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1. BIAS & VARIANCE OF SAMPLING PATTERNS

For reference, here we provide the essential formulae for bias and
variance of sampling patterns, as derived in the paper.

1.1 The Integral Estimator

Given a function f : R — R*, we would like to study the error in
estimating the integral [ := ﬁ §, f(x)dx, where V is the support

of the function f such that Vx ¢ V, f(x) = 0, and | V| is its volume.
We consider a general estimator of the form:

I:= ) wif(xi), M
i=1

for some positive weights w; and sample points x;. We will assume
that the support is a unit hypercube, |V| = 1 for simplicity.

1.2 General Point Processes

El = EZw(xl)f(xl) = fv w(x) f(x)A(x)dx. 2)

Ei? - f w(x) f(x)w(y) f(y)o(x,y)dxdy
VxV (3)
+ fv w? (%) £ () A(x)dx.

The bias and variance can then be computed using standard formu-
lae: bias(I) = I — EI, var(I) = EI? — (EI)2.

1.3 Stationary Point Processes

The estimator with stationary point processes is unbiased. The vari-
ance is given by the following two alternative forms.

var(l) = 5 [ £eodx+ [ 1601()o(x — 3) = Dixdy.
4

var(h) = 5 [ oo+ [armgman— ([ f(X)dX)2 .
5)

2. ADAPTIVE SAMPLING

Adaptive sampling refers to adjusting the density of points accord-
ing to the integrand f such that the variance of the estimator I
is decreased. It is obtained by assuming an interaction model be-
tween points, and setting a specialized spatially varying density for
a given integrand.

Locally scaled processes One way to achieve this is via defin-
ing a distance measure adapted to the desired density such that dis-
tances become smaller in areas of high density. This is the idea be-
hind adaptive and anisotropic blue noise sampling [Li et al. 2010;

Wei and Wang 2011; Chen et al. 2013], and known as locally scaled
point processes [Hahn et al. 2003] in statistics. Although this is
useful for applications such as halftoning and stippling [Schmaltz
et al. 2010; Fattal 2011], it involves a costly optimization with lots
of evaluations of the density function, which translates into tracing
many rays for rendering.

Intensity-reweighted stationary processes Instead, adaptive
sampling algorithms used for integration in graphics estimate
measures such as the variation of the integrand, and distribute
more samples in those regions, often iteratively [Whitted 1980;
Hachisuka et al. 2008; Overbeck et al. 2009; Belcour et al. 2013]. If
the underlying distribution can be assumed as stationary, the vari-
ance of the resulting point patterns can be accurately described by
second-order intensity-reweighted stationary point processes [Illian
et al. 2008].

For these processes, the second order product density is given by
o(x,y) = A(X)A(y)g(x — y). Defining v(x) = A(X)w(x)(x).
and plugging the expression for g into the equations for bias and
variance of general point processes in Section 1.2, we get

bias(I) = I — Jv(x)dx, (6)

2
var(h) = [ 55t [ou)(atx—v) - iy,
where we dropped the integration domains for brevity. A com-
mon variate of adaptive sampling is importance sampling where
the weighting is chosen as w(x) = 1/A(x). For this case, v(x) =
f(x), bias vanishes, and Equation 7 shows how density and corre-
lations can be individually adjusted according to the integrand f,
by choosing the intensity in the first term and PCF in the second
term, respectively. !

General unbiased importance sampling Although not com-
mon for rendering applications, some distributions may not be ac-
curately described by second-order intensity-reweighted stationary
point processes. For these processes, assuming an unbiased estima-
tor (i.e. w(x) = 1/A(x)), the variance is given by the following
expression:

var(h) = [ 28 i [ s 20

2 A)A(y)
(o)

!In a point process model, the number of points within a window can vary
for different realizations. This is why this expression cannot be directly used
to compute the variance of standard importance sampling, where the points
are randomly distributed with g(x —y) = 1. In this case, although the sec-
ond term vanishes, even if we set A proportional to f, the variance does not
vanish, since for a point process where the points are randomly distributed,
the number of points in a window can wildly vary for different realizations
especially when A is low. For a fixed number of randomly distributed points
within a window, we derive the variance in Section 3.1.

dxdy
@)
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Fig. 1. A general uncorrelated random jittering where the location of the
point in each stratum .S; follows a distribution k; (x) that is independent of
those in the other strata.

The first term agrees with the well-known observation in impor-
tance sampling that the intensity should follow the integrand. To
minimize the second term given a fixed intensity function, the sec-
ond order product density o should thus be as small as possible.
One way to lower p is by increasing the distances between the
points, as is the case for blue noise distributions or low discrep-
ancy patterns. However, note that what determines the variance is
the integral of o convolved and multiplied with f. Hence, it is pos-
sible to adapt p further, going beyond the conventional methods,
which we leave as future work.

3. BIAS & VARIANCE OF STRATIFIED SAMPLING

In this section, we provide further examples on how the analysis of
stratified sampling patterns with point processes can be utilized to
study important special cases.

3.1 Random Jitter Sampling

In random jitter sampling, the distribution of the point in each stra-
tum in independent. More precisely, given a set of n strata .S; such
that S; N S; = & for i # j, the probability of finding a point in
S; at a location x is given by k;(x). We show this setting when the
strata tile the unit square regularly in Figure 1. In Section 5.1 of the
paper, the bias and variance of random jitter sampling is derived as
follows:

pias(D) =1, J w(x) ()i (x)dx, ©

WND=§HQWMF@mwwx—U@@ﬁ@mwwﬂi

(10)
where the integrations for the i*" term are over S;, or equivalently
V or R4

Importance sampling We can easily derive the expressions
for jittered importance sampling by setting w(x) = 1/A(x) =
1/, ki(x), which is w(x) = 1/k;(x) for x € S;, since the
supports of k; are disjoint. Hence, we get an unbiased estimator
with variance

1wm=iLﬁwm®W—ngwf.an

This equation also gives the variance of standard importance sam-
pling or random sampling by setting n = 1.2

2In Appendix C, we derive Equation 11 and consequently Equation 12 us-
ing standard statistical methods, and also explain why they differ slightly
from the expressions in a recent work [Subr et al. 2014].
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Fig. 2. Mirrored jitter sampling is based on the idea of locally mirroring
parts of the integrand within each stratum and exploiting the negative cor-
relation between the original and mirrored versions. Conceptually, the sam-
pling pattern puts the original and locally mirrored versions side-by-side,
and applies uniform jittering to each pair of original/mirrored stratum, in-
dependent of the other pairs of strata (left). In practice, this translates into
taking a random point in a stratum, and mirroring it around the center of
that stratum (right).

To simplify the analysis in the next sections, it is more conve-
nient to define the functions s;(x) = f(x + 0;)IIg(x), where IIg
is 1 inside S and 0 otherwise, S is the hypercube of length 1/n'/?
centered around the origin, and o; is the center of the stratum .5;.
We can then write the variance of standard random jittering, where
the sampling point in each stratum is distributed uniformly in the
stratum, as:

var(l) = lei:ZL]lnfs?(x)dx— (njsi(x)dx)2, (12)

which is also shown in Table I, Equation 7'1 for reference.

