Integration with Stochastic Point Processes

A. CENGIiZ OZTIRELI
ETH Zurich

‘We present a novel comprehensive approach for studying error in inte-
gral estimation with point distributions based on point process statistics. We
derive exact formulae for bias and variance of integral estimates in terms of
the spatial or spectral characteristics of integrands, and first and second or-
der product density measures of general point patterns. The formulae allow
us to study and design sampling schemes adapted to different classes of
integrands by analyzing the effect of sampling density, weighting, and cor-
relations among point locations separately. We then focus on non-adaptive
correlated stratified sampling patterns and specialize the formulae to derive
closed-form and easy-to-analyze expressions of bias and variance for vari-
ous stratified sampling strategies. Based on these expressions, we perform
a theoretical error analysis for integrands involving the discontinuous visi-
bility function. We show that significant reductions in error can be obtained
by considering alternative sampling strategies instead of the commonly used
random jittering or low discrepancy patterns. Our theoretical results agree
with and extend various previous results, provide a unified analytic treat-
ment of point patterns, and lead to novel insights. We validate the results
with extensive experiments on benchmark integrands as well as real scenes
with soft shadows.
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1. INTRODUCTION

Integrals of complex functions need to be estimated for rendering
realistic scenes. The estimation is typically carried out by sam-
pling the integrand at particular locations in space/time and taking
a weighted average of the computed values. This method is general
and can be made to converge to the true integral as more samples
are taken. However, a prohibitively large number of samples might
be needed to synthesize plausible images without noticeable noise.
Hence, it is very important to optimally and adaptively choose the
weighting, density, and arrangement of sampling points given by
the interactions or correlations among sample locations.
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Fig. 1. Based on the proposed theoretical framework, we derive theoret-
ical conditions under which certain sampling patterns will perform better.
We show that alternative sampling patterns, such as isotropic jittering in
this example, can result in errors lower than possible before under certain
conditions on the scene geometry and light types. (The scene is rendered
with a circle light source and an average of 7 visibility samples per pixel
(spp). The RMS errors are reported at the bottom of each inset.)
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Functions with different characteristics need to be integrated
for different applications. For example, rendering soft shadows re-
quires an integration over the area of light sources involving the dis-
continuous occlusion function. Ideally, a sampling pattern should
be studied and adapted according to the characteristics of the in-
tegrands for accurate estimations. However, such an analysis is
challenging if correlations among point locations are taken into ac-
count, since deriving exact expressions of error tailored for general
globally correlated sampling patterns has so far not been possible.

Indeed, most adaptive sampling techniques in rendering focus
on adjusting the sampling density and weights according to the
variance or the spectral bandwidths of the radiance to be inte-
grated [Whitted 1980; Mitchell 1987; 1991; Hachisuka et al. 2008;
Belcour et al. 2013; Ramamoorthi and Hanrahan 2004; Durand
et al. 2005; Soler et al. 2009; Egan et al. 2009; Egan et al. 2011;
Egan et al. 2011; Mehta et al. 2012]. However, as demonstrated
in recent works [Durand 2011; Ramamoorthi et al. 2012; Subr and
Kautz 2013; Subr et al. 2014], adapting weighting, density, and cor-
relations to integrands simultaneously can significantly reduce the
variance of integral estimates. Hence, it is very important to take
correlations along with density and weighting into account when
studying a point pattern for integration. Such a general theoretical
analysis cannot be carried out with the existing approaches.

In this paper, we present a new theoretical framework that al-
lows us to study and adapt general point distributions for reducing
error in integration. Utilizing point process statistics, we derive ex-
act bias and variance formulae for general distributions in terms
of only the first and second order characteristics of the underlying
point processes, and the spatial or spectral properties of integrands.
We then specialize these formulae to stratified sampling patterns
and derive closed-form expressions that are amenable to analysis
and inference. We apply the theory to integrands with discontinu-
ities and those involving the visibility function. In summary, the
main contributions of this work are:

—Introduction of the most comprehensive theoretical framework
for studying bias and variance of numerical integration with
point distributions based on point processes. The framework (1)
proves that only first and second order correlations contribute
to error (2) allows us to analyze the effect of weighting, den-
sity, and correlations separately based on closed-form tailored
expressions for bias and variance, (3) expresses bias and vari-
ance in terms of local or global, spatial or spectral properties of
integrands, making analysis and inference easier, (4) applies to
all point distributions where intensity and second order product
density measures can be analytically computed or estimated.

—Closed-form and simple formulae for bias and variance of vari-
ous globally correlated jittered sampling patterns. These include
the more commonly used patterns as well as alternative patterns,
which are chosen based on the insights gained from the variance
formulae. Such exact formulae and analysis have so far only been
possible for uncorrelated jittering patterns [Subr et al. 2014], or
for 1D binary integrands under certain assumptions on the corre-
lations [Ramamoorthi et al. 2012].

—An application of the theoretical framework to visibility sam-
pling for computing soft shadows due to planar area lights. We
analytically explain how light types and scene geometry affect
the error, and when certain patterns perform better than others,
by an analysis in the joint pixel-light space. We show that signif-
icant reductions in error can be obtained by considering alterna-
tive sampling patterns.

2. RELATED WORK

Our work relates to the fields of point processes and sampling pat-
terns in computer graphics, in particular those used for integration
in rendering applications.

Point processes The field of point processes provides power-
ful theoretical tools to study point distributions. A point process
is defined as the generating process of a point pattern [Mgller and
Waagepetersen 2004; Illian et al. 2008]. Each realization of a point
process is thus a point distribution. A point process can be charac-
terized by considering correlations among point locations and asso-
ciated marks. In particular, first and second order correlations, in-
tuitively quantifying density and arrangement of points, have been
proven to be sufficient to uniquely identify most processes [Illian
et al. 2008; Oztireli and Gross 2012]. Recently, pair correlation
function, measuring the probability of finding a pair of points at
particular distances for isotropic point processes, has been intro-
duced to analyze and synthesize point distributions with desired
characteristics for graphics applications [Oztireli and Gross 2012;
Heck et al. 2013]. Our theoretical framework is also based on point
processes, with the goal of studying error in integration. We utilize
Campbell’s theorem (e.g. [Illian et al. 2008]) that gives expecta-
tions of sums of functions sampled at point locations in terms of
integrals of the functions and statistical measures of the underlying
point process. We show that bias and variance of a numerical inte-
gration scheme can be expressed in terms of first and second order
measures and weighting. This offers a unified treatment of point
distributions for integration, and closed-form and specific bias and
variance expressions for different distributions.

Analysis of point distributions Several other analysis tools have
been developed to understand the behavior of point distributions
when used for reconstruction, object placement, stippling, simula-
tion, or integration. A commonly used measure is the periodogram,
computed by averaging the power spectra corresponding to differ-
ent realizations of a point pattern. It is used extensively for deter-
mining antialiasing properties of distributions [Mitchell 1987; La-
gae and Dutré 2008; Heck et al. 2013]. Since regularity and uni-
formity of distributions can be easily read from the shape of the
spectrum, it has also been utilized to determine if point patterns
are suitable for object placement [Wei 2010], stippling and halfton-
ing [Schmaltz et al. 2010; Fattal 2011], among other applications. A
similar analysis can also be performed on non-Euclidean domains
and for non-constant densities [Bowers et al. 2010; Wei and Wang
2011]. Recently, Subr and Kautz [2013] has shown that bias and
an upper bound on variance of numerical integration can be ex-
pressed in terms of the averaged Fourier spectrum of general point
distributions. The bounds were further refined for the special case
of homogenous distributions in a concurrent work [Pilleboue et al.
2015]. We also derive bias and variance of numerical integrators for
point distributions. However, instead of spectral bounds, we strive
to provide tailored closed-form expressions for general sampling
patterns, which allows us to study how different patterns will per-
form for integrands with certain properties. Our framework also
allows studying the effects of weighting, density, and correlations
separately.

Apart from spectral diagrams, measures from point processes [I1-
lian et al. 2008; Oztireli and Gross 2012; Heck et al. 2013], spa-
tial characteristics such as the minimum distance between pairs of
points [Lagae and Dutré 2008], or discrepancy [Shirley 1991] have
been proposed for the analysis of point distributions in graphics.
Among these spatial characteristics, point process statistics provide
the most descriptive power. Building on the theory of point pro-
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cesses, our approach allows us to assess error for integration, and
to choose, adapt, and analyze distributions in relation to integrands.

