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Figure 1: We present a new parametric eye model and image-based fitting method that allows for lightweight eye capture at very high quality.
Our eye capture method can be integrated with traditional multi-view face scanners (as seen here), or can operate even on a single image.

Abstract

Facial scanning has become ubiquitous in digital media, but so far
most efforts have focused on reconstructing the skin. Eye reconstruc-
tion, on the other hand, has received only little attention, and the
current state-of-the-art method is cumbersome for the actor, time-
consuming, and requires carefully setup and calibrated hardware.
These constraints currently make eye capture impractical for general
use. We present the first approach for high-quality lightweight eye
capture, which leverages a database of pre-captured eyes to guide
the reconstruction of new eyes from much less constrained inputs,
such as traditional single-shot face scanners or even a single photo
from the internet. This is accomplished with a new parametric model
of the eye built from the database, and a novel image-based model
fitting algorithm. Our method provides both automatic reconstruc-
tions of real eyes, as well as artistic control over the parameters to
generate user-specific eyes.

Keywords: Eye capture, Eye modelling, Face reconstruction

Concepts: •Computing methodologies → Reconstruction;
Computer graphics; Shape modeling;

1 Introduction
Capturing faces through 3D scanning techniques has become the
industry-standard approach to build face models for video games, vi-
sual effects in films, medical applications and personalized figurines.
Several decades of research have pushed facial capture technology
to an incredible level of quality, where it is becoming difficult to
distinguish the difference between digital faces and real ones. On the
other hand, most research has focused on the facial skin, ignoring
other important characteristics like the eyes. The eyes are arguably
the most important part of the face, as this is where humans tend
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to focus when looking at someone. Eyes can convey emotions and
foretell the actions of a person and subtle inaccuracies in the eyes of
a character can make the difference between realistic and uncanny.

Despite its importance, capturing the eyes has received far less
attention than capturing the rest of the face. The most notable
exception is the recent work of Bérard et al. [2014], who devised a
technique to scan human eyes in very high quality using a custom
capture setup and a trio of algorithms, tailored to handle the three
visible parts of the eye; the white sclera, the transparent cornea and
the deforming iris. While the results are compelling, the acquisition
process is both time consuming and uncomfortable for the actors,
as they must lie horizontally with a constraining neck brace while
manually holding their eye open for dozens of photos over a 20
minute period for each eye. The physical burden of that approach is
quite far from the single shot face scanners that exist today, which
are as easy as taking a single photo in a comfortable setting, and
thus the applicability of their method is largely limited.

In this work, we present a new lightweight approach to eye capture
that achieves a comparable level of quality as Bérard et al. but
from input data that can be obtained using traditional single-shot
face scanning methods or even just from a single image. Our key
idea is to build a parametric model of the eye, given a training
database of high-quality scans provided by Bérard et al. Our model
succinctly captures the unique variations present across the different
components of the eye labeled in Fig. 2, including 1 - the overall
size and shape of the eyeball and cornea, 2 - the detailed shape and
color of the iris and its deformation under pupil dilation, and 3 - the
detailed vein structure of the sclera which contributes to both its
color and fine-scale surface details.
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Figure 2: The visually salient parts of a human eye include the black
pupil, the colored iris, and the limbus that demarcates the transition
from the white sclera to the transparent cornea. Eye schematic
courtesy of Bérard et al. [2014].
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Given our model, new and unique human eyes can be created. As-
pects like the shape or the color can be controlled without in-depth
knowledge of the subtleties of real eyes. Furthermore, we propose
a novel fitting algorithm to reconstruct eyes from sparse input data,
namely multi-view images, i.e. from a single-shot multi-view face
scanner. The results are very plausible eye reconstructions with
realistic details from a simple capture setup, which can be combined
with the face scan to provide a more complete digital face model. In
this work we demonstrate results using the face scanner of Beeler et
al. [2010], however our fitting approach is flexible and can be applied
to any traditional face capture setup. Furthermore, by reducing the
complexity to a few intuitive parameters, we show that our model
can be fit to just single images of eyes or even artistic renditions,
providing an invaluable tool for fast eye modeling or reconstruction
from internet photos. We demonstrate the versatility of our model
and fitting approach by reconstructing several different eyes ranging
in size, shape, iris color and vein structure.

2 Related Work
Eye reconstruction has so far received only very little attention as
a recent survey of Ruhland et al. [2014] shows. One of the first to
model the eye were Sagar et al. [1994], who procedurally created
eyes for surgery simulation. Their method however does not include
any fitting to real data. Lefohn et al. [2003] mimic an ocularists
workflow, where different layers of paint are applied to reproduce
the look of an iris from a photograph. Their method is tailored to
manufacture eye prosthetics, and only considers the synthesis of
the iris color, neglecting its shape. François et al. [2009] synthesize
the iris geometry from an input photograph using a dark-is-deep
approach. More recently, Bérard et al. [2014] presented the first
approach to capture the complete visible eye at high fidelity. They
demonstrate that every eye is unique – not only in its texture but
also in its shape. However, their approach requires a very involved,
uncomfortable, and time consuming acquisition process, which lim-
its its applicability. In this work we propose a method to achieve
similar reconstruction quality as Bérard et al. [2014] but using a
lightweight setup, which is both comfortable for the actor and can
be readily integrated with traditional facial scanning pipelines, or
even operate on a single image of the face.

Our work is related to facial capture methods, so we will start with a
brief overview of these techniques, followed by a description of other
methods that are related to our approach at a lower level. Specifi-
cally, the algorithms presented in this paper touch on various fields
including non-rigid alignment to find correspondences between eye
meshes, data driven fitting to adjust an eye model to a given eye
mesh, as well as constrained texture and geometry synthesis to create
missing details not present in the acquired images.

Facial Capture. Unlike eye reconstruction, the area of facial per-
formance capture has received a lot of attention over the past decades,
with a clear trend towards more lightweight and less constrained
acquisition setups. The use of passive multi-view stereo [Beeler
et al. 2010; Bradley et al. 2010; Beeler et al. 2011] has greatly re-
duced the hardware complexity and acquisition time required by
active systems [Ma et al. 2007; Ghosh et al. 2011; Fyffe et al. 2011].
The amount of cameras employed was subsequently further reduced
to binocular [Valgaerts et al. 2012] and finally monocular acquisi-
tion [Blanz and Vetter 1999; Garrido et al. 2013; Cao et al. 2014;
Suwajanakorn et al. 2014; Fyffe et al. 2014]. To overcome the in-
herent ill-posedness of these lightweight acquisition devices, people
usually employ a strong parametric prior to regularize the problem.
Following this trend to more lightweight acquisition using strong
parametric priors, we propose to leverage data provided by a high-
resolution capture technique such as the one of Bérard et al. [2014]

and build up a parametric eye-model, which can then be fit to input
images acquired from more lightweight setups, such as face scanners,
monocular cameras or even from artistically created images.