3.2 Mirrored Jitter Sampling

For some functions, each s;(x) is strongly negatively correlated
with s (x) := s;(—x), which is the local patch of f mirrored
around the origin o; of the stratum S;. These correlations can be
exploited to reduce the variance with a local variate of antithetic
sampling [Owen 2013; Subr et al. 2014].

Denoting the mirrored strata with S;”, conceptually, mirrored jit-
ter sampling puts the strata S; and S; side-by-side as in Figure 2,
left. It then samples each pair S;, S;” by uniform jittering, indepen-
dent of the other pairs of strata. In practice, this can be realized by
taking a random point x in each S;, and placing another point at
—x + 20, that is the mirrored version of the initial point around the
stratum center o, (Figure 2, right). In Appendix A.1 of the paper,
we derive (with w = 1/n) that the bias of the resulting estimator is
zero, and the variance is:

m

var(I) = n—12 Z njsi(x)s;(x)dx

+nfsf(x)dxf (nfsi(x)dx)z.

Here, m = n/2, since there are actually only m strata and n = 2m
points. The equation confirms the intuition that negatively corre-
lated s;, s; pairs provide low variance. In Section 4, we will utilize
this expression and compare the variance of mirrored jitter sam-
pling to that of random jittering, and derive theoretical conditions
on when one will perform better for binary integrands.

(13)

3.3 Uniform Jitter Sampling

In contrast to random jitter sampling, uniform jitter sampling uses
the same random perturbation for all points in different strata. This
can be thought of as randomly perturbing a regular grid. Since we
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Fig. 3. The theoretical and empirically computed variance of the binary
function on the left is plotted as a function of w, the width of the non-zero
region. The empirical values match exactly with the theoretical ones.

consider the unit hypercube as the integration domain, this pro-
cess is equivalent to assuming an arbitrary perturbation of an infi-
nite grid. Hence, uniform jittering is generated by a stationary pro-
cess [Illian et al. 2008]. The intensity is simply given by A = n.
Hence, with w = 1/n, the resulting estimator is unbiased as is al-
ways the case for stationary processes. We derive the variance in
Section 5.1 and Appendix A.2 of the paper as:

var( ffz )dx + — Z CLHV (Jf dx) ,

14)
where h;; = x; — x;, ar,, is the autocorrelation of the function
IIy,, and Iy is 1 inside V' and zero otherwise.

Example We show a simple case where Equation 14 is utilized
to derive an analytic formula for the variance of an integrand in
Figure 3. The function f is 1 in a region of width w and height
1, and zero otherwise as shown in the figure. For 0 < w < 1/3,
we would like to compute how the variance changes. Assuming a
uniformly jittered pattern with spacing of 1/3, the length of each
stratum is 1/3. We can thus observe that the variance is zero for
w = 0 and w = 1/3, since the function is aligned with the strata
in those cases, and should reach its maximum when w = 1/6.
To derive the exact variance formula, first note that the integral of
f (and hence that of f2, since f = f2)is simply I = w, and
as(h)/am, (B) = (w'= A )= by /(L = | ) (L = I, |) =

—|hz|)/(1 = |hy|) for |h,;| < w and zero otherwise. Hence, we
get non-zero ay (hy;)/ar, (hy;) = w only for h;; = x; —x; with
zero = components, since for all other h;;, the absolute value of the
2 component is bigger than or equal to 1/3, the spacing between
points. As there are 18 h;; with zero  components, variance is
given by (Equation 14) 1/9w + 18/9%w — w? = 1/3w — w?. This
function is plotted along with the empirically computed variance
for different w in Figure 3. They match perfectly as expected.

Strata-based variance formula The autocorrelation function
ay appearing in Equation 14 depends on the global properties of
f, similar to spectral analysis. However, some cases of analysis in-
volve assumptions on the local strata-based properties of f as in
the previous example or in Section 4 for visibility sampling, or re-
quires that variance of uniform jittering is compared with those of
sampling patterns with strata-based variance expressions. For these
cases, it is important to have a strata-based variance formula. We
show in Appendix A.3 of the paper that such an expression can be
derived starting from Equation 14:

var(l) = % Zn f 5:(x)s, (x)dx — n” fsz- (x)dxfsj (x)dx.

s)
For brevity, we denote each term in this equation as c;; such that
var(l) = % 2.4; Cij- This equation gives a practical way to ana-
lyze and compute variance of uniform jittering in terms of strata-

1 stratum a stratum b§ twy /1 ;
— = | |
Wa/n wy/n | | wa/n|

Fig. 4. The binary integrand considered by Ramamoorthi et al. [2012]
(left) and the definitions to compute the variance with random and uniform
jittering. The A denotes the intersection of stratum a and b.

based properties of the integrand as we will show below and in
Section 4. So far, such an analysis has only been possible for 1D
binary integrands under certain assumptions [Ramamoorthi et al.
2012] as we explain in the following example.

Examples In their careful analysis of random and uniform jitter
sampling, Ramamoorthi et al. [2012] derive the expected variance
for the case of 1D binary integrands with two discontinuities in
different strata (as summarized in Figure 6 of the mentioned pa-
per [Ramamoorthi et al. 2012]). The type of the integrand consid-
ered is shown in Figure 4. Equation 15 allows us to easily compute

the analytical variance in this case. Note that c;; = 0 whenever
the integrand is constant (0 or 1) in stratum .S; or S;. Hence, the
only terms that contribute to the variance are c¢,, = w, — wz,

Cab = Cha = A — wawy, and cpp, = wy, — w7 (see Figure 4 for the
notation). The intersection area is given by A = w, + w, — 1 for
wq+wp > 1, and 0 otherwise. Note that ¢, +cpp gives the variance
of random jittering (Equation 12), and adding c,; and ¢, to that
sum results in the variance of uniform jittering (both up to the factor
1 /n2). To find the average variance, Ramamoorthi et al. [2012] as-
sume a uniform distribution for the locations of the discontinuities.
Hence, the average variance is given by

1 pr1 1 9
J J —Q[wa—wa+wb—
oJo 1
2 /1 1 2 (1 1 1 1
~ n? (2 3) Tz (6 4) 3n2  6n2’

where the first term 1/3n? is the variance of random jittering, and
the result 1/6n? is that of uniform jittering, agreeing with the pre-
vious results [Ramamoorthi et al. 2012].

In practice, it is possible to have more than one discontinuity
within the strata. We present an example to illustrate good and
bad cases for uniform jittering when there are two discontinuities
within strata in Figure 5. In the example, two samples are used for
integrating each of the two integrands integrand 1 and integrand
2. For each integrand, we can directly compute variance by cal-
culating the terms c¢;; and summing them, giving a zero variance
for the first integrand, and 1/22 for the second. This result can be
easily confirmed by considering some realizations of uniform jit-
tering, as is done in the figure. For integrand 1, it is always true
that I = 0.5 =1 , while for integrand 2, it can sometimes be 0 and
sometimes 1. In summary, the negatively correlated s; and sy for
integrand 1 makes the variance vanish, while the opposite is true
for integrand 2.