Sampling patterns for integration The variance in Monte Carlo
estimation with random point locations can be reduced by ensuring
a more uniform distribution of points. Quasi-Monte Carlo methods
achieve this by generating deterministic low discrepancy sampling
patterns [Niederreiter 1992; Dick and Pillichshammer 2010; Keller
et al. 2012]. Uniformity of distributions can be further improved
while avoiding aliasing by using blue noise distributions where
points are randomly distributed and each pair of points is a cer-
tain distance apart [Cook 1986; Lagae and Dutré 2008; Heck et al.
2013]. A large body of works exists to generate such distributions
efficiently (e.g. [Dunbar and Humphreys 2006; Wei 2008; Ebeida
et al. 2012]). However, generation of blue noise distributions is still
more involved than the commonly used jittered distributions for
integration. Jittered distributions follow the idea of stratified sam-
pling, where the integration domain is divided into subdomains.
They are obtained by dividing the domain into cells of equal size
and placing a single point in each cell following a certain rule or
probability distribution. Jittering provides high convergence rates
and low computational complexity [Mitchell 1996; Owen 2013],
can be combined with other variance reduction methods [Owen
2013; Subr et al. 2014], and hence is a popular choice in render-
ing. We derive exact expressions for bias and variance of various
uncorrelated and globally correlated jittered sampling strategies to
study their performance for different types of integrands. Follow-
ing this analysis, we propose to use alternative correlated jittered
distributions that can provide lower errors when computing inte-
grals involving the visibility function. Our study extends the previ-
ous works [Ramamoorthi et al. 2012] that analyze how light types
affect the performance of random and uniform jittering.

Correlations can be controlled further to reduce the error in in-
tegration. A prominent example is the method of antithetic sam-
pling [Hammersley and Morton 1956], where the sampling points
are generated in pairs to capture the negatively correlated parts of
the integrand. However, this strategy can also increase the error if
the correlated point pairs are not adapted to the integrand. Recent
variants solve this problem with locally correlated pairs by com-
bining antithetic sampling with low-discrepancy patterns [Owen
2008], or jittered sampling [Owen 2013; Subr et al. 2014]. We study
a local variant of antithetic sampling and its performance for visi-
bility sampling within our framework.

Adapting density of sampling Variance of an integral estimator
can be reduced by adapting the density of points to integrands. In
rendering, density adaptation has been extensively used to dramat-
ically reduce sample counts [Whitted 1980; Mitchell 1987; 1991;
Kirk and Arvo 1991; Hachisuka et al. 2008; Overbeck et al. 2009;
Pharr and Humphreys 2010]. Following the frequency analysis of
light transport [Ramamoorthi and Hanrahan 2004; Durand et al.
2005], several works adapt the sampling rate and density accord-
ing to the derived bandwidths for efficient computation of soft
shadows [Egan et al. 2011; Mehta et al. 2012], depth-of-field ef-
fects [Soler et al. 2009; Belcour et al. 2013], motion blur [Egan
et al. 2009; Belcour et al. 2013], and directional occlusion [Egan
et al. 2011]. In addition to density, our theoretical framework al-
lows us to analyze and adapt correlations in sampling patterns to
integrands.

3. PRELIMINARIES

We start with the fundamental definitions, theorems, and notation
we use in the rest of the paper. We first define the numerical esti-
mation scheme we are considering. Since we model the point distri-
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Fig. 2. An isotropic point process (left) generates point distributions with
characteristics invariant to rotations. The more general stationary point pro-
cess (middle) allows for directional dependency, while still producing trans-
lation invariant correlations and constant intensity. A general point process
(right) can have different correlations and intensity in different parts of the
space.

butions used for integration with point processes, we then provide
the relevant definitions and Campbell’s theorem that allows us to
write expected values over point distributions generated by a point
process as integrals.

3.1 Numerical Integration

Given a function f : R — R*, we would like to study the error in
estimating the integral [ := |71‘ § f(x)dx, where V is the support

of the function f such that Vx ¢ V, f(x) = 0, and | V| is its volume.
We consider a general estimator of the form:

I:i= ) wif(xi), ey
i=1

for some positive weights w; and sample points x,. We will as-
sume that the support is a unit hypercube, |V'| = 1 in the rest of
the paper for simplicity. The error in this estimator can be cal-
culated by considering the bias bias(f ) =1-— E] and variance

var(I) = EI? — (EI)? with E denoting expectation. It is essential
to choose the distribution of points and weights carefully so as to
minimize the error. Such characteristics of point distributions can
be conveniently studied within the framework of point processes,
as we describe next.

3.2 Point Processes

Point processes describe generating processes underlying observed
point distributions [Mgller and Waagepetersen 2004; Illian et al.
2008]. Each distribution can thus be considered as a realization of
a point process. A point process can be a mathematical model for a
complex process such as the environmental conditions that produce
the distribution of trees in a forest, or defined directly in terms of
an algorithm such as placing points randomly in space with a mini-
mum distance between them. The distributions generated by a point
process can be different but share common characteristics. The goal
of point process statistics is to analyze these common characteris-
tics to understand the underlying patterns. In the scope of this paper,
we will consider point processes in R%,

A point process P can be defined by considering the joint prob-
abilities of finding points generated by this process in infinitesi-
mal volumes. One way to express these probabilities is via prod-
uct densities. Let x; denote some arbitrary points in R?, and
B, infinitesimal spheres centered at these points with volumes

dx; = |B;|. Then the n** order product density o™ is de-
fined by p(x1, -+ ,%x,) = 0™ (X1, -+ ,Xn)dX; - - - dx,,, where
p(x1,- -+ ,Xy) is the joint probability of having a point of the point

process P in each of the infinitesimal spheres B;.
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Fig. 3. RMSE vs. spp (average number of visibility samples per pixel) plots for the grids scene with different light sources. Based on our analysis, we propose
to use randomly rotated and translated grids (isotropic jitter sampling), a variate of antithetic sampling (mirrored jitter sampling), and rotated and randomly
translated grids (R-Uniform J) that can perform better than common patterns for integrals involving the visibility function, depending on the scene geometry
and light types. All patterns, except r-uniform jittering, assume no knowledge on the actual integrand. For this scene, on average, isotropic jittering requires
37% less samples than random jittering for square lights, 37% and 44% less samples than uniform jittering for circle and Gaussian lights, respectively. (All
error plots in the paper are computed by averaging over 50 instances of the scenes. Gaussian J refers to the Gaussian jittering pattern of Subr and Kautz [2013]
with indicated parameters. The plots are computed for the area marked with the red rectangle, while the insets are from the area within the black rectangle.)

Intensity and second order product density For our deriva-
tions of bias and variance in this paper, we will just need the first
o™ and second p® order product densities. The first order prod-
uct density is simply given by o(™) (x)dx = p(x). It can be shown
that the expected number of points of P in a set B can be written
as the integral of this expression: EN(B) = {, o) (x)dx, where
N(B) is the (random) number of points of the process P in set
B. Hence, o) (x) measures the local expected density of points
of a point process. It is thus usually called the infensity of P and
denoted by A(x) = o™ (x). Pairwise correlations are captured by
the second order product density o (x,y)dxdy = p(x,y). In
general, we need to consider higher order correlations as well to
explain general point processes. However, for our case of integral
estimation, we will show in Section 4 that the two statistics A(x)
and o(x,y) are sufficient to exactly express bias and variance of
integration schemes for general point processes.

Classification of point processes A point process P can be de-
fined to consist of finite or infinite number of points. Although ob-
served point distributions are always in a finite window, they can
be regarded as parts of an infinite point set that covers the whole
space. Translation invariance (stationary point process) and rigid
motion invariance (isotropic point process) of generated point pat-
terns are other important considerations. A distribution generated
by a stationary point process has the same characteristics regard-
less of the location of the observation window. Some examples are
isotropic blue noise distributions, uniform jitter sampling, and ran-
dom distribution. For a stationary point process, the intensity A be-

comes a constant value independent of x, and second order product
density becomes a function of the difference between point loca-
tions o(x —y), commonly written in terms of the intensity normal-
ized pair correlation function (PCF) g [Oztireli and Gross 2012] as
o(x—y) = A2g(x—y). Isotropy further simplifies it to o(||x—y]||).
We illustrate examples of distributions generated by different types
of point processes in Figure 2. Finally, ergodicity will be an im-
portant concept for some of our definitions. Intuitively, for an er-
godic point process P, averages in a finite window is equivalent
to those defined by generating multiple instances of P. In other
words, we can take a single distribution generated by the ergodic
process P, and estimate the statistics of P by observing that dis-
tribution through a finite window. A familiar example of a non-
ergodic point process can be generated by uniformly perturbing a
regular grid (i.e. uniform jittering). This is a stationary process [II-
lian et al. 2008] with a constant \. However, each realization of this
point process is a translated regular grid. Hence, it is not possible to
infer the translation invariance of this process by observing a single
distribution.

