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Abstract

In this work, we propose a novel approach to video
segmentation that operates in bilateral space. We design a
new energy on the vertices of a regularly sampled spatio-
temporal bilateral grid, which can be solved efficiently us-
ing a standard graph cut label assignment. Using a bi-
lateral formulation, the energy that we minimize implic-
itly approximates long-range, spatio-temporal connections
between pixels while still containing only a small number
of variables and only local graph edges. We compare to
a number of recent methods, and show that our approach
achieves state-of-the-art results on multiple benchmarks in
a fraction of the runtime. Furthermore, our method scales
linearly with image size, allowing for interactive feedback
on real-world high resolution video.

1. Introduction

Video segmentation is a fundamental problem in com-
puter vision, and a key component of numerous applica-
tions, including localized video editing, color grading, and
compositing. Furthermore, semantically meaningful clus-
tering of video input is a crucial step in higher-level vision
problems such as scene understanding, learning object class
models, and video summarization [15, 16].

There are many similar and related definitions of what
specifically “video segmentation” refers to, but for the pur-
pose of this work, we consider the problem of finding a bi-
nary partitioning of pixels into foreground and background
classes.

In general, this problem must be addressed semi-
automatically, as the task itself requires a high level under-
standing of both the scene and the implicit goals of the user.
This is because defining what constitutes a “foreground ob-
ject” is often application specific, and the same video could
have multiple valid solutions. For this reason, we consider a
semi-supervised approach that uses sparse user-given cues
to produce a video segmentation. These cues can be ei-
ther a mask specified on one or a few key-frames, in which
case the problem can be described as mask propagation, or a
sparse set of labels specified by user clicks or strokes, which

Figure 1. Example results of our bilateral space video segmenta-
tion which automatically propagates a user provided mask on the
first frame (left column) through the complete video (remaining
columns). Thanks to the efficiency of our method, errors in the
later frames can be easily fixed in an interactive manner.

are then interpolated through the video.
A crucial aspect of semi-automatic video segmentation

methods is responsiveness. A user expects instant feedback,
and any computation delays present significant challenges
to the adoption of these technologies. This is one of the key
reasons that segmentation related tasks, such as rotoscop-
ing, form the bulk of manual labor, and therefore associated
costs, of video effects. In this work, we present a highly
efficient method for user-guided video segmentation that is
able provide iterative feedback in a fraction of the time of
previous approaches, while still generating high quality re-
sults in semi-supervised applications, as demonstrated on
multiple benchmarks.

We accomplish this by performing the segmentation in
“bilateral space”, which is a high dimensional feature space,
originally proposed for accelerated bilateral filtering [8],
and recently extended to computing depth from stereo tri-
angulation [4]. We describe a novel energy on a “bilateral
grid” [8], a regular lattice in bilateral space, and infer labels
for these vertices by minimizing an energy using graph cuts.
Processing on the bilateral grid has several advantages over
other approaches. First, the regular and data-independent
structure allows for a more efficient mapping from image
to bilateral space (and vice versa) than super-pixels or k-
means clustering approaches. Second, it allows for flexible
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interpolation schemes that lead to soft assignments of pixels
to multiple intermediate variables. And finally, a bilateral
representation allows us to infer labels on a simple, locally
connected graph, while still enforcing large spatio-temporal
neighborhood regularization, which would be intractable to
solve directly. We show that the combination of these ad-
vantages significantly improves segmentation quality, and
importantly, allows us to segment video data, generating
temporally consistent results with robustness to object and
camera motion.

In summary, we present the first work to address video
segmentation in bilateral space. Our approach contains sev-
eral novel concepts, such as a fast “adjacent” interpolation
scheme for high-dimensional grids, and a novel energy for-
mulation that is justified by an analysis of locally connected
labeling in bilateral space. Our method is highly efficient
and scales linearly with image resolution, allowing us to
process 1080p video with only minor increases in runtime.
We compare our mask propagation to a number of existing
approaches using multiple publicly available datasets, and
demonstrate that using this simple to implement method we
can achieve state-of-the-art results. While these compar-
isons are computed without user interaction, we note that
the real strength of our approach is that it enables an inter-
active interface, due to the computational efficiency, which
we show in a supplemental video.