Uniform vs. random jittering As illustrated by the examples
above, Equations 12 and 15 give us a direct way to analyze and
compare uniform and random jittering. Let us define a matrix
C;; = c;;. By subtracting variance expressions for uniform and
random jittering, it is easy to see that uniform sampling produces

a lower variance if and only if ec = 17C1 — Tr(C) < 0, where
Tr(C) denotes the trace of Cand 1 = [1,---]7, i.e. the sum of the

wi +2(A — wawb)] dwgdwy
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Fig. 5. We can compute exact variances for the integrands 1 and 2. For
each case, the integrand itself is in the top-left figures. Top-middle and top-
right figures illustrate two realizations of uniform jittering. Exact variance
computations (up to a constant factor of 1/22) are shown on the bottom
rows. Due to the negatively correlated strata for integrand 1, we get zero
variance. This can also be observed by considering different realizations of
uniform jittering: the estimator always gives the correct result of 1/2. This
is in contrast with the estimator for integrand 2, where it can give O or 1.

non-diagonal elements is smaller than zero. We show four simple
binary integrands along with their e in Figure 6. For the top-left
integrand, the strata containing the discontinuity are heavily corre-
lated to each other, giving ec > 0. The two edges of the top-middle
integrand introduce negative correlations, leading to ec < 0 and
hence an advantage for uniform jittering. It has a similar advantage
for the disk on the top-right, due to the negative correlations among
the cells containing the boundaries of the disk. Finally, we show a
square along with its C matrix on the bottom. We will present a
similar theoretical analysis of visibility sampling in Section 4.
Spectral variance formula The relation .F(ay) = |Z(f)|?
with the Fourier transform .% allows us to express the variance in
Equation 14 in the spectral domain, as we derive in Appendix A.3
of the paper. Setting F' = .% (f), and denoting the set of points of
the infinite regular grid of spacing n'/ centered at the origin in the
frequency domain with wy, the resulting variance expression is

PIRIACH] (16)

wp #0

var(I) =

Due to the translation invariance of the process, the variance does
not depend on the phase of F'. This is in contrast with the mean
squared error (MSE) of regular sampling, where the sampling
points are placed on a regular grid. For a regular grid with a trans-
lation t with respect to the origin, the MSE of regular sampling
is given by mse(I) = [X, 20 | F(wr)| cos(p(wy) + 2mwi t)]?
(Appendix A.1), where ¢ denotes the phase of F. Hence, it is pos-
sible to get much lower MSE with uniform jitter sampling, for in-
stance, for functions symmetric around one of the sampling points
of the regular grid. To see this, note that for this case, the integrand
is given by f(x) = fs (x — t) for an even function f;(x). Thus,
F(w) = F,(w)e~2™="t for the real Fourier transform F, of f.
The phase of F'(w), ¢(w) = —2mnwTt cancels out in the formula

ACM Transactions on Graphics, 2016.
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Fig. 6. Basic binary integrands with the strata overlaid and their e c below
each integrand (also the matrix C for the bottom one). Negatively correlated
strata give a clear advantage for uniform jittering (negative ). Each entry
in the matrix C;; quantifies how much the pair S; and S; contributes to
the variance.

of mse(f ) for regular sampling, making all cosine terms equal to
1, and thus resulting in higher error than uniform jittering (please
see Appendix A.1 for a derivation of the MSE of regular sampling
and a comparison of the MSEs for Gaussian integrands).

3.4 Isotropic and R-Uniform Jitter Sampling

Isotropic jitter sampling is obtained by introducing a global ran-
dom translation (as in uniform jitter sampling), and independent
rotation. Each instance of this process is thus a randomly translated
and rotated regular grid. The generating point process for a ran-
domly rotated and translated regular grid is isotropic, i.e. transla-
tion and rotation invariant, and hence we get an unbiased estimator
with w = 1/\. In Appendix A.5 of the paper, we prove that the
variance can be estimated by modifying the second term of vari-
ance of uniform jitter sampling (Equation 14) as:

Z §ar(m)(|[h]| — [hi;|[)dh
/\2\5Vd any, (hij)[[hy; |14t

HV

17)

where |0V| is the area of the unit hypersphere in d dimensions, and
o is the Dirac delta. This expression shows that the only change to
the variance of uniform jittering is that we now take radial averages
of ay at radii ||h;;||, instead of values of ay at h,;.

By a random rotation, we are avoiding problematic cases for
uniform jittering, i.e. when there are strong positive correlations
among the strata, while still having the maximum possible dis-
tance between the sampling points, in contrast with random jitter
sampling, which has been considered as the alternative for those
cases [Ramamoorthi et al. 2012]. Note, however, that random ro-
tations can also increase the variance of uniform jittering. As the
pattern of uniform jittering is rotated, we get a minimum and a
maximum variance depending on the rotation. Since the term in
Equation 17 is an average of variances of uniform jittering for all
rotations, it lies between this minimum and maximum.

R-uniform jittering We call the rotated uniform jittering pattern
with the minimum variance as r(otated)-uniform jittering. If less in-
formation is available, it is also possible to limit the rotations to a
certain range. Since the resulting process is still stationary, we get
an unbiased estimator with less variance. We will present an anal-
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Table I. Variance formulae for the stratified patterns considered.
Here, s;(x) = f(x + 0;)IIg(x), where ITg (IIy/) is 1 inside S
(V) and 0 otherwise, S is the hypercube of length 1/n'/¢
centered around the origin, o; is the center of the stratum S;,
s; (x) := s;(—x) is the local patch of f mirrored around o;,
h;; = x; — x5, ay is the autocorrelation function of f,

F = Z(f) is the Fourier transform of f, wy, is the set of points of
the infinite regular grid of spacing /¢ centered at the origin in
the frequency domain, |0Vy] is the area of the unit hypersphere in
d dimensions. For mirrored jitter sampling, there are m strata and
n = 2m points.

Random jitter sampling

var(l) = — Zn/ 2 (x)dx — <n/si(x)dx>2 (T1)

Mirrored jitter sampling

var(f) = Zznf ()57 ( dx-&-njs( )dx—< jsi(x)dx>2

(T2)
Uniform jitter sampling
var() = =3 Z u(;f/(h” 3 +J(f,n) (T3)
var(I) = 2 Zn/ 5i(x)sj(x)dx — n? /si(x)dx/ sj(x)dx (T4)
var(l) = > |F(w)? (T5)

wr#0

Uniform + random jitter sampling
war(ly = L 3 VRO H @Dy -

izj any (hij)

Isotropic jitter sampling

. §as()3(|[h]| —[[hi;|[)dh
; :
var(l) = ,\2|ch| Z ary (hyg)|[hy |

+J(f,n) (T7)

agm) =+ [ 72 60ax - (j f(x)dx) 2 (78)

ysis of how rotation can affect the variance for visibility sampling
in Section 4.

4. APPLICATION TO VISIBILITY SAMPLING

We detail the analytic analysis of stratified sampling patterns when
applied to visibility sampling for computing soft shadows in this
section. We start with an introduction to the setting we are consid-
ering.

