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Abstract—Geometry data in massive amounts can be generated
thanks to the modern capture devices and mature geometry
modeling tools. It is essential to develop the tools to analyze and
utilize this big data. In this paper, we present an exploration
of analyzing geometries via learning local geometry features.
After extracting local geometry patches, we parameterize each
patch geometry by a radial basis function based interpolation.
We use the resulting coefficients as discrete representations of the
patches. These are then fed into feature learning algorithms to
extract the dominant components explaining the overall patch
database. This simple approach allows us to handle general
representations such as point clouds or meshes with noise,
outliers, and missing data. We present features learned on several
patch databases to illustrate the utility of such an analysis for
geometry processing applications.

Index Terms—Geometry representations, dictionary learning,
big geometry data.

I. INTRODUCTION

As sensor technology such as depth cameras develops,
acquiring 3D data from the real world is becoming easy.
Most 3D geometry data from the real world is not easy to
process because of its massive size and unstructured nature [1].
There exist several methods to handle manifold surfaces, and
a few others that address more complex non-manifold geome-
tries [2–4]. These methods typically rely on only the geometry
data at hand without considering existing big 3D geometry
data. Utilizing the existing data can lead to significant gains
in accuracy, especially in the case of missing data, noise, and
outliers, which are typical for real data.

In order to utilize such 3D data in a unified framework,
we propose to represent local patches from the geometry data
with unsupervised feature learning. We divide existing 3D
models into local patches, convert the patches into a unified
representation, and apply clustering on the resulting feature
vectors to learn a dictionary of local geometry patches (Fig.
1). We also illustrate a preliminiary application of our frame-
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work to shape reconstruction.

II. RELATED WORK

In order to reconstruct accurate geometry representations,
it is essential to handle noise, outliers, and missing parts of
3D geometries. Existing methods for solving this problem
can be divided into two groups: local and global methods.
Local methods divide a 3D model into local geometric
patches and analyze each patch’s dominant components [5,6].
These methods have the advantages of fast processing speed
and robustness against noise and outliers, but handling
large missing parts is difficult. On the other hand, global
methods [7] can handle large holes since they consider
global shape characteristics, but the computational complexity
increases significantly, especially for big geometry data.
To properly handle big geometry data composed of a massive
amounts of unstructured point data, we explore geometry
representations using a local approach. We use geometry
patches as local geometric features, and employ a dictionary
learning scheme based on sparse coding to extract the
dominant components describing the overall patches from
unsupervised data.
Sparse signal representations are used in various areas such
as image processing, machine learning, neuroscience, and
statistics. Recently, signal processing and machine learning
techniques have been applied for analyzing and reconstructing
3D geometries [8]. In 3D geometry processing, sparse coding
is used for mesh denoising, 3D surface reconstruction, mesh
segmentation, among others [9–12]. We also utilize sparse
learning methods. In constrast to previous methods, we utilize
sparse coding to generate compact representations of big
geometry data.
In particular, we utilize dictionary learning to get a few
representative features that summerize local patches from
large scale geometry data. Dictionary learning is a common
technique in image compression, super-resolution and
denoising. It has also generated state-of-the-art results
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Fig. 1. Overall pipeline of geometry representations using unsupervised feature learning.

in geometry processing in recent years. For deformation
and animation, dictionary learning is used for pose
decomposition [13], analyzing mesh sequences [14], or
highly deformable models [15]. In 3D reconstruction, sparse
dictionaries are used for storing local geometry features
and reconstructing triangle meshes [7]. Another work [16]
exploits self-similarity using K-SVD [17] for geometry
compression on point sampled surfaces. This method stores
local geometry patches to construct a geometry dictionary,
which are then used for high quality reconstructions. We also
utilize a similar approach, but propose a new unified way of
encoding local patches that is applicable to handle massive
amounts of existing data.

III. METHOD

Given a set of high quality 3D geometries, we first extract
local patches. Then, we represent each of these patches with
a feature vector of coefficients for radial basis function based
interpolation. Finally, we run K-SVD [17] to cluster the feature
vectors and learn a representative set of features. This compact
set can then be used for various processing tasks.

A. Feature Vectors for Local Patches

Raw geometry data can be some with different number
of geometry entities such as points or triangles. To make
consistent patches for different models, a random set of seed
points is selected to divide the model into local patches with
radius r, similar to existing works [16]. Then the coordinates
of points within each patch are stored as a local height field.
To get a local frame for the height field, we first fit a local
plane. We set the center of the bounding sphere as the center
and calculate the normal of the local plane by averaging
normals that belong to the points in the bounding sphere.
Each point within the bounding volume is then stored in this
local frame (Fig. 2). Finally, we fit a smooth function to this
sampled height field via radial basis based interpolation. We
use Gaussians with centers residing on a regular grid of size
16 × 16 on the local plane as the radial basis functions. The
resulting coefficients form our feature vector. As illustrated in
Fig. 2, we take bounding spheres of multiple sizes, to capture
the geometric structures at different scales.
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Fig. 2. Generating patches from a 3D model. (a) A patch from a bounding
sphere with the center point p, radius r, and patch normal n. (b) A patch
with r = 0.05, (c) r = 0.15, and (d) r = 0.25.