2. Related Work

Graph Based Video Segmentation Images and videos
naturally lend themselves to a regular graph structure where
edges connect neighboring pixels in either a spatial or
spatio-temporal configuration. Video segmentation can
then be formulated as an optimization problem that tries
to balance a coherent label assignment of neighboring ver-
tices, while complying to a predetermined object model
or user constraints. Graph-cuts techniques have long been
used to efficiently solve this problem, both for image [6,32]
and video segmentation [11, 17, 21, 28, 30, 35].

Building on this general framework, subsequent methods
have lowered the computational cost by reducing the num-
ber of nodes in the graph using clustering techniques such
as a per-frame watershed algorithm [21,28], mean-shift seg-
mentation [35], or spatio-temporal superpixels [30]. How-
ever, these methods still do not achieve interactive rates due
to costly clustering steps, and allow only rough user con-
trol [21], or require expensive per-pixel refinement on each
frame [35]. Additionally, the above clustering methods can
fail in regions with poorly defined image boundaries. Re-
cently, efficient fully connected graphs have been exploited
to improve robustness to long-range, possibly occluded con-
nections [27].

Other Semi-Supervised Approaches Besides graph-
based methods, other approaches have proposed solutions
to the video segmentation problem using, for example, op-
tical flow or nearest neighbor fields to propagate silhouettes
or masks over multiple key frames [2, 3, 10, 13, 18]. Video
SnapCut [3] uses overlapping local classifiers that predict
the foreground probability, which are propagated and re-
fined over time. This approach was extended to a combi-
nation of local and global classifiers [38] to improve ro-
bustness. Dondera et al. [11] apply the spectral clustering
method of [22] on a graph of super-pixels in a 3D video vol-
ume. An initial segmentation is obtained without additional
input, the user can then add constraints to correct the solu-
tion. Labels are then inferred using a conditional random
field formulation.

Recently, Fan et al. [13] proposed a method that propa-
gates masks using nearest neighbor fields, and then refines
the result with active contours on classified edge maps. As
this is currently the top performing method in many cases,
we use it as a basis for our comparisons.

These approaches solve the mask propagation locally,
which makes enforcing global spatio-temporal constraints
difficult. As opposed to this, our method has the benefits
of a fully global solve, while operating on a reduced space,
which yields a highly efficient solution.

Unsupervised Approaches By making certain assump-
tions about the application scenario, some methods have
presented fully unsupervised techniques for video segmen-
tation. These approaches use features such as clustering of
point trajectories [7], motion characteristics [23], appear-
ance [16, 19], or occlusion cues [33] to hypothesize fore-
ground object locations. Faktor et al. [12] achieved state-of-
the-art results by diffusing such hypotheses on a non-local
graph. Similarly, Wang et al. [36] aggregate spatio-temporal
saliency information [25] to infer the object appearance
model. While automatic video segmentation methods cer-
tainly have advantages, they are only valid in restricted use
cases where the desired “foreground” regions have notably
different characteristics. For general purpose, high quality
video segmentation, we instead focus on the user-assisted
case, but note that our method could be combined with any
existing automatic foreground model.

Bilateral Space Bilateral filtering has been widely used
for edge-adhering image processing operations [24]. Chen
et al. [8] introduced the bilateral grid as a data structure to
speed up bilateral filtering. This approach lifts pixels into
a higher-dimensional space based on position and color, af-
ter which bilateral filtering can be performed as a standard
Gaussian filter. The advantage is that the resolution of the
bilateral grid can be significantly lower than the number of
input pixels, thereby providing an effective means of ac-
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Partially annotated input frame

(c) Graph cut (d) Slicing

Segmented output frame

(b) Splatting
Figure 2. Our pipeline, demonstrated on a 1D example. Pixels are lifted into a 2D feature space (a), with two user assigned labels (red
and green highlighted pixels). Values are accumulated on the vertices of a regular grid (b), a graph cut label assignment is computed on
these vertices (c), and finally pixel values are sliced at at their original locations (c), showing the final segmentation (again, red and green
boundaries).

celeration. This idea was later generalized to high dimen-
sional simplexes [1], and has been used beyond filtering op-
erations for edge preserving painting [8], and accelerating
stereo matching [4,31]. Our method draws inspiration from
these approaches. In particular, we extend the work of [4],
and describe an energy that when solved using graph cuts,
can be used to achieve a high quality video segmentation.