4.1 Soft Shadows from Planar Area Lights

We assume that there are planar area light sources in the scene to
be rendered. These emit light from each point y on the light plane.
The image intensity at a point x on the image plane is computed by

the following integral:

I(x) = fvwx, V) y)dy, (18)

where [ is the intensity (radiance), V' is the unit square as before, v
is the binary visibility function, [ is the lighting from the area light
source, and ¢ is a function that models light transport including
BRDFs. We make the common assumption [Ramamoorthi et al.
2012; Mehta et al. 2012] that ¢ can be taken out of the integral.
Hence, for a given point x on the image plane, we are interested in
the following integral:

I(x) = fvwx, ¥)I(y)dy. (19)

Once this is computed, it can be multiplied with ¢(x) for all x to
get the final rendering. The binary function v(x,y) gives which
points on the light plane are occluded and hence is determined by
the scene geometry. Common light types considered for rendering
are square lights: I[(y) = 1 in V, circle lights: I(y) = 1 for y
in a disk of a certain radius, and Gaussian lights: [ is a Gaussian
function.

4.2 Error Analysis and Comparisons

We need to consider the lighting [ along with the visibility func-
tion v to analyze the error in Equation 19 for different sampling
strategies. For each pixel location x, v(x,y) changes, and hence
there is a different integrand on the light plane. Thus, we need to
take into account that the overall error in soft shadows in a scene is
the sum of errors at all pixels. We assume square or circular light
sources such that the integrand v(x, y)!(y) becomes a binary func-
tion (Gaussian lights result in error behaving very similarly to that
of circular lights). By defining the estimator at pixel x as I (x), we
thus want to compare sampling patterns in terms of the following
total error:

e= JR var(1(x))dx, (20)

(we consider unbiased jittering patterns and hence mean squared
error is equal to variance) over some area R of the pixel space. In
the next sections, we compare different sampling strategies analyt-
ically and empirically to understand under what conditions on the
light types and scene geometries they will perform well.

4.2.1 Random Jitter Sampling. The error of random jitter
sampling (Equation 12) depends on stratum-wise characteristics
without inter-strata correlation terms, and hence is of the form
eRND( ) = 1/n?>7"  eRNP(x). We thus first derive an ex-
pression for the contrlbutlon of the " stratum for pixel x,
ie. efNDP(x), to the variance. For further analysis and com-
parisons, we would like to write this term as a function of
the normalized integral of the integrand within this stratum:
A;(x) := n{s;(x,y)dy, where s;(x,y) is the part of the inte-
grand v(x,y)Il(y) in the stratum S; € V on the light plane. Since
the integrand is binary, the A;(x) € [0, 1] is thus the normalized
area of the stratum S; covered by the non-zero part of the integrand.

Utilizing the fact that s; = s? for binary integrands, we can write
the variance (and thus MSE) terms for random jittering as

efND (x) = nfs?(x, y)dy — (nfsi(& y)d.V)2 @1
= Ai(x)(1 — A(x)).

ACM Transactions on Graphics, 2016.



A. Cengiz Oztireli

1 0.12 0.09
‘ 0.1

0.08

. 0.06 005
0.04
0

0 0

1 p 2 00 0015 05 1

a

Fig.7. MSE difference 27 Pef*V D (a) —eM IR (q) is plotted as a function
of the normalized area (a) covered by the support of the integrand in a given
stratum, and the convergence rate p of random jitter sampling. The right
graph shows the cross section for p = 1.5, the typical convergence rate of
random jittering for discontinuous integrands.

This term will be largest when A;(x) = 0.5, and will get smaller
as A;(x) becomes smaller or larger. Since only a single sample
is taken in this stratum, it is better for random jitter sampling to
have an integrand that mostly covers or is mostly nonexistent in the
stratum.

4.2.2  Mirrored Jitter Sampling. Similar to random jitter sam-
pling, the error for mirrored jitter sampling (Equation 13) is of the
form eMIR(x) = 1/n?>)_ , eMIE(x) (note that in contrast to
Equation 13, here we have n strata, and absorb the resulting con-
stants into e} ?E(x)). We show in Appendix A.2 that under the as-
sumption of a locally linear boundary of the support region of the
integrand in a given stratum, the error of mirrored jitter sampling
can be derived in terms of A;(x) as:

(x)
(x)

In contrast to random jitter sampling, mirrored jitter sampling has
the least error eM % (x) = 0 when A;(x) = 0.5, due to using two
mirrored samples in the stratum.

Random jitter vs. mirrored jitter sampling There are n strata
for both sampling patterns and hence n points for random jittering,
and 2n points for mirrored jittering. This allows us to consider con-
sistent strata. To account for the difference in the error due to the
different number of points, we scale the resulting variance for ran-
dom jittering by 277, where p is the convergence rate for random
jittering.

For a single stratum, we plot the resulting error difference
27PeRND(A;(x)) —eMIE(A;(x)) as a function of the area A;(x)
and p in Figure 7, left. It has been observed that p € [1, 2] [Mitchell
1996; Ramamoorthi et al. 2012], and stay around 1.5 for integrands
with discontinuities. We also plot the error difference for p = 1.5
in Figure 7, right, as a function of the area. Although random jitter
sampling can perform slightly better for some of the a, p combina-
tions, especially when the convergence rate p is high, mirrored jitter
sampling has lower error for a much larger region in the a, p space,
and performs considerably well for the common convergence rate
p=1.5.

Total error The analysis so far provides us with the exact er-
ror terms for given areas A;(x), but it does not give the total error
computed over all pixels, and requires the knowledge of the area
of the support of the integrand within each stratum. The total er-
ror for both random jitter and mirrored jitter sampling is given by
e = {,var(I(x))dx = 1/n? Y7, §, ei(x)dx. Hence, we need
to integrate the error over all pixels by computing § g €i(x)dx for
both random jitter and mirrored jitter sampling. We can compute

A2(x) 1 A;(x) € [0,
— A2(x) : Ai(x) € [%,

Ay(x) — 1
eiM“*(x)—{ Af) — 21] (22)

Njw N
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light plane

occluder —

receiver

Fig. 8. (Left) The scene geometry assumed for some parts of the error
analysis for soft shadows. (Right) For this geometry, the occluded area on
the light plane translates and scales as the pixel location x moves in the
image plane.

this integral by considering how the area A;(x) changes for a given
stratum .S;, as x moves on the image plane.

Under common assumptions on the occluders [Egan et al. 2011;
Ramamoorthi et al. 2012; Mehta et al. 2012], the visibility function
takes the form v(x,y) = v(7(x)x + (1 — 7(x))y), where 7(x) =
do/d; (x), dq(x) is the distance from the receiver to the light plane,
and ds is the (assumed to be constant) distance from the occluder to
the light plane, as illustrated in Figure 8, left. Hence, at each pixel
location x, the visibility function just scales and translates on the
light plane (Figure 8, right).