Non-Rigid Alignment. A vast amount of work has been per-
formed in the area of non-rigid alignment, ranging from alignment
of rigid object scans with low-frequency warps, noise, and incom-
plete data [Ikemoto et al. 2003; Haehnel et al. 2003; Brown and
Rusinkiewicz 2004; Amberg et al. 2007; Li et al. 2008] to algo-
rithms that find shape matches in a database [Kazhdan et al. 2004;
Funkhouser et al. 2004]. Another class of algorithms registers a set
of different meshes that all have the same overall structure, like a
face or a human body, with a template-based approach [Blanz and
Vetter 1999; Allen et al. 2003; Anguelov et al. 2005; Vlasic et al.
2005]. In this work we use a variant of the non-rigid registration
algorithm of Li et al. [2008] in order to align multiple reconstructed
eyes and build a deformable eye model [Blanz and Vetter 1999].
Although Li et al.’s method is designed for aligning a mesh to depth
scans, we will show how to re-formulate the problem in the context
of eyes, operating in a spherical domain rather than the 2D domain
of depth scans.

Texture and Geometry Synthesis. In this work, texture synthe-
sis is used to generate realistic and detailed iris textures and also
geometry from low-resolution input images. A very broad overview
of related work on texture synthesis is presented in the survey of
Wei et al [2009]. Specific topics relevant for our work include
constrained texture synthesis [Ramanarayanan and Bala 2007] and
example-based image super resolution [Tai et al. 2010], which both
aim to produce a higher resolution output of an input image given
exemplars. With patch-based synthesis methods [Praun et al. 2000;
Guo et al. 2001; Efros and Freeman 2001], controlled upscaling can
be achieved easily by constraining each output patch to a smaller
patch from the low-resolution input. These algorithms sequentially
copy patches from the exemplars to the output texture. They were
further refined with graph cuts, blending, deformation, and optimiza-
tion for improved patch-boundaries [Kwatra et al. 2003; Mohammed
et al. 2009; Chen et al. 2013]. Dedicated geometry synthesis algo-
rithms also exist [Wei et al. 2009], however geometry can often be
expressed as a texture and conventional texture synthesis algorithms
can be applied. In our work we take inspiration from Li et al. [2015],
who propose to use gradient texture and height map pairs as exem-
plars where in their work the height map encodes facial wrinkles.
We expand on their method and propose to encode color, geometry
and also shape deformation in a planar parameterization, allowing
us to jointly synthesize texture, shape and deformation to produce
realistic irises that allow dynamic pupil dilation.

3 Method Overview
Our main goal is to generate a parametric eye model that can be fit
to sparse image data, leveraging a database of high-resolution eye
reconstructions. Since eyes are composed of several different com-
ponents and contain interesting variations at multiple scales, a single
all-encompassing parametric model is not practical. For this reason
we compose a model built from three separate components, namely
an eyeball model (Section 5) that represents the low-frequency vari-
ability of the entire eyeball shape, an iris model (Section 6) that
represents the high-resolution shape, color and pupillary deforma-
tion of the iris, and a sclera vein model (Section 7) that represents
the detailed vein structure in the sclera, including the vein network
and the width and depth of individual veins, as well as fine-scale
geometric surface details. In Section 8 we show how the model
parameters can be estimated by fitting the model to 3D face scans,
single images, or even artistic portraits, drastically simplifying the
process of creating 3D high-quality eyes.



4 Input Data
An eye database is provided by Bérard et al. [2014] who captured a
set of 30 high-quality eyes. This database provides high-resolution
meshes and textures for the white sclera and the colored iris (please
refer to the schematic in Fig. 2). The iris geometry is provided as a
deformation model making it possible to create meshes for an entire
range of pupil dilations. The database contains eyes of different
iris colors ranging from brown to green-brown to blue, and the high
resolution geometry captures intricate eye-specific surface details.
A subset of the database eyes are shown in Fig. 3. We assume
that right and left eyes are anti-symmetric and we thus mirror the
left eyes when building the model for the right eye. Similarly, a
mirrored version of the model can be used to represent the left eye.
The data provided contains also a limbus opacity mask defining
the transparency transition from sclera to cornea, from which the
position of the limbus can be extracted by mapping the 50 percent
opacity level to the mesh.

Top Front Side Iris Textured

Figure 3: We create a database of eyes captured by Bérard et
al. [2014], which contains high-resolution meshes and textures for
eyeball and iris. Notice how the geometric structure of the iris (4th
column) is linked to its color (5th column), in that browner irises
are smoother while bluer ones are more fibrous.

5 Eyeball Model
The eyeball is represented by a morphable model [Blanz and Vetter
1999], which has been demonstrated to be a good representation
to capture low-frequency variation. A morphable model is a linear
combination of a set of samples. To avoid overfitting to the samples,
the dimensionality is oftentimes reduced using methods such as
principal component analysis (PCA). PCA computes the mean shape
plus a set of mutually orthogonal basis vectors from the samples,
ordered according to their variance. Truncating the dimensions with
lower variance leads to a subspace that captures the major variation
in the samples and is resilient to noise. In addition to the shape
variation, our model also includes a rigid transformation for the
eyeball as well as a uniform scale factor.

A morphable model requires all samples to be in perfect correspon-
dence, which is unfortunately not the case for our database of eyes.
In our case, eyeballs exhibit only few semantic features that can be
used to establish correspondence. The most important one is the
limbus, the boundary between the white sclera and the transparent
cornea (Fig. 2). Other features are less salient, such as the overall
asymmetry of the eye, but have to be encoded as well. These fea-
tures, however, are not well defined and thus the traditional two step
approach to build a morphable model by first establishing correspon-
dences between all samples and then computing the model does not
lead to satisfactory results.