3. Method
Let V : Ω → R3 be a color video, defined on a finite

discrete domain Ω ⊂ R3. Given some user input as a set of
known foreground and background pixels, FG,BG ⊂ Ω,
we seek a binary mask M : Ω → {0, 1} that labels each
pixel of the video either as background or foreground.

Our approach makes use of a bilateral grid [8], Γ , con-
sisting of regularly sampled vertices v ∈ Γ . The mask
M is computed in four main stages, (summarized in Fig-
ure 2): by lifting pixels into a higher dimensional feature
space (Section 3.1), splatting them onto regularly sampled
vertices (Section 3.2), computing a graph cut label assign-
ment (Section 3.3), and slicing vertex labels back into pixel
space (Section 3.4).

3.1. Lifting

The first step is to embed each pixel p = [x, y, t]
T in

a higher d-dimensional feature space, for example by con-
catenating YUV pixel color and spatial and temporal coor-
dinates:

b(p) = [cy, cu, cv, x, y, t]
T ∈ R6 (1)

In this bilateral space, Euclidean distance encodes both
spatial proximity and appearance similarity. We evaluated a
number of feature spaces, generalized as the concatenation
of appearance features A(p) and position features P(p),

and interestingly found that state-of-the-art results can be
achieved by simply extending traditional 5D bilateral fea-
tures with a temporal dimension, which is very efficient due
to the low dimensionality.

3.2. Splatting

Instead of labeling each lifted pixel b(p) directly, we
resample the bilateral space using a regular grid [4, 8] and
compute labels on the vertices of this grid. The process of
accumulating values on the bilateral space vertices is known
as “splatting”. For each vertex v ∈ Γ , a weighted sum of
lifted pixels b(p) is computed as:

S(v) =
∑

w(v,b(p)) · (p̂) (2)

where
p̂ = (1FG(p),1BG(p), 1) (3)

and 1×(p) is an indicator function that is 1 iff p ∈ ×.
The weight function w(v,b(p)), determines the range

and influence that each lifted pixel b(p) has on the vertices
of Γ . Prior work has used a nearest neighbor (NN) indi-
cator [4] or multi-linear interpolation weights [8]. Impor-
tantly, these approaches have limited support, (1 nonzero
vertex for each pixel using NN, and 2d−1 for multi-linear),
which is necessary for computation and memory efficiency.
The NN approach is the fastest, but can lead to blocky ar-
tifacts, while the multi-linear interpolation is slower, but
generates higher quality results. We propose an adjacent
interpolation that provides a good compromise between the
two, yielding high quality results, but with a linear growth
in the number of non-zero weights as a function of feature
space dimension, as opposed to the exponential growth of
the multi-linear case (Figure 3).

The idea behind adjacent weighting is that with multi-
linear interpolation, weights quickly decrease for vertices



(a) Nearest (b) Multi-linear (c) Adjacent

Figure 3. Different interpolation schemes. Adjacent interpolation
scales significantly better to higher dimensionality when compared
to multi-linear interpolation, with only a small reduction in quality.

that differ from the nearest neighbor Nb(p) in many dimen-
sions. More precisely,

wl(v,b(p)) ≤ 0.5|v−Nb(p)|0 (4)

presents an upper bound for the weight, because each factor
of the linear interpolation is smaller than 0.5 if for that di-
mension vi is not the integer value that bi(p) was rounded
to. We use this bound to skip weight computation where the
result would have been small anyway:

wa(v,b(p)) =

{∏d
i=1

∣∣vi −Nb(p)

∣∣ if v ∈ Ab(p)

0 otherwise
(5)

We found that interpolation between the nearest neighbor
and vertices that differ in only one dimension (the set of ad-
jacent vertices Ab(p)) already produces significantly better
results than hard nearest neighbor assignments with only a
minor increase in runtime.