Assuming a square light source with [(y) = 1 Vy € V, a smooth
7 that does not scale the visibility function such that its support is
smaller than a stratum’s size, a sufficiently smooth boundary for the
support of v, and that the whole soft shadow due to the occluder is
rendered (i.e. the area R on the image plane is sufficiently large),
each stratum is gradually completely occluded and unoccluded by
v(x,y) several times as it slides over the light plane for different
pixel locations x. Hence, the area A;(x) of the unoccluded region
in stratum S; gradually changes from O to 1, or 1 to O several times,
as x moves. The total error can thus be estimated by taking the

integral S(l) e;(x)dA;(x). Denoting a = A;(x), for random jitter

k2

for mirrored jitter sampling e} = 1/24. Hence, the ratio of the
MSE’sis e PN P [eMIE — 92=P Por the typical convergence rate of
p = 1.5, random jitter sampling will thus have /2 times as much
variance as mirrored jitter sampling. Since p € [1, 2], mirrored jit-
tering will always perform better than random jittering under the
mentioned assumptions. For the same error level, random jittering
needs to use 22/P~! times as much samples as mirrored jittering.
Hence, for p = 1.5, random jittering requires approximately 25%
more samples than mirrored jittering.

We illustrate several cases where these assumptions hold in Fig-
ure 9, square light. As expected, the ratio of the variances ap-
proaches the estimated \/5 for these cases. In practice, even if the
assumptions are not exactly satisfied, most strata go under almost
complete occlusion and unocclusion, and the ratio approximately
holds. We illustrate such cases in Figures 10, and 13. For the sim-
pler occluding geometry in Figure 10, top, random jittering requires
22% more samples than mirrored jittering for the same error level,
while this drops to 11% for the complex shadow in Figure 10, bot-
tom. For square lights, we thus observed an advantage of using mir-
rored jitter sampling in all the examples. However, for other light
types, or more complex occluding geometries, this advantage dis-
appears. (Please see Appendix B for an analytical derivation of the
errors for mirrored jitter sampling and random jitter sampling for
flat occluders and receivers, i.e. constant 7.)

sampling, this gives e?NP = Xé a(1 — a)da = 1/6, and similarly

4.2.3  Uniform Jitter Sampling. As elaborated in Section 3.3,
uniform jitter sampling exploits negatively correlated strata to re-
duce variance. For the binary integrand we consider, this is more
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Fig. 9. RMSE plots for soft shadows with different combinations of basic
occluders and light types (for all cases, d; = 2d2).

apparent by writing the error as:

1
e"NM(x) = = DA (x) — Ai(x)A;(x), (23)
1

where A;;(x) = n §s;(x,y)s;(x,y)dy is the normalized area of
the intersection of the supports of s; and s;. For negatively cor-
related strata, for example when s; and s; have disjoint supports,
A;j(x) = 0, and the term ¢;;(x) = A;;(x) — A;(x)A;(x) will
decrease the error, conversely if the supports completely match, the
error will increase by 1 — A4;(x) A, (x).

Uniform vs. random jittering The error difference between uni-
form and random jittering is given by eVN!(x) — NP (x) =
5 2%, €ij(x). These terms will favor random jittering for pos-
itively correlated strata. In particular, if we assume a square light
source, and that for a given pixel location x the visibility func-
tion has a linear boundary in the whole domain V' (Figure 11, left),
we can analytically prove that random jittering will perform better.
As illustrated in Figure 11, left, for this case, the intersection area
A;;(x) will be equal to the smaller of A;(x) and A;(x). Denoting
the smaller one with the index j, we can thus set A;;(x) = A;(x),
giving ¢;;(x) = A;(x)(1 — A;(x)). Since A4;(x) € [0,1] and
Aj(x) € [0,1], itis also true that ¢;; € [0, 1]. Thus, each term will
increase the error difference, resulting in eVV!(x) — effNP (x) >
0.

In general, the slopes of the boundary lines in different strata
can be different (we assume a sufficiently smooth boundary that
can be well represented by local lines in each stratum). Under the
assumption [Egan et al. 2011; Ramamoorthi et al. 2012; Mehta
et al. 2012] that the visibility function takes the form v(x,y) =
v(7(x)x + (1 — 7(x))y) as above and in Figure 8, as x moves on

—~

log spp "
—6— Random J
—i— Uniform J
—B— Isotropic J
—%— R-Uniform J
—&— Mirrored J

T 2

10 10

Fig. 10. RMS errors are plotted for two different scenes with a square
light source. The correlations among the strata make uniform and isotropic
sampling disadvantaged. Among the non-adaptive sampling methods (i.e.

excluding R-Uniform J), mirrored jitter sampling results in the least error,
although its advantage diminishes as the shadows get more complex.
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Fig. 11. (Left) When the boundary consists of a single line on the light
plane, the intersection area A;; is equal to the smaller of A; and A;. (Right)
The averaged c; ; is plotted as a function of the slopes of the boundary lines
in the strata.

—e—Random J
—#— Uniform J
—&— |sotropic J
—%— R-Uniform J
0 —&— Mirrored J

0
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10° “/8 10" 10° 7T/8

Fig. 12. R-uniform jittering is obtained by rotating the grid pattern of uni-
form jittering by different angles. R-uniform jittering can give lower errors
than possible with other non-adaptive methods, but requires estimating a
rotation angle or a range of angles.

the image plane, the slopes of the boundary lines in the strata will
not change, since the visibility function can only scale or translate.
Only the intersection point of the boundary lines in different strata,
when any two strata are aligned, is a function of the pixel location
x. Hence, to estimate the total error, we can average c;; over all
intersection points, for each given pair of slopes (in Appendix B,
we also present an analysis for constant 7(x)).

In Figure 11, right, we plot the averaged c;;, as a function of the
angles the boundary lines make with one of the axes of the light
plane. Local boundary lines with similar slopes increase c;; and

ACM Transactions on Graphics, 2016.
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Fig. 13. Error plots (top) and distribution (bottom) for a scene. The error distribution is illustrated for 49 (50 for mirrored jitter sampling) spp for square, and

38 (40 for mirrored jitter sampling) spp for circle and Gaussian lights.

hence the error of uniform jittering, while the opposite is true for
disparate slopes. This is further illustrated in Figure 9 for simple flat
occluder shapes. For both light types, uniform jittering performs
worst for the square, and best for the disk occluder. Since the cir-
cle light breaks long lines, uniform jittering performs better for the
circle light, as previously observed [Ramamoorthi et al. 2012].

Note, however, that the error of uniform jittering is still signif-
icantly higher than those of other sampling patterns for the cir-
cle light - square occluder pair, deviating from previous observa-
tions [Ramamoorthi et al. 2012]. More interestingly, by simply ro-
tating the regular grid pattern that is uniformly jittered by a constant
angle, uniform jittering can perform significantly better than the
other non-adaptive sampling patterns. This is due to the strong neg-
ative correlations introduced by the changing slopes in the strata.
We illustrate this in Figure 12, where different rotation angles are
applied, and also in Figures 10, and 13 with the optimal angle under
the name r-uniform. Hence, even for square light sources, uniform
jittering can be the best alternative if the right angle of rotation can
be estimated (please see the supplementary images for more exam-
ples with uniform and r-uniform jitter sampling, in Figures 9, 12, 13
uniform jittering refers to the one with rotation for maximum vari-
ance, in other figures the rotation is random).