Instead, we perform an iterative scheme that alternates between es-
tablishing correspondences and computing the model. The algorithm
iteratively refines the model in three steps, first by fitting the previ-
ous guess of the model to the sample shapes, second by deforming
this fit outside of the model in order to more closely fit the samples,
and third by recomputing the model from these fits. Next we will
discuss these three steps in more detail.

Step 1: Within-Model Fit. The eyeball modelM is fit to a sample
shape S by finding the model parameters p that minimize the energy

Emodel = λshapeEshape+λlimbusElimbus+λcoeffEcoeff (1)

where the shape term

Eshape =
1

|M|
∑

xi∈M|p

‖xi − χ(xi,S)‖2 (2)

penalizes the distance between points xi on the modelM evaluated
at p and their closest points χ(xi,S) on the sample shape S, and
the limbus term

Elimbus =
1

|LM|
∑

yi∈LM|p

∥∥∥yi − φ(yi,LS)
∥∥∥2 (3)

penalizes the distance between points yi on the model limbus LM

evaluated at p and their closest points φ(yi,LS) on the limbus of
the sample shape LS . The shape coefficients term

Ecoeff =
1

k

k∑
i=1

(
ci − µi
σi

)2

(4)

penalizes shape coefficients ci far away from the mean coefficients
of the current modelM|p, where µi and σi are the mean and the
standard deviation of the i-th shape coefficient. The number of shape
coefficients is k. We set the constants to λshape = 1, λlimbus = 1,
and λcoeff = 0.1.

The parameter vector p consists of a rigid transformation, uniform
scale, as well as an increasing number of shape coefficients as dis-
cussed in step 3.

Step 2: Out-Of-Model Fit. The morphable modelM|p fit in the
previous step will not match the sample S perfectly since it is con-
strained to lie within the model space, which has only limited degrees
of freedom. In order to establish better correspondences for the next
step, we therefore need to further deform the mesh non-rigidly to
bring it out-of-model. We use a variant of the non-rigid deforma-
tion method proposed by Li et al. [2008], which was designed for
aligning a mesh to depth scans using a deformation graph and a con-
tinuous approximation of the target shape. In our context, we wish
to align the fitted model mesh to the database samples. We modify
the method of Li et al. to operate in the spherical domain rather
than the 2D depth map domain, and we add additional constraints to
match both the limbus boundary and the mesh normals during defor-
mation. We use two spherical coordinate parameterizations which
are wrapped like the patches of a tennis ball so that the distortion in
the domains is minimal. Closely following Li et al., the energy that
is minimized by the algorithm can be expressed as the sum of the
following terms:

Enonrigid = λrEr + λsEs + λfEf + λnEn + λlEl, (5)



where Er and Es correspond to the rigid and smooth energies as
defined in the original paper of Li et al. [2008]. We set the constants
to λr,s = 0.01 and λf,n,l = 1. The shape and limbus energies Es
and El correspond to the ones used in the previous step as defined
in Eq. 2 and Eq. 3, respectively. The normal energy En is defined
analogously to the shape energy as the Euclidean difference between
the normals of the model and the normals of the respective closest
points on the sample shapes. The non-rigid deformation produces
meshes {M̃} which closely resemble the database samples {S} but
have the same topology as the eyeball model.

Step 3: Update Eyeball Model. From the non-rigidly aligned
shapes {M̃} an updated version of the model is computed using
PCA and keeping only the mean shape plus the k most significant
dimensions. In order to be robust towards initial misalignment, the
algorithm starts with a very constrained model that consists of the
mean shape only (k = 0).

The proposed algorithm iterates these three steps and increases the
dimensionality k of the model every 10 iterations by including the
next most significant PCA vector. Increasing the dimensionality
allows the model to better explain the data and by doing so gradually
provides robustness. We use a fixed amount of iterations because
the error is not comparable from one iteration to the other since the
model has been updated at the end of each iteration. After expanding
the model three times (k = 3), we found that the first mode of the
deformable model accounts for 92 percent of the variance, the first
two for 96 percent, and the first three for 98 percent of the variation,
which covers the low-frequency variation we are targeting with this
model. The final eyeball model thus contains 10 dimensions, six of
which account for rigid transformation, one for uniform scale, and
three for shape variation. Fig. 4 shows the deformation modes of
our eyeball model.

First mode Second mode Third mode

Fr
on

t
B

ot
to

m

Figure 4: This figure visualizes the three modes of our eyeball prior.
For visualization purposes we show the normalized dimensions,
scaled by a factor of 50. As the eyeball does not contain much
variation, we found three modes to be sufficient as shape prior.

6 Iris Model
We now turn our attention to the iris and describe our model for
parameterizing the texture and geometry of an iris given the database
of captured eyes. The iris is arguably the most salient component
of the eye, and much of the individuality of an eye can be found in
the iris. A large variety of irises exist in the human population, and
the dominant hues are brown, green and blue. In addition to the hue,
irises also vary greatly in the number and distribution of smaller
features like spots, craters, banding, and other fibrous structures.
Interestingly, iris color and geometry are related, as the iris color is

a direct function of the amount of melanin present in the iris. Irises
with little melanin have a blueish hue, where irises that contain more
melanin become more brown. As reported by Bérard et al. [2014],
this accumulation of melanin changes the geometric structure of the
iris, with blueish irises being more fibrous and brown irises being
smoother overall as shown in Fig. 3. We exploit the relationship
between color and structure in our iris model and propose a single
parameterization that will account for both.

Since irises have such a wide range of variation, it would be imprac-
tical to parameterize them using a Guassian-distributed PCA space
as we do for the eyeball. Instead, we account for the variability by
parameterizing the iris using a low-resolution control map, which
represents the spatially varying hue and the approximate distribution
of finer-scale features (see Fig. 5.b for an example control map).
The control map will guide the creation of a detailed high-resolution
iris through constrained texture synthesis, using the irises in the
database as exemplars. The use of a control map is a very intuitive
and convenient way to describe an iris, as it can be extracted from
a photograph when reconstructing the eye of a specific person, or
it can be sketched by an artist when creating fictional eyes. Based
on the low-resolution control map, we propose a constrained synthe-
sis algorithm to generate a detailed color texture in high resolution
(Section 6.1), and then extend the synthesis to additionally create
the geometric iris structure (Section 6.2).