3.3 Campbell’s Theorem

A common operation needed to analyze point processes is com-
puting expected values of sums of sampled values from functions
E Y, f(x;), where the expectation is computed over different real-
izations of the point process P, and X1, - - - are the points in a given
realization. Note that the number of points in a given realization is
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also random, and hence is often omitted for the sums. This can also
be generalized to functions of more than one variable. Campbell’s
theorem is a fundamental theorem that relates these sums to inte-
grals of arbitrary positive functions f and the product densities of
P. In particular, we will work with sums of the form ) f(x;) and
> i f (x4, x;) to compute bias and variance of the integral estimate

I. These are given by the following expressions:
EY fx) = [ 10AGx)ax @
Rd

where f : R? —» R*, and

E D f(xix5) =J

oy R4 xR

f(x,¥)o(x,y)dxdy, 3)

where f : R? x R? — R* and under the common assumption [II-
lian et al. 2008] that no two points in a process can be at the same
location almost surely. These equations make it clear that the vari-
ance and bias of I, where the integrand is sampled at points in a
realization of a point process, can be directly linked to the statistics
of that point process. In the next section, we apply the theorem to
derive formulae for different types of point processes.

4. BIAS & VARIANCE OF SAMPLING PATTERNS

Campbell’s theorem provides us the essential tool to express bias
and variance of [ in terms of A(x) and o(x,y) of the sampling

pattern used to compute I. Such expressions for other estimators
in different fields have been derived starting from the Campbell’s
theorem under certain assumptions [Stoyan and Stoyan 1994; Illian
et al. 2008; Guan 2008], which differ from our setting with the
estimator in Equation 1. In this section, we will derive formulae for

general and stationary processes, when they are used to estimate I.

4.1 General Point Processes

General point processes can be used to model all point distributions
utilized for integration. In order to derive bias and variance, we
need EJ and EI2. We treat weights as sampled from a continuous
positive function such that w; = w(x;). For brevity, we sometimes
write f; = f(x;). The expected value can then be easily derived
as:

El =E) w(x)f(x:) = L wx) f(X)A(x)dx. (4

To derive EI2?, we can rewrite it as IEZ,L.#J. w; fiw; f; +
E > (w; f:)?. Using Equations 3 and 2 for the first and second
terms, respectively:

Ei? — f w(x) f(x)w(y) f(y)e(x,y)dxdy
VxV (5)
- fv w? (%) f2(x) \(x)dx.

Based on these equations, we can easily write the expressions for
bias bias(I) = I —E[I and variance var(I) = EI% — (EI)2. Note
that the integrals are over the support V' of f, but we could have
equivalently written them over R. For the rest of the paper, we
usually omit the integration domain when it is R<.

Remarks The following can be observed form the equations. (1)
Bias purely depends on A(x) and w(x), and can always be elim-
inated by setting w(x) = 1/A(x) if A(x) # 0in V. (2) The ef-
fects of weights w, density given by A, and correlations given by
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o on variance can be analyzed separately. This is in contrast with
spectral approaches [Durand 2011; Subr and Kautz 2013], where
these terms are assimilated into a single measure. (3) As long as
the statistics A and o can be analytically computed or estimated,
we can get bias and variance for arbitrary point distributions for
given integrands. Higher order correlations need not be considered.
(4) For the sums, we did not explicitly write the number of points
in V, since this is a random number in general that depends on .
However, for most stratified distributions, the number of points in
V' stays constant. For blue noise, regular, or hard-core [Illian et al.
2008; Oztireli and Gross 2012] distributions, it is effectively con-
stant when A is high.

Relation to spectral analysis Bias and variance in the equations
above depend on the spatial properties of the integrand f. Some
of these derivations can also be performed in the Fourier domain.
One way to derive frequency space formulae is to apply Camp-
bell’s theorem to the Fourier transform of the function s(x) =
Sw;d(x — x;) given by F (Y w;6(x — x;)) = Y wze—12m i
as follows: EY w;e 2™ % = (w(x)A(x)e 2" *dx =
(W % A)(w), where W and A are the Fourier transforms of w
and A respectively, and ¢ denotes convolution. Then, by using the
frequency space expression for bias [Subr and Kautz 2013], we can
write bias(I) = I — § (W % A)(w)F(—w)dw with F = Z(f). A
similar derivation can be used to compute E|.Z (s)|?, which leads
to upper bounds for variance [Subr and Kautz 2013]. Another pos-
sibility is to transform the integrals in Equations 4 and 5 into their
Fourier domain counterparts [Durand 2011]. However, it is chal-
lenging to analyze the error and adapt the sampling patterns to in-
tegrands in the frequency domain, especially for correlated patterns
and when integrands contain discontinuities, as is the case for the
functions we consider in Sections 5.2 and 6. In contrast, working
in the spatial domain generates more intuitive, simple, and exact
formulae that are easy to analyze, as we will demonstrate for strati-
fied sampling patterns in Section 5. In particular, we can study and
adapt local or global properties of sampling patterns in combination
with integrands with intuitive and transparent expressions, leading
to novel insights.

4.2 Stationary Point Processes

An important special case of point distributions is when the pattern
is translation invariant (i.e. stationary, Section 3.2). For this case,
the expressions for bias and variance simplify significantly, since
we can now write A(x) = A, and g(x,y) = Ag(x —y), where g
is the pair correlation function (Section 3.2). To get an unbiased es-
timator, we need to set w = 1/, as can be observed in Equation 4.
Plugging these into the expression for variance, we get

var(l) = EI? — (EI)?

= [ [ 10y yyaxay

+ | e £ nax - ( | if(x)Adx)Q ©
=5 | Peoax | [ 1605 g6x ~ v) ~ 1)axay.

The second term in Equation 6 can also be expressed in terms of the
autocorrelation ay(h) = [f(x) * f(—x)](h) of f. By making the
change of variables h = x — y, we can rewrite the second term in
Equation 6 as { { f(x) f(x — h)g(h)dxdh—{§ f(x) f(y)dxdy =

§9(h)[ f(x)f(x — h)dxdh — (§ f(x)dx)” = §ag(h)g(h)dh —
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(§ f(x)dx) ? resulting in the expression

var(D) = [ £+ [ aryg(nyan - ( | f(X)dX)2 .

@)

The first term in Equation 7 gives the 1/\ dependency of vari-
ance, which cannot be improved by changing the arrangement of
points. The second term illustrates that, if we have minimal infor-
mation about the integrand f, we need to make the pair correlation
function g as low as possible. This is especially important for h
with a small length since the autocorrelation ay will necessarily
vanish to zero as ||h|| increases due to the finite support V' of f.
For a random distribution, g = 1 and we get no reduction due to
the second term. For distributions with clustered points, g is high
for lower ||h|| and g > 1 for most h [Oztireli and Gross 2012]
and we get extra variance. To make g < 1, we thus need to in-
crease distances between points and generate hard-core distribu-
tions (such as blue noise) or low discrepancy patterns. Note that for
such distributions, one cannot arbitrarily increase A without chang-
ing g since the distances between points will necessarily decrease
for increasing number of points. The space of possible g’s is also
rather small [Oztireli and Gross 2012; Heck et al. 2013] and hence
it is not trivial to adapt g to a given f or class of f’s.

The form of variance in Equation 7 also makes the connection
to spectral analysis clear. Since the Fourier transform of g(h) is di-
rectly related to the average power spectrum of > d(x — x;) [Heck
et al. 2013], and .Z (ay) = |Z(f)|?, we can also express Equa-
tion 7 in the frequency domain, leading to the spectral formula in
a concurrent work [Pilleboue et al. 2015] for homogenous (= sta-
tionary) patterns (see Section 4.1 for a discussion of spectral and
spatial formulae for general distributions, and Appendix D of the
supplementary material for a derivation of the formula in Pilleboue
et al. [2015]). However, as we will show in the next sections, work-
ing with spatial point process statistics allows us to derive specific
and intuitive formulae, in contrast to the spectral bounds derived in
other works [Subr and Kautz 2013; Pilleboue et al. 2015].

5. BIAS & VARIANCE OF STRATIFIED SAMPLING

Jittered stratified sampling, where the integration domain is divided
into disjoint strata and a point is picked in each of them, is one
of the most commonly used sampling strategies in rendering espe-
cially for real-time applications, due to its effectiveness in improv-
ing error and the simple, efficient, and parallelizable nature of the
generating algorithms [Mehta et al. 2012; Mehta et al. 2013; Mehta
et al. 2014; Subr et al. 2014]. In this section, we study bias and
variance formulae for various jittered distributions.

The new framework allows us to derive formulae for the full
spectrum of jittered sampling patterns. We particularly focus on
correlated jittering, and for the first time derive variance formulae
for globally correlated patterns with inter-strata correlations. This
allows us to study patterns in relation to the integrands, and to pro-
pose to use alternative patterns that can significantly improve the
error for certain classes of integrands.