4.2.4  Isotropic Jitter Sampling. As elaborated in Section 3.4,
isotropic jitter sampling tries to reduce the variance of uniform jit-
ter sampling by introducing a random rotation. By denoting the au-
tocorrelation of the function f(x,y) = v(x,y)l(y) (with respect
to y) with a;(x, h), and the overall autocorrelation of the scene
with ay(h) = { ay(x,h)dx, the total change in the error can be
written as:

JR (eUNI(X) _ eISO(X)) dx

1« @) = ommoeer Jar()(|h|] — ||hy; || dh
== Z .

i#j ary, (hl])

(24)
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Thus, the error difference will be largest when the radial average
of ay(h) at h;; deviates from ay(h;;) most, which happens when
there are directional structures. These are especially prominent for
square lights and simple geometries (Figure 9, left) but also for cir-
cle lights and long lines of low curvature (Figure 9, circle light
- square occluder). For these cases, uniform jitter sampling has
higher error, while isotropic sampling performs significantly bet-
ter.

For symmetric occluders and symmetric lights, the difference in
error diminishes. In the special case of a flat receiver parallel to
the light plane, we can analytically compute the total error (please
see Appendix B for an analysis of flat occluders and receivers for
other sampling methods). For this case, the integrand has the form
f(x,y) =v(tx+ (1 —7)y)l(y). Setting 7 = 1 — 7 for brevity,
the overall autocorrelation a s (h) becomes

JR J’U(TX + 7'y)l(y)v(tx + 7'(y — h))l(y — h)dydx
1

= Jl(y)l(y —h)dy v(x)v(x — 7'h)dx (25)

- %al(h)au(T’h),

T Jr'

where q; is the autocorrelation of [, and a, is that of v when the
integral is taken over R/, a scaled, translated, and symmetrized ver-
sion of R, assuming a sufficiently large R such that the whole soft
shadow can be seen in R'. For a disk occluder and circle light, both
a; and a, are radially symmetric, and thus we get the same error
for both uniform and isotropic jittering, as each term of Equation 24
will be zero. Such a case is illustrated in Figure 9, right, third row
(circle light - disk occluder pair).

As explained in Section 3.4 and in the last section, by rotating the
uniformly jittered pattern (r-uniform), errors lower than isotropic
jittering can be obtained (Figure 12), since the error of isotropic
sampling is an average over all rotation angles. Unlike all other
jittering methods considered, getting the right angles, however, re-
quires knowledge on the light types and scene geometry. Isotropic
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Fig. 14. Motion blur computed by different sampling strategies (4 time samples, Low Disc.: the low discrepancy sampler of PBRT [Pharr and Humphreys
2010]). In the zoomed-in area of the white ball’s trajectory, the white ball appears and stays till the end of the shutter interval. This is schematically depicted
in the graph in the top-right for the black point (the rightmost images are rendered using a regular sampling for illustrating the trajectory). Due to this single
discontinuity, mirrored jitter sampling works the best. On the other hand, the highlight on the orange ball generates two discontinuities, resulting in uniform
jitter sampling generating the best result. (The RMS errors are reported for each inset. For the orange ball, they are for the region the highlight is present.)
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Fig. 15. RMSE is plotted against the samples per pixel (spp) for the chess (left) and microcity (right) scenes. For both cases, isotropic jittering performs
consistently well, while uniform jittering has the lowest and highest error for the chess and microcity scene, respectively, due to different correlations for each
scene. The long edges in the microcity scene introduce extra correlations, degrading the performance of uniform jittering. (The zoomed-in views are computed
using 25 spp. For the microcity scene, the insets are from the area covered by the smaller square, while the RMSE plot is computed for the area in the bigger

square. For Gaussian jittering, o = 0.25/+/n for n spp.)

jittering is thus an unadaptive alternative to capture such angles by
random sampling.

5. MOTION BLUR AND DEPTH OF FIELD

Motion blur and depth-of-field are two important types of effects
that require estimation of integrals involving discontinuities. In this
section, we provide an analysis on how the estimation accuracy is
affected by different sampling strategies. All scenes for this section
were rendered using PBRT [Pharr and Humphreys 2010].

Motion blur We start with motion blur, which is based on tak-
ing a 1 dimensional integral in time and hence easy to analyze.
Note that uniform and isotropic jittering is the same for this case.
In Figure 14, we analyze a classical example of motion blur with
four time samples. For each zoom-in area, we also show schemat-
ically how the intensity coming from a typical point (the black dot
in the rightmost images) in that area changes in the graphs on the
right. For the point in the trajectory of the white ball, the inten-
sity changes from green (background) to white (ball), and stays the
same. Hence, we have a single discontinuity. In this case, mirrored

jittered sampling clearly performs better than the others since the
discontinuity will generate the intra-stratum negative correlation it
needs. On the other hand, for a point on the trajectory of the high-
light on the orange ball, there will be two discontinuities: the high-
light will appear and disappear in different time instances. Due to
the negative correlation between the strata corresponding to the dis-
continuities, uniform jittering results in the lowest error, although
low discrepancy sampling performs almost as well.

Depth-of-field We illustrate our experiments with the depth-of-
field effect for two different scenes in Figure 15. The first one is a
chess scene that consists of pieces with mostly round shapes, while
the second scene depicts a microcity with a lot of long straight
edges. As shown in the variance graphs for the chess scene, uniform
jittering, isotropic jittering, and the low discrepancy sampler of
PBRT [Pharr and Humphreys 2010] perform very similarly, while
the RMSEs for the other sampling algorithms are higher. How-
ever, for the microcity scene, uniform jittering has the highest error,
while isotropic jittering still has the lowest. The correlations due to
the presence of long edges in the scene does not affect isotropic
jittering as expected.

ACM Transactions on Graphics, 2016.
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APPENDIX

A. ERROR OF JITTERED POINT PATTERNS

A.1  Error of Uniform Jitter Sampling and
Regular Sampling in the Spectral Domain

We derive in the paper (Appendix A.3) that the variance, and hence
mean squared error (MSE) of uniform jittering in the spectral do-
main is given by

VN = M |F(wi))?, (26)

wp#0

where wj,’s are the points of a (infinite) regular grid of spacing n'/?
centered at the origin in the spectral domain, and F' is the Fourier
transform of f.