6.1 Iris Texture Synthesis

Guided by the low-resolution control map our goal is to synthesize a
high-resolution texture for the iris based on our eye database, similar
to example-based super resolution [Tai et al. 2010] and constrained
texture synthesis [Ramanarayanan and Bala 2007]. We achieve this
by composing the high-resolution texture from exemplar patches
from the database, following the well-studied image quilting ap-
proach introduced by Efros and Freeman [2001]. In our application
the process is guided by the control map and selects suitable patches
from the database ensuring they conform both with the control map
and the already synthesized parts of the texture. Once the patches
have been selected, they are stitched together using graph cuts and
combined to a seamless texture using Poisson blending. Finally, this
texture is merged with the intial control map in order to augment the
low-res control map with high-res detail. Fig. 5 shows the individual
steps, which we will describe in more detail in the following.

Patch Layout. The structure of an iris is arranged radially around
the pupil. Operating in polar coordinates (angle/radius) unwraps the
radial structure (Fig. 5) and presents itself well for synthesis with
rectangular patches. We synthesize textures of resolution 1024x256
pixels with patch sizes of 64x64 pixels that overlap each other by 31
pixels in both dimensions. While iris features are distributed without
angular dependency, they do exhibit a radial dependency since the
structure close to the pupil (pupillary zone) differs substantially from
the one closer to the limbus (ciliary zone). To synthesize a specific
patch in the output, the algorithm can thus consider sample patches
at any angle with similar radii (±10%). The only drawback of the
polar coordinate representation is that the synthesized texture must
wrap smoothly in the angular dimension (i.e. across the left and
right image boundaries), which is handledby temporarily extending
the texture by one block in the angular direction. To guarantee a
consistent wrapping the first and last block are updated as pairs.

Output Patch Selection. The iris is synthesized by iteratively
placing patches from the database iris textures. In each iteration,
we first need to decide where to synthesize the next patch in the
output texture. Many synthesis algorithms employ a sequential



a) Captured texture

e) Combined texture

b) Control map

c) Synthesized patches

d) Synthesized texture

Figure 5: Synthesizing an iris consists of capturing initial textures
(a), from which control maps are generated by removing specular
highlights (b). This control map is input to a constrained texture
synthesis that combines irregular patches (c) from the database to
a single texture (d), which is then filtered and recombined with the
control map to augment the low-res control map with high-frequency
detail (e). The figure shows close-ups from a brown iris on the left
and from a blueish iris on the right.

order, typically left to right and top to bottom. We found that this
leads to unsatisfactory results since important features, such as spots
or freckles, can easily be missed because neighboring patches in
the output may provide a stronger constraint than the control map.
Instead we select the next patch based on control map saliency, which
synthesizes patches in visually important areas first, thus allowing
them to be more faithful to the control map and spreading the control
map residual error into less salient areas. Saliency is computed via
steerable filters as proposed by [Jacob and Unser 2004].

Exemplar Selection. Once the location for the next patch to be
synthesized has been determined, a suitable patch exemplar has to be
retrieved from the database. This exemplar should be faithful to both
the control map and any neighboring patches that have already been
chosen. Similarity to the control map, denoted ec, is computed as the
mean squared error between a downscaled version of the exemplar
and the patch of the control map. To gain invariance over differences
in exposure and because the most important quantity at this stage
is faithful color reproduction, the error is computed over the RGB
channels, but the mean intensity of the exemplar is scaled globally
to match the mean intensity of the control patch. Similarity to the al-
ready synthesized texture, denoted en, is computed as mean squared
error over the overlapping pixels. The two similarity measures are
linearly combined into a single quantity

e = αen + (1− α)ec, (6)

where we use α = 0.25 for all examples in this paper. The exemplar
patch with the smallest error is chosen.

Patch Merging. The end result of the above steps is a set of over-
lapping patches that cover the entire texture. Even though the patches
have been carefully selected they will still exhibit seams. To alle-
viate this we follow Kwatra et al [2003] and employ a graph cut to
find seams between patches that better respect the underlying image

structure, i.e. finding a seam that minimizes the color difference
across the cut. For each patch, pixels at the boundary of the patch
that overlap neighboring patches are labeled as sinks and the pixel
at the center of the patch as a source. A graph for the current block
is constructed with horizontal and vertical edges. The capacity of
each edge is set to be the difference of the two connected pixels. We
use the max-flow/min-cut algorithm of Boykov et al. [2004] to solve
for the cut.

Patch Blending. Once merged, the texture has a unique color per
pixel with minimal, yet still visible seams between patches. To
completely remove the seams we employ Poisson blending [Pérez
et al. 2003], setting the desired color gradients across patch seams
to be zero while preserving color detail within patches.

Texture Blending. By definition, the synthesized texture T should
well-match the control map C and contain more high frequency de-
tail. However, the control map itself already contains a lot of struc-
tural information that we wish to preserve. Therefore we propose to
blend the synthesized texture with the control map, however we need
to take care not to superimpose the same frequencies. Assuming the
captured image is in focus, the frequency content of the control map
is determined by the resolution at which it was acquired. If we base
our synthesis on a low resolution image that captures the complete
face, then we want to add a larger range of spatial frequencies than if
the original input image was focused onto the eye and hence of high
resolution. To avoid superimposing the same frequency bands we
thus need to bandpass filter the synthesized texture before blending
with the control map. We model the bandpass filter as a Gaussian G
with the standard deviation computed from the ratio in width of the
synthesized texture Twidth and the control map Cwidth as

σ =
Twidth
Cwidth

σ′, (7)

where σ′ is the standard deviation of the Gaussian at the resolution
of the control map, typically set to 1px. In some cases it makes sense
to pick a larger σ′ to account for noise or defocus of the control map.
The high-pass filtered texture and low-pass filtered control map are
then combined as

T ← (T − G ∗ T ) + G ∗ C, (8)

and then re-converted from polar coordinates to create the final
texture of the iris.

6.2 Iris Geometry Synthesis

As mentioned above, there is an inherent coupling between iris
texture and geometric structure. The idea is thus to exploit this
coupling and synthesize geometric details alongside the iris texture.
The database provided by Bérard et al. [2014] contains both high-res
iris textures and iris deformation models, which encode iris geometry
as a function of the pupil dilation. Since the iris structure changes
substantially under deformation, we aim to synthesize the geometry
at the observed pupil dilation. In addition, the algorithm will also
provide extrapolations to other pupil dilations, allowing us to control
the iris virtually after reconstructing the eye.