5.1 Variance Formulae

Random Jitter Sampling In random jitter sampling, the distribu-
tion of the point in each stratum in independent. More precisely,
given a set of n strata S; such that S; N .S; = J fori # j, the
probability density of finding a point in S; at a location x is given
by ki(x) (Figure 4, left). This covers standard random jittering,
where k;(x) = n for x € S; (of volume 1/n) is a uniform dis-
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Fig. 4. (Left) A general uncorrelated random jittering where the location
of the point in each stratum S; follows a distribution k; (x) that is indepen-
dent of those in the other strata. (Right) In mirrored jitter sampling, there are
two points in each stratum, one is the mirrored version of the other around
the center of the stratum.

tribution within S;, and also the recently proposed variants [Subr
and Kautz 2013; Subr et al. 2014] as long as the supports of k; stay
disjoint. Note that due to the independence of the point locations in
different strata, the bias and variance formulae for this case could
also be derived using standard statistical tools. We include this case
as a reference for comparisons and an example for the derivation
and utilization of point process statistics.

In order to compute bias and variance, we first need to derive
A and p for this sampling pattern. The probability of having a
point in an infinitesimal dx around x in S; is k;(x)dx. Since
the supports of k; are disjoint, for an arbitrary x, this probability
can be written as >, k;(x)dx. Hence, the intensity is given by
A(x) = X", ki(x). Note that the number of points of the under-
lying process in domain V' (unit square) is always equal to 7 in this
case. The expected number of points given by the integral of A(x)
over the whole domain V' is again equal to n, as expected. The
joint probability of having a point in dx around x € S; and in dy
around y € S; is zero if ¢ = j (since a stratum can only have a sin-
gle point), and k;(x)k; (y)dxdy if ¢ # j. This probability can be
compactly written as: [A(x)A(y) — X k;(x)k:(y)]dxdy. Hence,
o(x,y) = AX)A(Y) — X ki(x)ki(y).

Plugging these expressions into Equations 4 and 5, the following
formulae for bias and variance can be derived (note that this is not
a stationary process and hence we cannot use Equation 6):

bias(I) = I —EI

. f w0 f6) Y ki(x)ex ©
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where the integrations for the i*" term are over S;, or equivalently
V or R%. Since the locations of points in different strata are in-
dependent, each stratum contributes an independent amount to the
total variance. Exactly the same formulae can also be derived using
standard definitions of variance and bias due to this independence.

For unbiased estimators, w(x) = 1/A(x) = 1/>" | ki(x),
which is w(x) = 1/k;(x) for x € S;, since the supports of k;
are disjoint. By setting k;(x) = n and thus w(x) = 1/n in
Equation 9, we can write the variance of standard unbiased ran-
dom jittering, where the sampling point in each stratum is dis-
tributed uniformly in the stratum as in Equation 7'1. In this equa-
tion, s;(x) = f(x + 0;)IIs(x) is the part of the integrand in S,
where Ilg is 1 inside S and O otherwise, S is the hypercube of
length 1/n'/ centered around the origin, and o; is the center of
the stratum .S;.

Mirrored Jitter Sampling Some integrands can exhibit nega-
tively correlated parts, which can be exploited to reduce the error
in integration. Antithetic sampling [Hammersley and Morton 1956]
is a classical method to take advantage of such correlations. The
idea is generating a pair of samples, one of which has the reflected
position of the other, e.g. x and 1 —x, to capture the negatively cor-
related parts of the integrand. However, for many integrands, this
strategy can also increase the variance. As a remedy, recent works
consider combining jittering with antithetic sampling to capture lo-
cal correlations [Owen 2013; Subr et al. 2014]. We consider a local
variate of antithetic sampling that we call mirrored jitter sampling,
due to our interpretation of it with mirrored strata. In this pattern,
each stratum S; contains a random point x, and another point at
—X + 20; that is the mirrored version of the initial point around
the stratum center o; (Figure 4, right). The resulting variance for-
mula is derived in Appendix A.1 and shown in Table I, Equation
T2. Note that in the formula, m = n/2, since there are actually
only m strata and n = 2m points. Due to the first term in this
expression, variance will be reduced when s;(x), the local patch
of f in the stratum S;, and its mirrored version s; (x) = s;(—x)
around the origin of .S;, are negatively correlated. In Section 6, we
will compare the variance of mirrored jitter sampling to that of ran-
dom jittering, and derive theoretical conditions on when one will
perform better for binary integrands.

Uniform Jitter Sampling In contrast to random jitter sampling,
uniform jitter sampling uses the same random perturbation for all
points in different strata. This can be thought of as randomly per-
turbing a regular grid. Since we consider the unit hypercube as the
integration domain, this process is equivalent to assuming an ar-
bitrary perturbation of an infinite grid. Hence, uniform jittering is
generated by a stationary process [Illian et al. 2008]. The intensity
is simply given by A = n, and we derive the pair correlation func-
tion in Appendix A.2 as

1 « 6(h—h,
D ( )

g(h) B ﬁ arty, (hz]) oy (h) ” 07 (10)

i#]

where h;; = X; — x;, ar,, is the autocorrelation of the function
Iy, and ITy is 1 inside V and zero otherwise. With w = 1/n,
the resulting estimator is unbiased as is always the case for station-
ary processes (Section 4.2). Substituting the expression for the pair
correlation function in Equation 10 into Equation 7, the variance
can be derived as in Table I, Equation 7°3. It is also possible to
express the resulting formula in terms of s;, as shown in Table I,
Equation 74 (Appendix A.3). This form is particularly important
to analyze and compute variance of uniform jittering in terms of
strata-based local properties of the integrand as we will investigate
in Section 6. So far, such an analysis has only been possible for 1D
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Table I. Variance formulae for the stratified patterns considered.
Here, s;(x) = f(x + 0;)IIg(x), where IIg (IIy/) is 1 inside S
(V) and 0 otherwise, S is the hypercube of length 1/n'/¢
centered around the origin, o; is the center of the stratum S;,
s; (x) := s;(—x) is the local patch of f mirrored around o;,
h;; = x; — x;, ay is the autocorrelation function of f,

F = Z(f) is the Fourier transform of f, wy, is the set of points of
the infinite regular grid of spacing n/¢ centered at the origin in
the frequency domain, |0Vy] is the area of the unit hypersphere in
d dimensions. For mirrored jitter sampling, there are m strata and
n = 2m points.

Random jitter sampling
2
2 Z / x)dx — (n/si(x)dx> (T1)

Mirrored jitter sampling
2
ey Z n f x)dx +n j s2(x)dx — (n f si(x)dx> (T2)

Uniform jitter sampling

n2 Z an + J(f,m) (T3)
e Zn/ x)dx — rz2/si(x)dx/sj(x)dx (T4)
D IF ) (T5)
wi#0

Uniform + random jitter sampling

(a —x)](h;;
s e

Isotropic jitter sampling

a h|| — ||hy;|[)dh
WWZ“ (gl -

ary (hij)[[hi; |4~

m = [ £ (f f<x>dx) 2 (Ts)

binary integrands under certain assumptions [Ramamoorthi et al.
2012]. For brevity, we denote each term in this equation as c¢;; such

that var(f ) = ¢i;. Note that ¢;; are the terms appearing in
the variance formula fzor random jitter sampling (Equation 7'1). Fi-
nally, utilizing the relation .F (ay) = |.Z (f)|?, we can also derive
(Appendix A.3) a spectral formula for variance (Table I, Equation
T'5). Due to the translation invariance of the process, the variance
does not depend on the phase of the Fourier transform of the in-
tegrand (please see the supplementary material for an analysis of
variance in the spectral domain).

We present an example to illustrate good and bad cases for uni-
form jittering in Figure 5. In the example, two samples are used for
integrating each of the two integrands, integrand 1 and integrand
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Fig. 5. We can compute exact variances for the integrands 1 and 2. For
each case, the integrand itself is in the top-left figures. Top-middle and top-
right figures illustrate two realizations of uniform jittering. Exact variance
computations (up to a constant factor of 1/22) are shown on the bottom
rows.

2. For each integrand, we can directly compute variance by cal-
culating the terms ¢;; and summing them, giving a zero variance
for the first integrand, and 1/22 for the second. This result can be
easily confirmed by considering some realizations of uniform jit-
tering, as is done in the figure. For integrand 1, it is always true
that I = 0.5 =1 , while for integrand 2, it can sometimes be 0 and
sometimes 1. In summary, the negatively correlated s; and sy for
integrand 1 makes the variance vanish, while the opposite is true
for integrand 2.

Uniform followed by Random Jittering We can think of com-
bining properties of uniform and random jittering by first apply-
ing a uniform jittering to generate a jittered grid, and then random
jittering to each point. When k;’s for random jittering are shifted
versions of a function k (as in standard random or Gaussian jitter-
ing [Subr and Kautz 2013]), we can derive (Appendix A.4) that this
only modifies the first term in Equation 7'3 such that the autocor-
relation ay(h) = [f(x) * f(—x)](h) turns into [f(x) * (aj
£)(=x)](h), where ay, is the autocorrelation function of k. Hence,
the correlations will be between f and a smoothed version of it
(Table I, Equation 7'6). Although this reduces correlations to some
degree, we did not find this reduction effective in practice.