MSE of Regular Sampling Assuming that the integration points
X, +t lie on a regular grid translated by t with respect to the origin,
the MSE of regular sampling is given by

JREG _ <Jf(x)dx - % i Flxi+ t)) . @7)

The first term is equal to F'(0). We would like to write the second
term in the frequency domain as well. Note that the translations t
with ||t|| smaller than the spacing between the grid points x; covers
the set of all translations, since the grid is periodic and infinite.
Thus, regardless of the translation, there will always be n points
in the support V' of the function f. We can then equivalently write
the second term as a sum over an infinite grid. We denote the set of
points of the infinite grid centered at the origin in the spatial domain
with x;, and those in the frequency domain with wy. We can then
rewrite the sum in the frequency domain as

n

%Zf(xﬂrt)

i=1

=%;ﬂ&+w

[ 1607 386 (xi + 0 e8)

= fF(w) (Z o(w — wk)e_i%“’Tt> dw

— Z F(Wk)€i2ﬂwgt,
Wi

where (-)* denotes the conjugate. Since f is a real function,
F(—w) = F*(w). Hence, by summing the terms for the each pair
wi and —wy, we can get

F(wk)eﬂﬂwl{t +F(_wk)67i2wwgt
_ |F(wk)|ei(¢(wk)+2ww{t) + |F(wk)‘e—i(¢(wk)+2wwgt) (29)
= 2|F(wg)|cos(¢(wk) + 27w t),
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Fig. 16. When the Gaussian is symmetric around one of the points in the
grid, uniform jittering results in significantly lower MSE than regular sam-
pling (top). However, regular sampling can slightly (note the scaling of the
error axes) decrease the MSE when the mean of the Gaussian is not aligned
with a point in the grid (bottom).

where ¢(w) is the phase of F'(w). Thus, we can write the sum in
Equation 28 as

Z F(wk)e'ﬂwwgt
Wi

(30)
= Z |F'(w)|cos(p(wy) + 2mwi t) + F(0).

wg #0

Plugging this into Equation 27, we can get the final form of the
MSE for regular sampling as

EMG—<Z|ﬂwwmwww+%¢ﬂ>- @31

wg #0

Analysis for isotropic Gaussians Let us assume that the inte-
grand is an isotropic Gaussian in two dimensions:

f(x) = 6flleu|\2/02/(7m2)

2 2 2 . T
F(W) —e O [w]] e P27 u7

(32)

with Fourier transform F'. The MSE formulae for uniform jittering
and regular sampling can be derived as:

eUNT _ 2 6—2n2a2|\wk||2_ (33)

wp#0
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2
eREG _ ( Z 677r202|\wk-|\2 Cos(27rwg(t — p,))) . (34)

wp#0

From these two expressions, it is easy to see that when u = t, that
is, when the grid is aligned with the mean of the Gaussian (i.e. the
Gaussian is symmetric with respect to the grid), eV < ¢REG,
However, as 1 — t changes, regular grid can perform better. We
show empirical and theoretical MSE curves for these two different
cases in Figure 16. We set o = 0.05 and p is aligned with one of
the points in the regular grid on the top, while falls in-between two
sampling points on the bottom. We see a significant reduction in
MSE with uniform jittering when p is aligned with a point in the
regular grid. The theoretical MSE’s agree perfectly with the empir-
ical ones (computed with 50, 000 different realizations of uniform
jittering).

A.2 Per-Stratum Error of Mirrored Jitter Sampling

Assuming a binary integrand f(x), we would like to express the
error (variance) term for a single stratum as a function of the area
of the support of f (i.e. where f(x) = 1) in that stratum. In order to
derive the per-stratum error, we first rewrite the variance expression
for mirrored jitter sampling in Equation 13 by replacing the number
of points n with the number of strata m, and noting that s? = s;
since f is a binary function:

var(I) = % Z %szi(x)s_(X)dx

i=1 (35)

o (n o)

We are interested in the term for a single stratum S;. Dropping the
subscript for simplicity, we would like to express

o= g [ 5605~ e+ 2 [ o dx—( fs<x>dx)2,

(36)
as a function of the area of the support of s. Since f is a binary
function the normalized area of the support of s is given by a :=
m §s(x)dx € [0,1]. Denoting b := m {s(x)s™ (x)dx, we can
thus wrlte e = (1/2)b + (1/2)a — a®. The goal is then to express
b in terms of a. Note that b is in fact the intersection of the support
of s and that of its mirrored version s~ around the center of the
stratum.

We assume that the integrand is sufficiently smooth with respect
to the size of the strata such that the boundary of the support of f is
locally linear in each stratum. Under this assumption, we illustrate
the possible cases in Figure 17, top, where the boundary of the
support intersects the boundaries of the stratum at two points. We
also show the intersection area, i.e. b, in Figure 17, bottom. For
the first two cases there is no intersection, and hence b = 0 and

= (1/2)a — a?. For these cases, a € [0,1/2]. For the last two
cases, a € [1/2,1], and there is an intersection given by b = 1 —
2(1 — a) = 2a — 1, resulting in e = (3/2)a — (1/2) — a®.

B. FLAT OCCLUDERS AND RECEIVERS

For flat occluders and receivers parallel to the light plane of an
area light, the visibility function can be written as v(x,y) =
v(tx+ (1 —7)y), where 7 = dy/d; with d; the distance from the
receiver to the light plane, and d» the distance from the occluder to
the light plane [Egan et al. 2011; Ramamoorthi et al. 2012; Mehta
etal. 2012]. Hence, the function v just translates over the light plane

kS ;' (

Fig. 17. (Top) There are four different cases where the boundary (dashed
lines) of the support of f (the gray shaded regions) can intersect the bound-
aries of the stratum. (Bottom) For each case, the intersection of the support
of s and that of its mirrored version s~ is depicted as the darker shaded
region.

as the pixel location x changes. For this case, we will show that ex-
pressions for variance involving the autocorrelation of the visibility
function v can be derived. We will then utilize these to analytically
compare random, uniform, and mirrored jittering.

For the simplicity of the derivations, without loss of generality,
we work with a visibility of the form v(x +y). This implies that we
pre-scale the original visibility function v((1—7)[7/(1—7)x+y])
by 1/(1 — 7), and ignore the constant 7/(1 — 7) that will appear
in front of all the terms below due to the integration with respect
to x on the image plane, as it will not affect the error comparisons.
Then, the integrand becomes f(x,y) = v(x + y)I(y). We would
like to compute the total error given by e = § var(I(x))dx for
different sampling patterns.

First, we rewrite the errors (or variances) for different sampling
patterns as below:

VD) = = N nla(x) — LR, 37)

1 n
"M (x) = o D) nli(x) = n’L0)I(x),  (38)

)+ Salu(x) - LEP, (39)

2

]MIR(X)

l\)\»—\

n
MIR (x _ 1 Z
2

RND( UNI(

where e X), e X), e denote the error for random,
uniform, and mirrored jitter sampling, respectively. Note that for
mirrored jitter sampling, there are n strata and hence 2n points.
Here,

L(x) = j 5:0%, y)dy
Iy (%) = f 5:(%, )8 (%, y)dy (40)

I (x) = f 5:06, )57 (%, ¥)dy,

with s;(x,y) = f(x,y + 0;)II5(y) denoting the part of the inte-
grand f(x,y) in stratum S; with center o; on the light plane (for a
given pixel location x), I is 1 inside S and O otherwise, S is the
square of length 1/4/n centered around the origin, and s; (x,y) =
s;(x, —y). To simplify the expressions below further, we assume
a square light, such that s;(x,y) = v(o; + y + x)IIs(y), and
define a normalized II(y) given by II(y) := nllg(y) such that
§T(y)dy = 1.