Geometry Representation. The iris geometries in the database
are encoded in cylindrical coordinates (angle/radius/height), which
renders them compatible to the domain used for texture synthesis.
Spatially, the iris deformation model is discretized such that it has
one vertex per pixel of the corresponding texture, with full con-
nectivity to its 8 neighbors. Temporally, the deformation model is
discretized at four different pupil dilations, spaced equally to span



the maximum dilation range common to all exemplars. One of the
pupil dilations is picked to match the dilation of the input image.

Synthesizing geometry cannot be performed using absolute spatial
coordinates since patches are physically copied from one spatial
location in the exemplar to another in the output texture. For this rea-
son, we find it convenient to encode the geometry using differential
coordinates that encode the difference in angle, radius and height
between neighboring vertices, and then the synthesized geometry
can be reconstructed. Specifically, for every vertex, the iris geometry
is encoded by the eight differential vectors to its spatial neighbors (in
practice, to avoid redundant storage we only need the four vectors
corresponding to top, top-right, right, and bottom-right), plus three
differential vectors forward in time, which we refer to as trajectories
in the following. See Fig. 6 for a schematic. These seven differential
vectors result in 21 additional dimensions that are added to the three
color channels for synthesis.
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Figure 6: The iris geometry is tesselated uniformly in the polar
domain, yielding eight neighbors per vertex spatially (blue, left) as
well as the forward neighbors in time (orange, right), which describe
the trajectory a vertex follows during dilation. The trajectory is
longest at the pupil and has to be properly scaled during synthesis.

Trajectory Scaling. The synthesis algorithm can place patches
at different radii than they were taken from in the exemplar. Even
though this radius difference is limited to ±10%, we still need to
adjust for the fact that deformation trajectories closer to the pupil
are longer than trajectories closer to the limbus (see Fig. 6 for a
schematic explanation). Therefore, we scale the difference vectors
of each trajectory by

ρ =
rl − rto
rl − rfrom

, (9)

where rfrom is the radius at which the patch is extracted and rto the
radius where it is placed. rl is the limbus radius at which we assume
no deformation.

Reconstruction. The synthesized differential vectors in the final
iris texture are assembled to a linear Laplacian system for generating
the final iris geometry similarly to Sorkine et. al [2004]. Since all
vectors are relative, the system is under-constrained and we need to
provide some additional constraints. The most natural choice is to
constrain the positions of the pupil, which ensures a faithful fit to the
observed pupil. Since the geometry is encoded in cylindrical coordi-
nates, we need to scale the angular dimension (radians) to render it
compatible with the radial (mm) and height (mm) dimensions. Thus,
the angular dimension is multiplied by 5 mm, which corresponds to
the average iris radius present in the database.

The result of this section is an iris model parameterized by a low-
resolution control map, which allows high-resolution geometric
and texture reconstructions using constrained synthesis given the
database of eyes as exemplars.

7 Sclera Vein Model
Finally, we complete the eye by presenting a model for synthesizing
the sclera. By far the most dominant features of the sclera are the
veins, which contribute substantially to the visual appearance of the
eye. Depending on the physical and emotional state, the appearance
of these veins changes. For example they swell when the eye is
irritated or when we are tired, causing the infamous ”red eye” effect.
Veins also travel under the surface at varying depths, and deeper
veins appear thicker and softer, while veins at the surface appear
more pronounced.

We propose to model the different states of veins with a parametric
vein model. Such a model allows us to continuously change param-
eters and blend between different states. Also, besides modeling
changes we can create additional detail not visible in the input data.
Our model grows veins from seed points following a parameter
configuration. In the following, we first describe our vein model
and how the vein network is synthesized, and then describe how the
synthesized veins are rendered to create the sclera texture, including
a synthesized normal map to provide fine-scale surface details.

7.1 Vein Model

When scrutinizing the veins of a real sclera, one can see that they
exhibit an enormous visual richness and complexity (see Fig. 7.d),
caused by the superposition of a large number of veins with varying
properties such as color, thickness, scale, shape, and sharpness. To
resemble this complex structure, we model the sclera vein network
as a forest, where an individual tree corresponds the the vein network
generated from a single large vein. The large veins are the most
salient structures when looking from afar, and will be referred to as
primary level veins. These veins branches off into smaller second,
third and lower level veins. Similar to L-Systems [Rozenberg and
Salomaa 1976] and tree growing methods [Palubicki et al. 2009;
Sagar et al. 1994] we create the vein network based on a set of rules,
which control the vein properties described next.

Vein Properties. A single vein is represented by a series of control
points, which are interpolated with a spline to provide a smooth and
continuous curve in the texture domain. These positional control
points govern the shape of the vein. Similarly, other spatially varying
properties can also be discretized along this spline and interpolated
when required. The properties we synthesize include position offsets
along the curve normals, the vein thickness, the vein depth, which
relates to its visibility, and vein branching points. Note that the
discretization is independent per property, as some properties vary
more quickly when traversing a vein network. To account for the
irregularity present in nature, we define the properties with a certain
amount of randomness. We employ two types of random functions,
where one follows a Gaussian distributionN , parameterized by the
mean and standard deviation. The second one is a colored noise
function C, which is parameterized by the amplitude controlling
the amount of perturbation and the spectral power density, which is
controlled by the exponent in 1/fx and specifies the noise color.

The position offsets are defined by the colored noise function Coffset
in the range of pink (x = 1) and red (x = 2) noise. Thickness
is specified at the starting point ρthickSeed, along with a decay
factor ρthickDecay , again perturbed with a colored noise function
(Cthick). Depth is computed as an offset to a given average depth
ρdepth, created by adding colored noise (Cdepth). Finally, the lo-
cations of the branching points and the corresponding branching
angles are determined by two Gaussian distributions, NbranchPos
andNbranchAngle, respectively.
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Figure 7: Our parametric vein model allows the manipulation of
the appearance of the veins (a) using a parameter for thickness and
one for depth. The vein appearance is computed from an annotated
exemplar texture (black segments in d), and our parametric vein
model allows to independently manipulate depth (b,c) and thickness
(e,f) to control the appearance. Veins are defined by different vein
recipes for the three different level (g,h,i).