Isotropic Jitter Sampling The main disadvantage of uniform
jitter sampling results from positively correlated strata, leading to
high ¢;;. Even when it performs better than random jitter sampling,
these correlations can increase the variance. A case where uniform
jittering performs better than random jittering in spite of the corre-
lations present among strata is shown in Figure 6, top-left. A look at
the autocorrelation function (Figure 6, top-right) reveals that large
terms along the vertical axis will contribute to variance in Equa-
tion 7'3. Pictorially, variance for uniform jittering consists of sums
of a at given locations (Figure 6, bottom-left), some of which take
the large values along the vertical axis. Instead, the idea of isotropic
jitter sampling is having a variance equation that involves circular
averages of the autocorrelation function (Figure 6, bottom-middle).

Integrand

Autocorrelation

\Sk\\
—e— Random J
—#— Uniform J Y\
—&— |sotropic J

107

Variance

o

10°

Number of points

Uniform Jitter

Isotropic Jitter

Fig. 6. Although uniform jittering performs better than random jittering
in this example, the anisotropy of the autocorrelation function limits the
reduction in variance due to the sum of the strong terms along the vertical
axis. Instead, the variance due to isotropic jitter sampling consists of terms
that are radial averages of the autocorrelation function, which are lower than
the values on the vertical axis.

Such a sampling pattern can be obtained by introducing a global
random translation (as in uniform jitter sampling), and independent
rotation. Each instance of this process is thus a randomly translated
and rotated regular grid. Rotated grids have so far only been con-
sidered to supersample pixels for antialiasing [Beets and Barron
2000; Hasselgren et al. 2005]. The generating point process for a
randomly rotated and translated regular grid is isotropic, i.e. trans-
lation and rotation invariant, and hence we get an unbiased esti-
mator for constant weights w = 1/A. The variance can be derived
(Appendix A.5) as shown in Table I, Equation T'7. This expression
shows that the only change to the variance of uniform jittering is
that we now take radial averages of ay at radii ||h;;||, instead of
values of ay at h;; = x; — x;.

By a random rotation, we are avoiding problematic cases for
uniform jittering, i.e. when there are strong positive correlations
among the strata, while still having the maximum possible dis-
tance between the sampling points, in contrast with random jitter
sampling, which has been considered as the alternative for those
cases [Ramamoorthi et al. 2012]. Note, however, that random ro-
tations can also increase the variance of uniform jittering. As the
pattern of uniform jittering is rotated, we get a minimum and a
maximum variance depending on the rotation. Since the term in
Equation 7°7 is an average of variances of uniform jittering for all
rotations, it lies between this minimum and maximum.

R-Uniform Jitter Sampling We call the rotated uniform jitter-
ing pattern with the minimum variance as r(otated)-uniform jit-
tering. Of course, knowing this exact rotation requires informa-
tion about the integrand. Hence, it is not an unadaptive method
anymore. Note that here not the density, but the correlations are
adapted to the integrand. In the scope of this paper, we estimate
this rotation by trying different rotations. Hence, the errors for r-
uniform jittering are reported to inform the reader on the lowest
possible error that can be obtained by rotating the uniform jittering
pattern. As an example, for the scene in Figure 3, for the same error
level, on average 400%, 75%, and 101% less samples than uniform
jittering are required for the square, circle, and Gaussian lights, re-
spectively. If less information is available, it is also possible to limit
the rotations to a certain range. Since the resulting process is still
stationary, we get an unbiased estimator with less variance. We will
present an analysis of how rotation can affect the variance for vis-
ibility sampling in Section 6. Please see Appendix A.6 for an al-
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Fig. 7. An instance of the 50 random integrands used for each case is shown in the insets, with nine strata laid over the leftmost one for reference. Except
the first integrand with strong negative correlations among the edges, isotropic jitter sampling performs the best, followed by Gaussian jittering (with o =

0.25/4/n) and mirrored jittering sampling.

gorithm to generate rotated and translated grids with straum-wise
operations.

Summary and Discussion Our framework allows us to derive,
for the first time, variance formulae for jittered sampling with
global inter-strata correlations (Equations 7°3-7'7). Thanks to oper-
ating in the spatial domain, the formulae are simple and amenable
to analysis, inference, and comparisons, leading to novel insights
and design choices, as we will illustrate in the next sections.

The variance formulae shows that the choice of the sampling
pattern depends on the correlations present in the integrand. Local
intra-strata correlations can be exploited by utilizing mirrored jitter
sampling. It can observed in Equation 72 that if a local patch in a
stratum and its mirrored version are negatively correlated, variance
will be reduced. Greater reductions can be obtained when there are
global correlations. As revealed by Equation 7'4, negatively corre-
lated strata leads to considerable reduction in variance when using
uniform jitter sampling. For functions with positively correlated
strata (leading to high ay(h;;) terms in Equation T3 as in Fig-
ure 6), it is beneficial to use isotropic jitter sampling instead. The
random rotations in this sampling pattern can be constrained to fur-
ther reduce the variance (r-uniform jittering), when the anisotropy
in the integrand can be estimated. Hence, we can choose the pattern
to use based on our prior knowledge of the possible correlations
present in the integrands considered.

5.2 Empirical Analysis

The analysis so far provides the theoretical conditions for corre-
lated jittering patterns to produce low-variance estimates for given
classes of integrands. In this section, we investigate these condi-
tions in practice via computational experiments.

As a benchmark, we chose to use the setting and integrands used
in the previous work by Subr and Kautz [2013] since they present
challenging cases with discontinuities for integral estimation, and
resemble the integrands encountered in practice. We have four dif-
ferent types of integrands with random points determining the re-
gions [Subr and Kautz 2013]. One instance of each is shown in
Figure 7 insets. We use 50 random instances of each integrand type
and 100 different point distributions for each of the tested sampling
algorithms to compute the variance of the estimator. To allow av-
eraging the variances for different instances of an integrand type,
we normalized each estimated variance by the squared mean of the
integral estimates [Subr and Kautz 2013].

As shown in Figure 7, left, the first integrand contains strongly
negatively correlated strata pairs, such as the pair of the middle
stratum and bottom-left stratum in the figure. Hence, uniform jitter
sampling works best for this case due to the negative c;;, followed
by isotropic jittering. However, for all other integrands, uniform

jittering performs quite poorly, due to the linear discontinuities be-
tween the regions, while isotropic jittering always gives the lowest
variance. Note that this variance is even lower than those of the bi-
ased methods tested. For all four integrand types, the variance of
isotropic jitter sampling is followed by those of Gaussian jittering
(with o = 0.25/4/n for n points) [Subr and Kautz 2013] and mir-
rored jitter sampling. Note that for this o, Gaussian jittering has
apparent bias (see Figure 3), while mirrored jittering is unbiased.
Mirrored jittering performs well due to the linear boundaries of the
regions, which result in negative correlation between a stratum and
its mirrored version. This can be observed, for example, for the
bottom-left stratum shown for the first integrand.

6. APPLICATION TO VISIBILITY SAMPLING

The analysis in the previous sections shows how the error in inte-
gration depends on the sampling patterns as well as the integrands.
We particularly focused on the difficult case of integrands with dis-
continuities as they arise in practice for rendering due to visibility,
and jittering patterns as they are commonly used for distributed ray
tracing. Indeed, the main inspiration of this work is previous results
on visibility sampling for soft shadows [Ramamoorthi et al. 2012]
and integration of functions with discontinuities with jittered pat-
terns in general [Subr and Kautz 2013]. In this section, we present
an application of our analysis to visibility sampling for computing
soft shadows with ray tracing, by considering the joint pixel-light
space. We show that careful selection of sampling strategies can re-
sult in soft shadows with significantly lower variances than previ-
ously possible [Ramamoorthi et al. 2012]. We study sampling pat-
terns in relation with light types and scene geometry, to understand
when, why, and how much certain patterns can perform better. Here
we focus on some of the important conclusions. For theoretical re-
sults with detailed comparisons, and derivation details please refer
to the supplementary material.

6.1 Soft Shadows from Planar Area Lights

We assume that there are planar area light sources in the scene to be
rendered. These emit light from each point y on the light plane. Un-
der common assumptions [Ramamoorthi et al. 2012; Mehta et al.
2012], the image intensity at a point x on the image plane is com-
puted by the multiplication of the function ¢(x) that models light
transport including BRDFs, and the following integral:

I(x) = fvv(x,y)l(y)dy, (11

where I is the intensity (radiance), V' is the unit square as before, v
is the binary visibility function, and [ is the lighting from the area
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Fig. 8. RMSE plots for soft shadows with different combinations of basic
occluders and light types.

light source. The binary function v(x,y) gives which points on
the light plane are occluded and hence is determined by the scene
geometry. Common light types considered for rendering are square
lights: I(y) = 1in V, circle lights: I[(y) = 1 for y in a disk of a
certain radius, and Gaussian lights: [ is a Gaussian function.