B. Dictionary Learning

Once we get the feature vectors from the local patches
as described in the previous section, we learn a compact
representation for these feature vectors by the dictionary
learning method K-SVD [17]. The K-SVD algorithm solves
the following system.

min
D,X
||F−DX||2F ||xi||0 ≤ s (1)

Here, X stores the coefficients of training data with columns
denoted with xi, D is the learned dictionary, and F denotes
a matrix where each column stores a feature vector F =
[f1, ..., fn].

The dictionary learning is performed in two alternating
steps: sparse coding of feature vectors, and dictionary
updates. In the sparse coding step, the coefficient matrix X
is computed by minimizing the above error. For this step,
we used orthogonal matching pursuit, as it leads to better
results than the standard matching pursuit algorithm. In the
dictionary update step, the columns of D, which are the
learned dictionaries, are computed again by minimizing the
above error, while keeping the coefficients in X fixed. These
two steps are repeated until convergence. Here, s determines
sparsity of the signals. For our case, we have observed that
number of iterations ranging from 25 to 30 are sufficient for
convergence.

IV. EXPERIMENTS

In our experiments, we compare and analyze learning results
for different geometry patch sets. We analyze the convergence
of the learning algorithm, and illustrate a few of the learned
dictionaries to illustrate the final representation.
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Fig. 3. K-SVD error convergences with simple shape models. The error plots
are with the radius r = 0.15. The numbers of vertices of the sphere, bumpy
sphere, rocker-arm and bunny models are 41k, 68k, 40k and 34k, respectively.
The iteration count is 25.

A. Patches of Different Scales

When the patch size is too small, all local geometries be-
come very similar, thus we cannot get a meaningful dictionary.
On the contrary, when the patch size is too large, we capture
global geometric properties, which can vary vastly from one
object to the other, again avoiding to produce a meaningful

dictionary. Hence, the patch size should be set carefully.
To provide insight into this behavior, we use a sphere,

bumpy sphere, rocker-arm, and Stanford bunny. The models
have from 35, 000 to 68, 000 vertices, and the bounding box
is normalized to be of unit volume. From these models, we
get different patch sets by using bounding spheres of radius
0.05, 0.15 and 0.25. The total dataset for this experiment is
12 patch sets from four different models. The used models
and convergence of the K-SVD error are shown in Fig. 3. The
error converges to near zero in all shape models with different
patch sizes.

Atoms of the learned dictionary are shown in Fig. 4. Each
of them shows six dictionary atoms capturing the largest
variations. The dictionary is learned with the size of 30 and
sparsity of 9. The atoms from the patch set with the radius of
0.05 are not presented here since the patch size is too small
and almost the same. In the Fig. 4 (a) and (b), the dictionary
atoms are learned from the rocker-arm model with the patch
radii of 0.15 and 0.25, respectively. We can easily notice that
the atoms of the Fig. 4 (a) describe local features better than
(b). In the Fig. 4 (c) and (d), the atoms of the dictionary are
learned from the bunny model with the patch radii of 0.15 and
0.25, respectively. In the case of the bunny model, the local
features are well represented in both (c) and (d).

B. Patches of Different Orientations

Although the computed normal determines how the locally
fit plane is oriented, there is one more degree of freedom,
the rotation of the local coordinate system in the plane. We
tested how different rotations of patches affect the learning
results. For this test, we create patch sets with different rotation
angles in the locally fit plane. For a patch, we generate 36
versions of that patch by rotating the patch in steps of 10
degrees from 10 to 360. The axis of the rotation is the normal
of the locally fitted plane in the patch. Fig. 5 illusrates how
to generate rotated patches in the locally fit plane. We create
new databases of patches consisting of 190×36 for the bumpy
sphere, 63×36 for the rocker-arm, and 146×36 for the bunny
models. We use 0.15 as the patch radius. We illustrate the
resulting graphs of the four singular values as given by the
K-SVD algorithm and the corresponding dictionary atoms in
Fig. 6. When we compare the learned atoms of the rocker-arm
and the bunny using the rotated patches with the original ones
in Fig. 4, the shapes of the first four atoms are different each
other.

C. Mixing Patches

In this experiment, we construct mixed patch sets from
different shape models and of different sizes. First, we
compare dictionaries for patches of different sizes from
the same model. We choose 0.15 and 0.25 as the radii of
the patches, and mix the resulting two sets for the sphere
model (Fig. 7 (a)), and the bumpy sphere model (Fig. 7 (b)).
Finally in Fig. 7 (c) we also show the dictionary atoms when
mixing patches from the two models for the patch radius 0.15.
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Fig. 4. Atoms from the learned dictionaries from the rocker-arm and the bunny models. In (a) to (d), atoms are arranged in importance order from left to
right. (a) and (c) indicate the dictionary atoms of the patch set where the radius r = 0.15. (b) and (d) indicate the dictionary atoms of the patch set where
the radius r = 0.25. The color gradients of blue to yellow indicate low to high value in each color map. Please note that every plot has its own coordinate
system.

V. CONCLUSIONS

In this paper, we presented an exploration of learning local
geometric structures for big geometry data. We have presented
several examples with patches extracted from different models,
of different sizes, orientations, and mixing. Our local approach
allows us to have controllable generalization properties in
contrast to previous structure-aware methods in geometry
processing. It also leads to compact and local geometry
representations that capture the dominant structures in the data.
We believe such ideas can be used to inject prior information
into the techniques used for various geometry processing
applications such as smoothing, abstraction, or reconstruction
in future works.
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Fig. 5. Generation of rotating patches from the sphere and the bumpy sphere
models.
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