Vein Recipes. Our model allows us to generate veins given a
set of parameters (a vein recipe) describing the properties of the
vein (width, depth, crippling, noise, etc.). Multiple veins can be
synthesized with the same recipe. However, a single recipe does
not account for the variation observed in nature. Therefore, we
empirically create multiple vein recipes that describe veins belonging
to different branching levels (primary, secondary, tertiary). . We
found that a set of 24 recipes (10 primary, 6 secondary, and 12
tertiary) can produce vein networks of adequate visual complexity.
In addition to the parameters described above, the recipes will also
prescribe the parameters used for vein growing described below.

Vein Growing. Vein synthesis takes place in an unwrapped texture
domain, with the limbus at the top and the back of the eyeball at the
bottom. Veins on the sclera grow from the back of the eyeball to the
front, and hence we grow them from bottom to top.

Growth is governed by a step size ρstep and a direction d at every
point. The step size is attenuated during growth by a decay factor
ρstepDecay . The growing direction is influenced by three factors,
1 - a Gaussian distributionNβ that provides a general growth bias
towards the top of the domain, 2 - a second Gaussian distributionNγ
that controls how much the vein meanders, and 3 - a repulsion term
that discourages veins from growing over each other. The repulsion
term stems from a repulsion mapR that is computed while growing
the veins, by rendering the veins into an image, indicating that a
particular area has become occupied. The best growing angle can be
computed with the distributions defined above as

α = max
α

(Nβ(α) + ε)(Nγ(α) + ε)(1−R(x+ d) + ε). (10)

The direction d is computed from the angle α and current step size,
and x denotes the current position. Also,Nγ is evaluated relative to
the last growing angle. Since the terms could fully deactivate each
other in pathological cases, we add a ε to the terms (ε = 0.001).

Vein Seeds. Veins start growing at seed points at the bottom of
the texture for primary veins, or at branching points for higher levels,
and growing is terminated if they reach a predescribed length or grow
past the limbus. The primary vein seeds are generated at random
positions at the bottom of the texture. We use 10 seeds in all our
results. The seeds are generated sequentially. To prevent that two
seeds are too close to each other we reject the seeds that are closer
than 300 pixels. The final texture is 4096 by 2048 pixels.

7.2 Vein Rendering

Given a synthesized network of veins with spatially varying proper-
ties, we now render the veins into the texture using an appearance
model learned from the database of eyes.

The appearance of a vein is influenced by many different factors,
such as its diameter, how shallow it grows, its oxygenation, and
others. The most important factor is the depth, which influences
the color since the sclera has a higher absorption coefficient in the
red wavelengths and as a consequence deeper veins appear blueish.
The depth also influences the sharpness of the vein, since more
subsurface scattering blurs out the cross-profile. Next to depth,
thickness plays a central role since thin and thick veins are visually
quite different. Note that the two parameters are not independent,
since thin veins for example can only appear close to the surface as
they would be washed out further in, and consequently have to be
of reddish color. We use a data-driven approach to map depth and
thickness to appearance, determined from exemplary textures in the
eye database, as described in the following.

Cross-Section Model. We manually label 60 short vein segments
in exemplary textures, which span the vein appearance. From these
segments we sample cross-section profiles of the RGB space by
fitting an exponential along the profile:

c(r) = cbkgnd − δ exp
(
−‖r‖1
2ψ

)
, (11)

where r is the distance from the labeled vein along the profile, in pix-
els. The fitting estimates thickness ψ, depth δ and background color
cbkgnd of these cross-sections. Subtracting the background from the
cross-section will allow us to add the model to any background.

Given the synthesized thickness ψ and depth δ, we retrieve all
samples with similar depth and thicknesses from the labeled veins,
where similarity is computed as Euclidean distances on normalized
tickness and depth values. A similarity threshold th is set to 1.1
times the distance to the third nearest neighbour. The retrieved
cross-profiles are scaled to match to the query parameters, and the
final cross-profile used for rendering is computed as their weighted
average, where the weights are set to 1− distance

th
.

This model allows us to compute a cross-section for any pair of
thickness and depth parameters. Finally, the cross-section model is
evaluated for each pixel in the neighborhood of a vein with the local
width and depth, and added to the backplate.



Backplate. Our vein model describes the vein network but not the
background into which the veins are to be rendered. This background
contains two components: the low frequency variation and the high-
frequency structure of the sclera texture. The mid-frequency features
are provided by the vein model.

The high-frequency component accounts for visual noise and imper-
fections. This high-frequency texture is created manually by copying
sclera patches that contain no veins from the database textures. Since
it does not contain any recognizeable structures we can employ the
same high-frequency components for every eye.

The low-frequency component is extracted from the smoothed input
images with the intent to match the perceived overall color variation.
Since only parts of the sclera texture can be computed from the
images, we extrapolate the low-frequency component of the sclera
to the entire eyeball by fitting a smooth spline surface to the visible
parts of the texture. The spline surface is cyclic in the horizontal
direction so that the left and right border match seamlessly. We also
constrain the bottom of the texture to a reddish hue since there is no
data present at the back of the eyeball and visually eyes appear more
red near the back.

The high- and low-frequency components are combined into a single
backplate image, into which the veins are rendered. An example of
a final vein texture is shown in Fig. 7 (a), which additionally shows
the impact of the depth (b,c) and thickness (e,f) parameters.

Geometric Surface Details. The geometric surface details of the
sclera are important for the visual appearance of the eye since these
little bumps affect the shape of specular highlights. The bumps
consist of a mix of random bumps and displacements that correlate
with the positions of big veins. Thus, we create a normal map based
on a combination of procedural noise and displacements that follow
the thick veins to render all our results.

This concludes the parametric model, which is able to synthesize all
visible parts of the eye, including the eyeball, the iris, and the veins.

8 Model Fitting
The model described in the previous sections allows us to create a
wide range of realistic eyes based on a few parameters and an iris
control map. In this section we describe how these parameters can
be estimated automatically and how the required iris control map is
extracted from various sources. We focus on two different use-case
scenarios. In a first use-case, we demonstrate how the proposed
method may be used to complement existing photogrammetric face
scanners to augment the facial geometry that is inaccurate for the eye
itself with high-quality eye reconstructions, and in a second use-case
we show how our method can be used to compute eye geometry and
textures from single, uncalibrated input images.