6.2 Error Analysis and Comparisons

We need to consider the lighting [ along with the visibility func-
tion v to analyze the error in Equation 11 for different sampling
strategies. For each pixel location x, v(x,y) changes, and hence
there is a different integrand on the light plane. Thus, we need to
take into account that the overall error in soft shadows in a scene
is the sum of errors at all pixels. We assume square or circular
light sources such that the integrand v(x,y){(y) becomes a binary
function (Gaussian lights result in error behaving very similarly to
that of circular lights, as we illustrate in the supplementary mate-
rial). By defining the estimator at pixel x as I(x), we thus want
to compare sampling patterns in terms of the following total error:
e=1In var(I(x))dx (we consider unbiased jittering patterns and
hence mean squared error is equal to variance) over some area R of
the pixel space. We compare different sampling strategies analyt-
ically and empirically to understand under what conditions on the
light types and scene geometries they will perform well.
Mirrored vs. Random Jitter Sampling Under common [Egan
etal. 2011; Ramamoorthi et al. 2012; Mehta et al. 2012] and further
mild assumptions as described in the supplementary material, and
a square light source (I(y) = 1 Vy € V), the ratio of total errors
of random jitter eV P and mirrored jitter e % sampling can be
derived as eFND JeMIE = 22-P where p is the convergence rate
of random jittering. It has been observed that p € [1, 2] [Mitchell
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Fig. 9. RMS errors are plotted for two different scenes with a square light
source. The correlations among the strata make uniform and isotropic sam-
pling disadvantaged. Among the non-adaptive sampling methods (i.e. ex-
cluding R-Uniform J), mirrored jitter sampling results in the least error. Its
advantage diminishes as the shadows get more complex (bottom).

1996; Ramamoorthi et al. 2012], and stay around 1.5 for integrands
with discontinuities. Hence, mirrored jittering will always perform
better than random jittering under the mentioned assumptions. For
the typical convergence rate of p = 1.5, random jitter sampling
will have /2 times as much variance as mirrored jitter sampling.
For the same error level, random jittering needs to use 2%/7~! times
as much samples as mirrored jittering. Random jittering thus re-
quires approximately 25% more samples than mirrored jittering for
p = 1.5, with the maximum 100% for p = 1. We illustrate several
cases where these assumptions hold in Figure 8, square light. As
expected, the ratio of the variances approaches the estimated /2
for these cases. In practice, even if the assumptions are not exactly
satisfied, the ratio approximately holds. We illustrate such cases in
Figures 3 and 9. For the simpler occluding geometry in Figure 9,
top, random jittering requires 22% more samples than mirrored jit-
tering for the same error level, while this drops to 11% for the com-
plex shadow in Figure 9, bottom. In summary, for square lights and
simpler scene geometries, mirrored jitter sampling performs better
than random jitter sampling, requiring around 25% less samples.
However, for other light types, or more complex occluding geome-
tries, its advantage disappears.

Uniform Jitter Sampling As elaborated in Section 5.1, and can
be observed in Equation 7'4, uniform jitter sampling exploits neg-
atively correlated strata to reduce variance. This is captured by the
terms c; ;. These terms will thus favor uncorrelated random jittering
for positively correlated strata pairs. In particular, if we assume a
square light source, and that for a given pixel location x the visi-
bility function has a linear boundary in the whole domain V' of the
light plane, we can analytically prove that random jittering will per-
form better (supplementary material). In general, the slopes of the
boundary curves in different strata can be different. Local boundary
lines with similar slopes increase c¢;; and hence the error of uniform
jittering, while the opposite is true for disparate slopes. This is il-
lustrated in Figure 8 for simple flat occluder shapes. For both light
types, uniform jittering performs worst for the square, and best for
the disk occluder. Since the circle light breaks long boundary lines,
uniform jittering performs better for the circle light, as previously
observed [Ramamoorthi et al. 2012].
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Fig. 10. R-uniform jittering is obtained by rotating the grid pattern of uni-
form jittering by different angles. R-uniform jittering can give lower errors
than possible with other non-adaptive methods, but requires estimating the
rotation angle.

Note, however, that the error of uniform jittering is still signif-
icantly higher than those of other sampling patterns for the cir-
cle light - square occluder pair, deviating from previous observa-
tions [Ramamoorthi et al. 2012]. More interestingly, by simply ro-
tating the regular grid pattern that is uniformly jittered by a con-
stant angle, uniform jittering can perform significantly better than
the other non-adaptive sampling patterns. This is due to the strong
correlations introduced by the changing slopes in the strata. We
illustrate this in Figure 10, where different rotation angles are ap-
plied, and also in Figures 3 and 9 with the optimal angle under the
name r-uniform jittering. In summary, even for square light sources,
uniform jittering can be by far the best alternative if a global angle
of rotation can be estimated. (Please see the supplementary images
for more examples with uniform and r-uniform jitter sampling, in
Figures 8 and 10 uniform jittering refers to the one with rotation
for maximum variance, in other figures the rotation is random.)

Isotropic Jitter Sampling Isotropic jitter sampling tries to re-
duce the variance of uniform jitter sampling by introducing a ran-
dom rotation. The error difference will be largest when the radial
average of ay(h) at h;; deviates from ay(h;;) most, which hap-
pens when there are directional structures. These are especially
prominent for square lights and simple geometries (Figure 8, left
and Figure 9, top) but also for circle lights and long lines of low
curvature (Figure 8, circle light - square occluder). For these cases,
uniform jitter sampling has higher error, while isotropic sampling
performs significantly better. For more symmetric occluders and
symmetric lights, the difference in error diminishes. In the special
case of a flat receiver parallel to the light plane, we can analytically
compute the total error (supplementary material). In particular, for
a disk occluder and circle light, we get the same error for both uni-
form and isotropic jittering. Such a case is illustrated in Figure 8,
right, third row (circle light - disk occluder pair).

By constraining the random rotation of the uniformly jittered pat-
tern (r-uniform jittering), errors lower than isotropic jittering can be
obtained (Figure 10). Unlike all other jittering methods considered,
estimating ranges of right angles, however, requires knowledge on
the light types and scene geometry. Isotropic jittering is thus an
unadaptive alternative to capture such angles by random sampling.
In contrast to random jitter sampling, distributions generated by
isotropic jittering have well distributed points, which reduces vari-
ance. Hence, it is a better unadaptive alternative.

7. CONCLUSIONS AND FUTURE DIRECTIONS

We presented a new approach to study error in integration with
stochastic point patterns. The theoretical framework gives exact
bias and variance expressions for general sampling patterns, as long
as they can be interpreted as stochastic. The expressions depend on
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Locally optimized rotation

RMSE: 0.0426

RMSE: 0.0672 RMSE: 0.0692

Fig. 11. For a scene with thin structures and complex shadows (top-left),
the minimum and maximum RMS errors (bottom-left and -right) obtained
by rotating the uniform jittering pattern do not differ much. In contrast,
adapting the rotation to each pixel significantly reduces the error (top-right).

spatial or spectral properties of the integrands, and first and second
order correlations of the sampling patterns. We illustrated the utility
of the theory by applying it to the analysis of existing sampling pat-
terns, and in particular to the commonly used jittered patterns. The
analysis allowed us to propose to use and study alternative corre-
lated patterns optimized for visibility sampling. We believe similar
analyses based on the proposed framework will be useful in re-
ducing error and improving properties of sampling algorithms for
rendering and further applications. We mention a few of these ap-
plications and future directions below.

Adaptive density For visibility sampling, the analyzed jittered
patterns can be immediately used with adaptive methods that de-
termine number of visibility samples per pixel and sample the light
plane with stratified distributions [Mehta et al. 2012]. In general,
our focus on optimizing correlations among points is orthogonal
to the adaptive sampling methods which optimize density. Cor-
relations and density are captured by different terms in our bias
and variance expressions, which makes performing similar analy-
ses for adaptive sampling patterns possible. Adaptive sampling al-
gorithms used for integration in graphics estimate measures such
as the variation of the integrand, and distribute more samples in
those regions, often iteratively [Whitted 1980; Hachisuka et al.
2008; Overbeck et al. 2009; Belcour et al. 2013]. If the underlying
distribution can be assumed as stationary, the variance of the re-
sulting point patterns can be accurately described by second-order
intensity-reweighted stationary point processes [Illian et al. 2008].
For these processes, the second order product density is given by
o(x,y) = A(x)A(y)g(x — y), clearly separating the intensity and
PCF terms. We elaborate on how bias and variance expressions for
adaptive distributions with given statistics can be derived and ana-
lyzed in the supplementary material.

