments We perform 16 3D measure-
ments on the test meshes which consist of males and fe-



males in roughly equal numbers, similar to [5]. The mea-
surements are illustrated in Fig. 3 (top-right) and are widely
used in garment fitting. We compute the Euclidean distance
between two extreme vertices for the straight line measure-
ments, while for the ellipsoidal ones, the perimeter is com-
puted on the body surface. For each measurement we cal-
culate the difference between the value estimated and the
ground truth, and report the mean error and standard devi-
ation computed over the error values for all the test meshes
in Table 1. Additionally, we show how the mean error over
all measurements varies, for each different input type that
we consider, in Fig. 3. HS-2-Net-MM has the lowest error
of 4.02 mm, as compared to 11 mm of [5], which utilizes
a more expensive local fitting algorithm. For completeness,
we compare to the work of Helten et al. [26], that utilizes
an RGB-D camera for capturing the body shapes, and a full
RMSE map per vertex to measure the differences. They re-
port an error of 10.1 mm, evaluating on 6 individuals from
two depth maps, while we report an error of 7.4 mm on
1500 meshes.

We observed that using weights with squared loss func-
tion increases the accuracy of the model. The model trained
on silhouettes with known camera parameters performs sig-
nificantly better than the one with unknown camera calibra-
tion. The shaded images network HS-1-Net-Im, performs
also slightly better than the corresponding silhouette one
HS-1-Net-S, implying that shading information possibly im-
proves the shape estimation accuracy, but could also be re-
lated to added information due to grayscale input as op-
posed to a binary one. Lastly, HS-2-Net-CH demonstrates
more accuracy for the ellipsoidal errors while HS-2-Net-MC
for the euclidean ones, despite their overall similar perfor-
mance. In comparison to the other methods, our network
clearly outperforms the global methods [51, 10] for all the
input types, as well as the more involved method of [5], ex-
cept for the Overal Height measurement (O) and Inside Leg
length (K). Adding a second view gives better results than a
single view with noticeable improvements in the height and
waist estimation.

Noise Due to the imperfection of silhouette extraction
algorithms, we evaluated the robustness of our model under
the influence of noise. We apply noise to the silhouette by
randomly eroding or dilating the silhouette at the border,
with filters of various radii, evaluating it for 1,3,5,7 and 9
pixels. We plot the errors of each body measurements and
show examples of noisy silhouettes for a radius of 1, 5 and 9
pixels in Fig. 4. The method achieves performance similar
to the noiseless case within a reasonable noise radius, where
even for the highest noise parameter the maximum error (in
the height) is below 5 mm, implying robustness to noise.

Qualitative Results We demonstrate results of frontal
body shapes, obtained by applying HS-1-Net-S over scaled
silhouettes, extracted from images of real people in Fig. 5.
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Figure 3: Mean error over all measurements for different
input types. (top-left) 3 test meshes in slightly changing
poses. (top-right) Illustration of the body measurements (A
- P) on the template mesh.
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Figure 4: Error plots for each of the body measurements (A
- P) when noise is applied, as compared to clean silhouettes.
(top-left) 3 silhouettes with noise parameters 1, 5 and 9.
(Figure best seen in colors).

Figure 5: Mesh reconstruction for 4 real subjects in mildly
varying poses. (left) Input image (middle) Extracted Sil-
houette (right) Reconstruction of the estimated shape.

The individuals adopt a neutral pose, however please note
the variations in the arms and legs openings. Our method
manages to reconstruct accurate shapes, also backing up our



Measurement HS-1-Net-S HS-1-Net-S-Im HS-1-Net HS-2-Net-MC HS-2-Net-CH HS-2-Net-MM [5] [12] [51]