8.1 Multi-View Fitting

In the multi-view scenario we fit our eye model to a 3D face scan
provided by a multi-view stereo (MVS) reconstruction algorithm.
In this work we leverage the system of Beeler et al. [2010], but
any other system that provides calibrated cameras and 3D geometry
would also work. The MVS algorithm reconstructs the white sclera
reasonably well since its surface is mostly diffuse, albeit at lower
quality than skin due to strong specular reflections which result in
a noisier surface. Here, our model will serve as a regularizer to get
rid of the noise. Most other parts of the eye, such as the cornea
or the iris, pose greater challenge to the system, as they are either
invisible or heavily distorted. Here, our model will fully replace
any existing 3D data and rely solely on the imagery to reconstruct
geometry and texture. In the following we will describe fitting of

the model to a single or even multiple face scans with different eye
gazes simultaneously.

Eyeball Fitting. The input images are annotated by labelling the
limbus (red), the pupil (black), the sclera (white), and the iris (green)
as shown in Fig. 2. Manually labelling these features is quick and
could potentially be automated with existing eye detection tech-
niques. Based on the input mesh and the labels we estimate the
parameters for each eye. Specifically, we estimate the rigid trans-
formation, the scale, the coefficients of the deformable model, as
well as the radius and position of the pupil, yielding a total of 14 un-
knowns for a single eye. The orientation of the pupil is constrained
by our model to the average pupil orientation of the database. Fitting
is based on four weighted energy terms, which form the total energy
Etotal to be minimized:

Etotal = λsEsclera + λlElimbus + λpEpupil + λcEcoeff . (12)

The sclera energy term (Esclera) penalizes the distance between the
model meshM and the sclera mesh Z from the face scan, and is
defined as

Esclera =
1

|Z|
∑

xi,ni∈Z

‖〈(xi − χ(xi,M)) ,ni〉‖2 , (13)

where xi are the sclera mesh points and their closest points on the
model are χ(xi,M). Distance is only constrained along the normal
ni, which allows tangential motion. The sclera mesh is segmented
from the full face mesh using the sclera and limbus annotations.

The limbus energy term (Elimbus) penalizes the distance between
the projection of the model limbus into the viewpoint and the limbus:

Elimbus =
1

|LS |
∑

yi∈LS

∥∥∥yi − φ(yi,LM)
∥∥∥2 , (14)

where yi are the limbus annotations and their closest points to the
projected model limbus are φ(yi,LM).

Similarly, the pupil energy term (Epupil) penalizes deviation of
the projected model pupil from the pupil annotations. Unlike the
limbus energy, this energy has to take into account the refraction
taking place at the cornea interface when projecting the pupil into
the camera. For the refraction computation we use a continuous
spline approximation of the cornea surface.

The last term corresponds to the coefficient term defined in equation
4. All terms are weighted equally, i.e. all lambdas are set to 1.

Since this is a highly non-linear energy, we optimize it iteratively
following an Expectation-Maximization (EM) schema. In the E-step
we recompute all the correspondences based on the current estimate
of the model, and in the M-step we fix the correspondences and
optimize for the parameters using the Levenberg-Marquart algorithm.
Typically, the optimization converges in about 5 iterations.

Iris Control Map. The optimization above yields the eyeball ge-
ometry and a disk centered at the fitted pupil, which will serve as
proxy to compute the iris control map. As this disk only approxi-
mately corresponds to the real iris geometry, each view will produce
a slightly different iris texture. Since the cameras of the MVS system
frame the full head and lack resolution in the eye area, we employ
two zoomed in cameras to compute the iris texture. From the two,
we manually select the one producing the sharpest texture as our
primary view. The other view is used to inpaint the highlights only.



The algorithm computes a highlight probability using the method of
Shen et al. [2009] for each view and combines the iris texture maps
according to

C =
Cpwp + Cs(1− wp)ws
wp + (1− wp)ws

, (15)

where Cp and Cs are the colors of the primary and secondary tex-
tures, and wp and ws are the highlight confidence maps. As dis-
cussed in Section 6, the resolution of the control map depends on the
resolution of the input images. In our particular setup, the resolution
of the control map in polar coordinates is 256x64 pixels.

Eye Pair Fitting. The properties of a pair of eyes are typically
highly correlated, as was also shown by Bérard et al. [2014]. This
correlation can be leveraged to reduce the dimensionality of the
fitting task from naı̈vely 28 dimensions to 21. Since it is reasonable
to assume that the eyes have a similar (but antisymmetric) shape we
can use the same shape coefficients and scale for the second eye.
Furthermore, the rigid transformation of the second eye is linked
to the first and can be reduced from 6 to 3 degrees of freedom,
one for the vergence angle and two for the inter-ocular vector. The
remaining parameters are then pupil radius and position, which may
differ between the two eyes.

Multi-Pose Fitting. If we assume that the shape of the eyeball is
rigid, we can leverage multiple eye poses to better constrain the
optimization. The shape coefficients and global scale, as well as the
inter-ocular vector are then shared amongst all poses, as are the pupil
positions. Fig. 8 shows an example of multi-pose fitting, where we
jointly optimize the parameters based on three poses.

Figure 8: We can leverage multiple eye poses to better constrain
the fitting optimization. Here we fit simultaneously to three poses.

8.2 Single Image Fitting

Fitting our eye model to a single image is much less constrained
than the multi-view scan fitting since less data is available. Neither
can we rely on depth information nor do we have multiple views to
constrain the optimization. Still, by making some assumptions we
are able to extract plausible model parameters for a given image.

The optimization for single image fitting is based on the same energy
formulation as the multi-view case, described in Eq. 12, but since
we do not have 3D information, the sclera term is removed. Thus
the proposed method requires just limbus and pupil annotations,
and relies stronger on the model prior. For example, we fix the
scale of the eye to 1 due to the inherent depth/scale ambiguity in
the monocular case. Furthermore, we rely on the position of the
model pupil and optimize for pupil radius only. To project the limbus
and pupil into the image, the method requires a rough guess of the
camera parameters (focal length, and sensor size), which can be
provided manually or extracted from meta-data (EXIF).

9 Results
In this section we will demonstrate the performance of the proposed
method on a variety of input modalities, ranging from constrained
multi-view scenarios to lightweight reconstruction from single im-
ages. Before showing fitting results, we will demonstrate the benefits
of the parametric eye model for manipulation.