Adaptive correlations Although density adaptation is exten-
sively studied, adjusting correlations has been limited to distribut-
ing sampling points as uniformly as possible while avoiding alias-
ing artifacts, with the exception of antithetic sampling and a few re-
cent works investigating adapting correlations to integrands [Subr
and Kautz 2013; Subr et al. 2014]. Adapting correlations has been
hindered by the difficulty of computing error via classical meth-
ods when the sample points are not independent. The proposed
theoretical framework will be instrumental in overcoming this dif-
ficulty and developing patterns with correlations adapted to inte-
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grands with certain properties. As an example, we illustrated how
simply rotating a uniformly jittered grid according to an integrand
can result in significant reductions in variance. This rotation can be
estimated by shooting initial rays, similar to adaptive density esti-
mation (e.g. [Mehta et al. 2012]).

Blue noise and general sampling Our bias and variance equa-
tions for general point processes apply to blue noise distributions,
as well as to more general distributions such as combinations of
deterministic patterns with randomization [Chiu et al. 1994; Kollig
and Keller 2002; Kensler 2013]. Various methods can be used to
estimate the point process statistics [Illian et al. 2008; Oztireli and
Gross 2012; Heck et al. 2013], which can then be used to derive
the expressions for bias and variance. Similar to our analysis for
visibility sampling and stratified patterns, point patterns tailored to
other applications can be developed.

Local scene analysis In this paper, we consider a globally opti-
mal sampling pattern for the whole scene. However, local or even
pixel-wise statistics can be used to determine different sampling
patterns for different parts of the scene, as is currently done for im-
portance sampling in rendering. An example of such an adaptation
for soft shadows is shown in Figure 11. For the complex thin shad-
ows in this figure, a global rotation of uniform jittering does not
affect the error much, while using a pixel-wise optimum rotation
on the light plane significantly reduces it. Our stratum-wise formu-
las allow such a local analysis in the joint light-pixel space.

Antialiasing and reconstruction of images In addition to inte-
gration, the proposed framework can be utilized to study antialias-
ing properties of sampling patterns, and the error introduced in re-
constructions. Although the general desired characteristics of sam-
pling patterns for antialiasing are known, it is an open problem to
develop patterns with better correlations, and to combine the pat-
terns with adaptive densities [Heck et al. 2013]. Traditionally, alias-
ing is studied in the spectral domain, but Heck et al. [2013] recently
showed the utility of point process statistics for this problem. We
can further understand and develop new point patterns with the pro-
posed framework.

Analysis in general domains Although we presented the the-
ory for Euclidean domains, it extends to non-Euclidean domains
and general measure spaces as well [Illian et al. 2008]. Analysis of
point patterns in general spaces, especially spherical, hemispher-
ical, or warped domains is important for rendering applications.
Such an analysis is challenging when starting from the spectral
domain [Pilleboue et al. 2015]. By utilizing analytic or estimated
measures or distances, the proposed theory can be lifted to such
cases.

APPENDIX

A. PCF BIAS, VARIANCE, AND GENERATION OF
JITTERED POINT PATTERNS

A.1 Bias and Variance of Mirrored Jitter Sampling

To derive bias and variance of mirrored jitter sampling, we con-
sider the conceptual setting of putting the original and mirrored
versions of the integrand f side-by-side, as illustrated in Fig-
ure 12. We assume there are n points in total, which implies that

there are m := n/2 points for each of the original and the mir-
rored version of f. We define the functions f;(x) := s;(x —
0;) + s; (x — o), where o; is the center of the stratum S; ,

s;(x) = f(x + 0;)IIg(x), and s; (x) = s;(—x). Each f; is thus
the sum of the part of the function f in .S; and its mirrored ver-

S4 Sy

Fig. 12. In mirrored jitter sampling, conceptually, the integral I; of the
sum of the integrand in stratum S; and its mirrored version in .S, is esti-
mated by uniform jitter sampling. For different ¢, these uniformly jittered
patterns are independent.

sion in S; , as depicted in Figure 12. The integral of this function

is givenby I; = § fi(x dx = {[si(x—0;) + 57 (x — 0] )]dx =
ZSSZx—oz)dx—QSS x)dx.
Hence, the integral we seek is
m 1 m
I= dx = - 12
ff(x)x ;Li‘f 2; (12)

and an unbiased estimator of this integral is: I = Y7, I,/2 for
unbiased fi. We will see that this estimator is indeed the estimator
used in mirrored jitter sampling. Below, we will first derive the ex-
pected value and variance of f,-, and then use them to compute the
bias and variance of the estimator 1. R

In mirrored jitter sampling, we assume that the estimator I; for
each I; is computed by uniform jitter sampling (we will see why
this assumption leads to mirrored jitter sampling below). Note that
the intensity of this pattern is A\ = m = n/2. The expected value

of I;, as given by Equation 4, is thus EJ; = A§w(x) fi(x)dx, and
an unbiased estimator is obtained by setting w = 1/)\ =2/n:

El; = in(x)dx = zLi f(x)dx = I. (13)

Hence, we get an unbiased estimator for I:

i ff Ydx = 0. (14)

To compute the variance of I;, we can use Equation 74 that gives
the variance of uniform jittering. Since there are only two strata,
S; and S;” where the function f;(x) is non-zero, the variance can
simply be written as:

var(l) = 2 (% f si(x)s7 (x)dx — Jsi(x)dxfsi(x)dx)
e (; i ([ %) )
—4 <Tllfsi(x)si_(x)dx+ 7” X)dx — (Js ) ) ,

(15)

1 m
bias(I) =1 —-E—
ias(I) 2;

l\‘:\»—t

where we used the fact that §s;(x)dx = Ss x)dx. Since the

point processes to compute the estimators I; are independent, we
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can write the variance of I as var(I) =

%Zm j@) _
) W

ar(
13 war(I;). Plugging in the formula for var(f we obtain:

var( — Z fsl

+nf 2(x )dx—( Jsi(x)dx)2.

Finally, we show that the estimator I corresponds to the es-
timator we propose in Section 5.1 (depicted in Figure 4, right),
which is obtained by selecting a random point and its mirrored
version around the origin of the stratum in each stratum. Re-
call that the estimator we use so far in this section has the form
I = 221 I;/2. Each estimator I; is obtained by uniform jitter
sampling for f; and hence an instance of this estimator is computed
by I; = w(x;) fi(x:) + w(x; ) fi(x; ) for a sample point x; in S;
and another one x; in S, as 1llu9trated in Figure 12. Substituting
the weights w = 1/X = 2/n, and noting that x; = x; + 0, — 0;
and Il g is an even function, we get the following expression for I:

(16)

i

S|
ANgE

s
Il
—

Ji(xi) + fi(x;)

Il
S|
ANgE

»

s
I
_

f(x:)s(x; —0;) + f(0; + 0; —x; )s(o; —x; )

Il
S|
=

s
Il
—

[f(x:) + f(20; — x;)] g (x; — 0;)

I
S|
1=

s
Il
—

f(x:) + f(20; — x1),

s
Il
=

I
S|
1=

a7
which is equivalent to taking a point x; and its mirrored point
—x; + 20; (around 0;), with weights 1/n in each stratum S;.

A.2 PCF of Uniform Jitter Sampling Process

Since we assume a hypercube as the domain V, there will always
be the same number of points in this cube for different realizations
of uniform jitter sampling. This implies that A = n, and we will
always have the same difference vectors h;; := x; —x; = 0, —0;,
where x; is a point in a realization of the point process and o; is the
origin of the stratum .S;. Hence the expected value of the following
sum will be simply given by its own value:

(18)
where § is the Dirac delta. ' On the other hand, this expected value
can also be computed by using Campbell’s theorem as follows:

=Y 2 dlx-y)-h)

J. —(z—1t))g(z — t)dzdt

ITechnically, we need a series of functions that converge to Dirac delta
here.
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1 |2 3
h
4 [5 6
1 2| 3
i 7 |8 |9
4/ 5| 6
7] 8| 9

Fig. 13. (Left) The shaded area shows the autocorrelation arr,, (h) of ITy
(unit square) at h. In this 2 dimensional case, it is equal to (1 — |hz|)(1 —
|hyl) = 4/9. (Middle) There are (1 — |hz|)(1 — |hy|)n = 4 h vectors
between origins of different strata in Equation 20. (Right) Each different h
results in correlations between different s; and s;.