A. Head circumference 4±4 4±4 2±4 2±3 2±3 2±3 10±12 23±27 50±60
B. Neck circumference 8±5 6±4 3±1 2±1 3±1 2±1 11±13 27±34 59±72
C. Shoulder-blade/crotch length 20±15 20±14 7±7 5±6 4±5 3±5 4±5 52±65 119±150
D. Chest circumference 13±7 13±6 4±1 2±1 4±2 2±1 10±12 18±22 36±45
E. Waist circumference 19±13 19±13 8±7 6±7 8±7 7±5 22±23 37±39 55±62
F. Pelvis circumference 19±14 19±12 6±5 5±4 6±5 4±4 11±12 15±19 23±28
G. Wrist circumference 5±3 5±3 3±2 2±1 3±2 2±2 9±12 24±30 56±70
H. Bicep circumference 8±4 8±3 2±1 2±1 2±1 2±1 17±22 59±76 146±177
I. Forearm circumference 7±4 6±3 2±1 2±1 2±1 1±1 16±20 76±100 182±230
J. Arm length 12±8 12±8 6±4 5±4 5±4 3±2 15±21 53±73 109±141
K. Inside leg length 20±14 19±13 12±8 13±9 11±7 9±6 6±7 9±12 19±24
L. Thigh circumference 13±8 12±7 8±5 7±4 7±4 6±4 9±12 19±25 35±44
M. Calf circumference 12±7 11±6 5±2 5±2 4±2 3±1 6±7 16±21 33±42
N. Ankle circumference 6±3 5±2 3±1 2±1 3±1 2±1 14±16 28±35 61±78
O. Overall height 50±39 49±37 20±15 19±15 16±13 12±10 9±12 21±27 49±62
P. Shoulder breadth 4±4 3±4 3±4 2±4 2±4 2±4 6±7 12±15 24±31

Table 1: Error comparisons on body measurements for the various inputs and presented training modalities, as well as state-
of-the-art methods (last three columns). The measurements are illustrated in Fig. 3 (top-right). Errors are represented as
Mean±Std. Dev and are expressed in millimeters. Our best achieving method HS-2-Net-MM is highlighted.

claim that mild pose changes do not affect our robustness.
We provide further qualitative and quantitative results on
synthetic meshes in the supplementary material [1].

Method Speed We conducted our experiments on an In-
tel(R) Core(TM) i7 CPU 950 3.0 GHz with NVIDIA GTX
980TI (6GB) GPU. The training code was implemented in
Python using Keras framework 4 with Tensorflow as back-
end. The usual training time is around 30 minutes per epoch
and the testing time was about 0.2 seconds per image. Gen-
erating a mesh from the estimated parameters takes around
0.25 seconds (significant further speed-up is possible via
parallelization of this step). Our full algorithm runs in 0.45
seconds and is significantly faster than the methods we com-
pare to with 3 minutes and 36 seconds for the full optimiza-
tion of [5] and 6 seconds for the global mapping of [12].

6. Discussion and Conclusions

We presented a novel technique that can estimate 3D hu-
man body shape from silhouettes or shaded images quite
accurately utilizing CNNs. We posed the problem as re-
gression, where we try to find a global mapping from the
various inputs that we presented to shape parameters. We
extensively evaluated our technique on thousands of human
bodies and real people.

In compliance with our main target applications, e.g.
garment fitting, we mainly focused on shape estimation of
people in neutral poses allowing mild pose changes, from
one scaled or unscaled, two binary silhouettes as well as
shaded images as input. We showed that we outperform
methods based on global mapping and achieve similar re-
sults to more expensive methods that employ local fitting.

In the scope of the networks that we experimented with,

4http://keras.io/

we showed how to simultaneously combine two binary sil-
houettes in order to improve prediction over a single one,
and evaluated three different methods. We believe that this
sets a ground for future works in human shape estimation
from multiple views.

We also demonstrated in a synthetic experiment, that if
shading information is present, better results are achievable.
Due to lack of real data though, it is difficult to assess its
performance on real humans and believe that as intrinsic
image extraction algorithms improve, it will lead to future
works in this domain .

Even though silhouette extraction is not a bottleneck for
our target scenarios, due to assumptions on uniform back-
grounds, we evaluated the performance under the influence
of noise of different levels, and showed that our method
is robust to silhouette noise under reasonable assumptions.
We further assumed humans in tight clothes. Applying our
method to a scenario where clothed people are present de-
teriorates the results, however in contrast to previous works
the reconstructions remain in the space of plausible human
bodies.

A limitation to our method is that with the current train-
ing, it can not handle poses that differ significantly from the
neutral pose and contain self-occlusions. We could handle
that by generating a larger training set including more pro-
nounced poses, which goes beyond the scope of the paper.

Lastly we showed that our system is orders of magnitude
faster than the methods we compare to. Based on recent
works [8] that try to compress Neural Networks as well as
the possible speed-up of our mesh computation, our algo-
rithm which already runs at interactive rates, could be inte-
grated into smartphones in the foreseeable future.

Acknowledgment. This work was funded by the KTI-
grant 15599.1.
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