The appearance of the vein network in the sclera varies as a function
of the physiological state of the person, leading to effects such as
red eyes caused by fatigue. The proposed parametric vein model can
account for such effects (and others) as shown in Fig. 9, where we
globally change the depth at which veins grow from shallow (a) to
deep (b), which influences their visibility, as well as the overall vein
thickness from thick (c) to thin (d).

a) b) d)c)

Figure 9: Since we can parametrically control the sclera vein net-
work and appearance, we can simulate physiological effects such
as red eyes due to fatigue. Here we globally change the depth at
which the veins grow from shallow (a) to deep (b), as well as their
thickness from thick (c) to thin (d).

Since we do reconstruct the complete dilation stack of an iris, the
pupil size can be manipulated to account for virtual illumination
conditions or to simulate some physiological effects, such as hippus,
which is an oscillation of the pupil diameter. Fig. 10 shows three
different irises at four different dilation stages. Our method nicely
models the geometric detail that varies as the the pupil dilates (left
to right). The three irises differ in color, ranging from brown (top)
to blue (middle) to dichromatic (bottom). One can clearly see the
different surface structure, which is inherently linked to the color,
with brown irises being smoother and blueish more fibrous. Since
our method generates the structure as a function of the iris color,
one can indirectly control the structure by changing the color of the
iris. In the special case of the dichromatic iris (bottom), the method
produces structural details that vary spatially and match the color.
The dichromatic iris corresponds to the right iris in Fig. 11.

Figure 10: Since geometric detail is inherently linked to the color
of an iris, we can synthesize realistic microstructure, ranging from
smooth for brown (top) to fibrous for blueish irisis (center). The
bottom row shows a dichromatic iris that mixes gray-green and red-
brown colors, which is clearly visible in the synthesized structure.

Fig. 12 shows reconstruction results on a variety of different eyes, all
captured in the multi-view setup and reconstructed using multi-view



Figure 12: Our method can reconstruct a variety of different eyes with varying eyeball shape, iris structure and color, and synthesize realistic
scleras with vein textures and surface details.

Figure 11: Our method is able to reconstruct complex dichromatic
irises by combining different color exemplars from the database.

fitting. The eyes exhibit varying iris color and structure, eyeball
shape and sclera vein networks. Since we operate on the same input
data as multi-view face reconstruction algorithms, namely a set of
calibrated images, our method seamlessly integrates with existing
facial capture pipelines and augments the face by adding eyes, one
of the most critical components, as can be seen in Fig. 1.

Fig. 13 demonstrates the robustness of our method. It shows the
result of a single image fit and the effect of reducing the resolution
of the input image by a factor of 35. Credible high-frequency detail
missing in the low-resolution image is synthesized by our method to
produce similar quality outputs.

H
R

LR

Figure 13: We demonstrate the robustness of our method by fit-
ting the eye model to a single high-resolution (HR) image and a
low-resolution image (LR) obtained by down-sampling the first by a
factor of 35. The figure shows the reference images (left), the recon-
structed iris geometries (center), and the textured iris geometries
(right).

Fig. 14 shows a comparison of the method of Bérard et al. [2014]
with our lightweight fitting approach for an eye not contained in the
eye database. The results are generated from the same multi-view
data from which also the image for the comparison in Fig. 13 stems.
Despite fitting the model to just a single pose our approach produces
results which are very close to the more laborious method of Bérard
et al. [2014]. The mismatch of the back parts of the eyeballs is of
little significance since neither of the methods produces an accurate
reconstruction of these hidden parts.

Comparison

Ours

Bérard et al. 2014

0.5 mm0 mm

Figure 14: Reconstruction comparison between Bérard et al. [2014]
and our method. The figure shows the iris geometries (left) and
textures (center) generated from the same multi-view data from
which also the image for the comparison in Fig. 13 stems. The right
side shows a comparison of the reconstructed eyeball meshes. The
color map visualizes the error between the eyeball meshes of two
methods.

The computational effort required to reconstruct an eye is about
20 minutes. The most time intense parts are the iris synthesis and
the reconstruction of the Laplacian system formed by the iris stack.
Labelling a single image takes about 3 minutes, which is the only
user input required.

Figure 15: The proposed method can fit eyes even to single images
such as this one, opening up applications for eye reconstruction
from internet photos. Source: [Wikimedia Commons 2006].

Being able to reconstruct eyes from single images as shown in
Fig. 15 provides a truly lightweight method to create high-quality
CG eyes, not only from photographs but also from artistic renditions,
such as sketches or paintings and even extending beyond human
eyes, as shown in Fig. 16.

10 Conclusion
In this work we present a new parametric model of 3D eyes built
from a database of high-resolution scans with both geometry and
texture. Our model contains a shape subspace for the eyeball, a



Figure 16: We show the robustness of our method by fitting eyes even
to artistic paintings and single images of animals. Sources: [Wiki-
media Commons 1887; Wikimedia Commons 1485; Flickr 2006].

coupled shape and color synthesis method for the iris parameterized
by a low-resolution control map, and a sclera vein synthesis approach
also with tunable parameters to generate a variety of realistic vein
networks. We also present an image-based fitting algorithm that
allows our parametric model to be fit to lightweight inputs, such as
common facial scanners, or even single images that can be found
on the internet. Our parametric model and fitting approach allow
simple and efficient eye reconstructions, making eye capture a more
viable approach for industry and home use. Furthermore, the model
allows to manipulate the captured data as it is fully parametric, such
as changing the amount and appearance of sclera veins to simulate
physiological effects or controlling the pupil size to have the eye
react to synthetic illumination.

Our method is not without limitations. As can be seen in some of the
single-image reconstructions, reflections off the cornea are difficult
to identify and ignore and thus can become baked-in to the iris tex-
ture (see the bird example in Fig. 16). Additionally, our sclera vein
synthesis does not guarantee to produce vein networks that match
any partial veins that might be visible in the input images, which
we plan to address in the future. Finally, our model is naturally
limited by the size and variation of the input database, and since
only a limited number of scanned high-quality real eyes are currently
available, our results may not optimally match the inputs, but this
will be alleviated as more database eyes become available. Neverthe-
less, even with these limitations our method provides a great starting
point for CG artists to create realistic eyes from images.

Acknowledgements

We wish to thank Maurizio Nitti for the amazing eye renders and his
endless patience. We would also like to thank all of our eye models,
who made this work possible.

References

ALLEN, B., CURLESS, B., AND POPOVIĆ, Z. 2003. The space of
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