=n’g(x—y)an, (x—y), (19

where arr, (x—y) =[], (1 — |(x — y):|) is the autocorrelation
function of IIy at x — y (Figure 13, left) with (x — y); denoting
the 3" component of the d dimensional vector x — y. Combining
Equations 18 and 19 and substituting h = x — y, the pair corre-
lation function g of uniform jitter sampling process can be written

as:
-

i#]

arr, (h) # 0. (20)

anv

We can also derive a more refined version of this equation by can-
celling the effect of autocorrelation. Consider a unique h among the
h;;’s. The number of times that particular h appears in the sum in
Equation 20 is given by n]_[f.l:1 (1 —|(h);]) = namn, (h), where
(h); denotes the i** component of h, as illustrated in Figure 13,
left and middle. Hence, we can write Equation 20 as

1 5(h —hy)
g(h) - n2 ) Z nar, (hk) am, (hk)
unique hy,
1 2D
== .Z §(h—hy) am, (h) #0.
unique hy,

A.3 Variance of Uniform Jitter Sampling

Strata-based variance formula In order to derive Equation 7'4,
we need to express the integrals of f and the autocorrelation func-
tion ay in terms of the integrals of s;. The former is trivial, while
the latter can be realized by utilizing the expression for the pair
correlation function of uniform jittering process in Equation 21.
Recall that the variance of a stationary point process is given by
(Equation 7):

var() = 5 [ P+ [agmgtan — ( [ 160x) B

(22)
Substituting the PCF (Equation 21) into the second term in this
expression, we obtain L Zunique n, @ (hx). Hence, itis sufficient
to express a(hy) in terms of the integrals of s;(x).
The function f can be written as: f(x) = Y, s;(x — 0;). The
autocorrelation a; can then be expanded as:

jf si(x —h — 0;)dx

= ij(x +h + 0;)s;(x)dx

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



A. Cengiz Oztireli

= ZJZsj(x +h+o0; —0;)s;(x)dx
- sti(X)Sj (x +h — hj;)dx. (23)

In this sum, for a given h € {unique hy}, only the terms with
h;; = h will be non-zero due to the limited supports of s;.
Hence, each h € {unique h;} results in several unique terms
§ si(x)s;(x)dx, as also illustrated in Figure 13, right. Summing
over all hy, gives:

1
02
unique hy
1
=OIDY
ij unique hy,

_ % E_Jsi(x)sj(x)dx.

i#]

ay(hg)

Finally, adding this term to the first and last terms in Equation 22
gives us Equation 7'4. Note that the first term can be written as
L 37, §s2(x)dx due to the disjoint supports of s;.

Spectral variance formula To express the variance in the spec-
tral domain, we need to write the second term in Equation 22
involving the autocorrelation function ay in terms of the Fourier
transform F of the integrand f. Starting from the form of this term
in Equation 24, and noting that the set {unique h} in Equation 24
can be extended to the set of points in an infinite regular grid cen-
tered at the origin 0 except the origin itself (since a is zero for all
h;, # 0 not in the set {unique hy} due to the finite support V" of ),
Wwe can write

% >, as(hy)

hy#0

S asne) — as(0)
hy

Jaf(h)%Z(ﬂh — hy)dh — %af(o)

-

as(h) - 3 6(h h@] (0) - ~ay(0)
_ J|F(w)|225(w — o) dw — %af(o)

= SR~ + f 2 (x)dx. (25)

Adding this term to the first and last terms in Equation 22 gives

var(f) = Y |F (i) - ( | f(x)dx)
= R — [FO)P.

(26)

A.4 Variance of Uniform + Random Jitter Sampling

Following uniform jittering by random jittering can be considered
as performing a clustering process on the initial stationary point

process underlying uniform jittering. For each realization of this
process, we first generate a jittered grid, and then add a further
independent jittering to each point x; of this jittered grid following
adistribution k; = k(x—x;), where the supports of k; are assumed
to be disjoint (as in Section 5.1, random jitter sampling).

For such a point process, we can utilize a result that gives the
PCF of a clustering process where the cluster centers are cho-
sen at points from an underlying stationary process [Felsenstein
1975], [llian et al. 2008] (p. 370). This result assumes that around
each point of the underlying stationary process, called the parent
process, with A, o,,, and g,, a cluster is formed without including
the parent point. Defining A., o., and g. for the cluster process, and
denoting the mean number of points in a cluster by ¢, the intensity
and second order product density of the resulting process can be
given by A = A\, ¢, and:

o(h) =X, J oc(h + x, x)dx+

27
| [enth = x+ »A A3y,
The second term in this expression can also be written as:
| [entn=x+ v (r)axy
= Ae(x)Ae(z — h + x)dxd
J ot [rbora—nssixa

= JQP(Z)LD\C (h —2z)dz
= (‘QP * akc)(h%

where we made the substitution z = h — x + y. For our case, each
cluster has a single point distributed according to k, hence g. = 0,
Ae(x) = k(x), and A = X,,. Thus, g(h) can be written as:

g(h) = o(h)/\* = (g, * ax)(h). 29

Substituting the PCF of uniform jittering process in Equation 21
into this expression, we can get the following equation for the PCF
of the new process:

gy =1 ¥

unique h;

ax(h—h;) am,(h)#0.  (30)

Finally, we substitute this expression into the second term in Equa-
tion 7:

[ asmygman

= % > | as(h)ai(h —h;)dh
unique h;

- % >, (ap(0) % ar(—h))(hy) (€D
unique h;

Comparing this expression with Equation 24, first row, we can
see that ay(h) in the variance expressions for uniform jitter sam-
pling is replaced by (as(h’) % ar(—h’))(h) = [f(h’) * (ar *
£ (=h)](h).

A.5 Variance of Isotropic Jitter Sampling

For the derivation of the pair correlation function (PCF) of this
point process, we will utilize an unbiased estimator for PCFs of
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isotropic point processes [Illian et al. 2008; Oztireli and Gross
2012]. This estimator can be written as:

1 k(|| ||h1]H)
g(Ihll) = 53 \&’V\Ilhlldlz (32)

a )
] ny (hij

where |0V, is the area of the unit hypersphere in d dimensions,
and k is a kernel function such as a Gaussian for smoothing the es-
timate. Assuming that we are using this estimator with many points
in the point sets generated by isotropic jitter sampling, we can ap-
proximate that we always get the same number of points and thus
the same set of distances. Under this assumption, and since the es-
timator is unbiased, we can get a zero variance and hence zero error
estimator by setting k to be the Dirac delta. Inserting Equation 32
with k£ = § into the second term in Equation 7, we obtain the fol-
lowing:

ay( 5\h|\ |[hi; )
Jaf(h)g(h)dh /\2|(3Vd|Zj am,, (hij) Hh||d{ h

V

Z §as(h)d(||h]] — ||hyl|)dh
aHv i5)|0Val[ by |41

(33)
Using the same equations for ary,, (h;;) and number of unique h
vectors as in Section A.3, we can simplify this into:

1 1
3 Z Wfaf(h)é(\lh\l—IIhkll)dh- (34)

unique hy,

i#]

This is the sum of radial averages of as at each unique hy,. In prac-
tice, the number of points and hence distances within the support of
V' can change for different rotations, introducing a slight deviation
from this theoretical value.

A.6 Point in a Stratum for Translated & Rotated Grids

Each instance of isotropic or r-uniform jitter sampling is a trans-
lated and rotated grid. One way to generate such a distribution is
taking a grid larger than the unit hypercube we are considering, and
applying a random global translation and rotation to all points. Al-
though this process is simple and generalizable to high dimensions,
it is more convenient and for some cases more efficient to generate
the pattern with stratum-wise operations, i.e. generating the point(s)
in a stratum given the coordinates of that stratum. In this section,
we derive the necessary algorithm for the two dimensional case.
Although the algorithm introduces extra steps after generating the
random numbers for jittering, this additional cost becomes negligi-
ble even for moderately complex scenes due to the cost of tracing
rays.

We would like to find the point(s) of a rotated and translated grid
that fall into a given stratum. Let us denote the length of an edge
of the stratum by A (we assume square strata), the coordinates of
the lower-end corner of the stratum by Am = A[m, m,]T (so
that m,, and m,, are integers), and those of the point(s) that fall into
this stratum by x = [z y]7. Then, for a random translation At and
rotation angle 0 < 6 < m/2, and a vector (with integer 4 and j)
c=[i+0.55+05]

x = RyAc + At, (35)

with Ry representing rotation of angle 6. Hence, we assume that
the point that was originally in the center of the stratum with the
lower-left corner A[i 5]7T falls into the stratum we are considering
with the lower-left corner Am after translation and rotation.

Integration with Stochastic Point Processes . 15

For x to be in the stratum, Am, < 2 < A(m,+1) and Am,, <
y < A(my +1). Substituting the expressions for = and y into these
inequalities, we can get the following conditions for ¢ and j:

1
rfm—t)— - <i<rl(m—t)— 3 + sin(f) + cos(0)

1 1
rl(m—t)— 5~ sin(f) <j <rf(m-—t)— 3 + cos(6),
(36)
where r; and r, denote the first and second columns of the rotation
matrix Ry. We can then plug the integers ¢, j within these limits
into Equation 35 to compute the x(’s) that are in the current stratum.
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