ACM Transactions on Graphics, 2016.
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‘We can compute the total error for each sampling pattern by tak-
ing the integrals of the terms nJ;;(x), n?I;(x)1;(x), and nl;;~ (x)
with respect to x on the image plane. We start with n.l;;,

L nI,; (x)dx
- L Jv(y + 0; + x)v(y + 0, + x)II(y)dydx

= jJR v(y + 0; + x)v(y + 0, + x)dxII(y)dy

2

~ [Ty | v0vex— by
= a,(h;;).

Here, h;; = o, — o;, the autocorrelation a,, is computed over R,
R+ y + o0, denotes translation of the region R by the vector y + o;,
and we assume that the region R in the pixel space is large enough
such that the translation y + o; to R does not change the result
of the integral when computing the autocorrelation of the visibility
function over R. In practice, this is approximately satisfied for most
scenes, except when significant parts of the soft shadows are not
rendered. Similarly, for n?I,1;,

J n?I;(x)1;(x)dx

(41)
x — h;)dxII(y)dy

i ii o(y +0i + X)v(y’ + 0; + x)I(y)II(y")dydy’dx

= JJH(y)H(y’) J v(y +0; +x)u(y’ + 0; + x)dxdydy’

JJ y)au(y —y' +hy;))dydy’

[IT % IT % @, ] (hyy).
(42)

Finally, we can calculate the integral of nl;,— as,

J nl; - (x)dx

R

= J Jv(y +0; + x)v(—y + o, + x)I(y)dydx

R

(43)

= JH(Y) JR v(y + 0; + x)v(—y + 0; + x)dxdy

=JHWMAwMy
— 11, % 4,](0),

where we defined Hz(y) = 1/2H(y/2) such that { Il (y)dy =
1. To get the final expressions for variances, we can sum these terms
as follows:

oRND _ 1 (a,(0) — [ I % a,](0)) (44)
;) — [T Ik a,](hy;)  (45)

MIR _ % ([T % a,](0) + a,(0) — 2[II * II * a,](0))
(46)
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We see that the error difference depends on the decay of a,(y)
at y = O for random and mirrored jittering, and at y = h;; for
uniform jittering, since the convolutions take local averages of a,,.

C. DERIVATION OF VARIANCE FOR JITTERED
IMPORTANCE SAMPLING AND RANDOM
JITTERING

In Equation 11, we show that variance of jittered importance sam-
pling, where the weight function is inversely proportional to density
w(x) = 1/A(x) in uncorrelated jittering, is given as follows:

var( ZJ F2(x)/ks (x dxf(f f(x dx). 7

However, the expression in Figure 2 of the work by Subr et
al. [2014], and correspondingly the derivation in Equation 10 of the
supplementary material for that work differs from this expression.
Here, we show that there is a normalization difference in that ex-
pression and actually proceeding as in the work of Subr et al. [2014]
also leads to the same expression as in Equation 47.

Following the notation in the mentioned work [Subr et al. 2014]
and the associated supplementary material, we define g(x) to be
the probability density function used for importance sampling. This
function is defined in a domain D, which is partitioned into disjoint
strata D; of equal volume. Then the proposed estimator is defined
as T = 37 Bif(x:)/g(x;) with §; = §p, 9(x)dx and x; is the
point in D; with probability density proport10nal to a function g(x).

Hence, in each stratum D,, the point xl is distributed accord-
ing to the probability density g(x)/8; = g(x)/ SD x)dx and
the resulting estimator f(x;)/[g(x:)/ SD,- g(x dx] based on im-
portance sampling is computed. Since the point in each stratum is
picked independently, the expected value of the resulting estima-

tor is simply Ef = > lE,BZ (xl)/g(xl) =3, SD (x)dx =
§p f(x)dx = I. Defining I; := SD x)dx, the variance can be
51milarly computed as follows

var(I) = var (Z ﬂtf(xz‘)/g(xz‘))

f(xi)/g(xs)) (48)

/g9(x)dx — I2.

n
2w
) J B (x
By substituting our notation for the probability distribution in each
stratum k; (x) = g(x)/Bi, and S; for D;, we see that this expres-
sion is identical to our expression in Equation 47.

In Equation 10 of the supplementary material of the work by
Subr et al. [2014], the g(x), which is unnormalized when restricted
to D;, is used instead of the normalized g(x)/0; as the probability
density function for the stratum D;, resulting in extra normalization
terms. For standard random jitter sampling, the following are set
Bi = 1/n, g(x) = 1, resulting in the expression in Equation 12.

D. FROM SPECTRAL TO SPATIAL VARIANCE
FORMULA FOR STATIONARY PROCESSES
Pilleboue et al. [2015] have recently derived the variance formula

for stationary (called as homogenous in the mentioned paper) pro-
cesses with a constant number of points residing in a toroidal do-
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main. The formula states the variance in terms of the Fourier spec-
trums of the sampling pattern and the integrand. In this section, we
show that the derived formula in Pilleboue et al. [2015] leads to the
same form as we state in Equation 5 under the assumptions in that
work [Pilleboue et al. 2015].

We start from Pilleboue et al. [2015]’s integral estimator and the
resulting variance formula, which was derived under the assump-
tions that the number of points 7 is constant and hence A = n, the
estimator is with w = 1/, and the points live in a d-dimensional
toroidal domain 7. Then, denoting the power spectrums of the
sampling pattern and integrand as P, = |F (X", d(x — x;))|?
and P; = |.Z(f)|?, the spectral formula as given in Equation E-10
of the mentioned work [Pilleboue et al. 2015] is

- 1 1
var(I) = ff —EP;(w)Py(w)dw. (49)
n Jozo M
The Ps(w) can also be written as Ps(w) =
e Z?Zle*iQWT(xfxi). Hence, for w = 0, EP.(0)

E>, 27,1 = n? This means that the integrand in Equa-
tion 49 at w = 0 is P¢(0). Since Py = F(ay), we get
P;(0) = Sap(x)dx = (§ f(x)clx)2 = I2. Hence, Equation 49
can also be written as

1

var(I) = 2 JEPS (w) Py (w)dw — I*. (50)

The expected value of the power spectrum of the sampling pattern
can be derived as follows

n n

EP,(w) =E Z Z oi2meT (=)

im1j=1
— EZ 67i27er(xi7xJ-) + EZ 1
oy i=1

—i2rwT (x—y), 2 D
= e n“g(x —y)dxdy +n
TaxTd

n? Jefﬂm’Thg(h)dh +n
=n?G(w) + n,

where G = % (g), and the fourth equality results from integrating
over the unit toroidal domain 7 ¢. The variance in Equation 50 can
thus be written in the following form

var(l) = % J(nQG(w) + n)Pp(w)dw — I?

= JG(w)Pf(w)dw + % ij(w)dw -r
(52)

= Jg(h)af(h)dh + %af(o) —I?

= Jg(h)a‘f(h)dh + % fo(x)dx - 17,

which is the same expression as in Equation 5 with the stated as-
sumptions.
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