3.3. Graph Cut

We now seek binary labels α, that mark each vertex v as
foreground, αv = 1, or background, αv = 0.

We compute these labels by constructing a graph G =
(Γ, E) where the vertices are the vertices in the bilateral
grid, and edges connect immediate neighbors (e.g., 4 neigh-
bors when d = 2, 6 neighbors when d = 3, . . . ). We then
define an energy based on the assumption that the label as-
signment is smooth in bilateral space:

E(α) =
∑
v∈Γ

θv(v, αv)+λ
∑

(u,v)∈E

θuv(u, αu,v, αv) (6)

θv is the unary term, θuv is the pairwise term, and λ is a
weight that balances the two.

The unary term θv models deviations from the supplied
user input. As we invert the splatting step to retrieve final
pixel labels, the splatted value SBG(v) expresses the total
cost of assigning v to foreground, αv = 1, and SFG(v) the
cost of assigning it to background, αv = 0, respectively.

θv(v, αv) = (1− αv) · SFG(v) + αv · SBG(v) (7)

The pairwise term θuv attempts to ensure that neighbor-
ing vertices are assigned the same label. In order to derive
θuv, we consider that the bilateral space graph G is equiva-
lent to a densely connected pixel graph, where edge weight
between pixels assigned to the same vertex is set to infin-
ity (as it is impossible to assign them different labels in
bilateral space). The edge weight between other pixels is
then approximated by the distance of their respective ver-
tices. With that in mind, it becomes clear that the weights
between vertices need to be scaled by the total number of
points S#(u) and S#(v) that have been assigned to the
two vertices (we can retrieve S#(u) and S#(v) from the
homogeneous (3rd) coordinate in Equation 4). That way,
assigning different labels to two vertices is (approximately)
equivalent to assigning the labels to all the original points
and our pairwise term can be written as:

θuv(u, αu,v, αv) = g(u,v) · S#(u) · S#(v) · [αu 6= αv]
(8)

where g(u,v) is a high-dimensional Gaussian kernel where
the diagonal matrix Σ scales each dimension to balance
color, spatial and temporal dimensions:

g(u,v) = e−
1
2 (u−v)

TΣ−1(u−v) (9)

This formulation also reduces the complexity of the graph
cut due to the fact that all vertices without any assigned pix-
els, S#(v) = 0, are now completely excluded from any
computation and thus need no representation in the graph.
We can now efficiently apply a max-flow computation to
find the vertex labeling with minimal energy [5].

Connectivity analysis So far we have assumed that in-
creased connectivity leads to higher quality results. We val-
idate this by conducting experiments where we compute a
graph cut segmentation on a per-pixel (not bilateral) graph,
as in [6]. We begin with just local neighbor edges (4 neigh-
bors on a 2D graph), and increase the connectivity by con-
necting all points in an n× n window (Figure 4). This plot
clearly shows that increasing connectivity leads to better re-
sults, but at an increased running time, as was also observed
in [9, 12, 20].

3.4. Slicing

Given the foreground and background labels of the bilat-
eral vertices, the final mask M is retrieved by slicing, i.e.
interpolating grid labels at the positions of the lifted pixels
in the output frame. We generally use the same interpolation
scheme for both splatting and slicing, although a even more
precise adjustment of the quality/speed trade-off is possible
by choosing different interpolations.

M(p) =
∑
v∈Γ

w(v,b(p)) · L(v) (10)



1 3 5 7 9 11 13 15
15

20

25

30

35

w

A
ve

ra
ge

er
ro

r

0

50

100

150

Ti
m

e
pe

rf
ra

m
e

(s
)

Pixel-level error Pixel-level runtime
Our error (BV SQ) Our runtime (BV SQ)

Figure 4. Mask propagation on a pixel-level graph with increasing
neighborhood sizes w. Error decreases with larger neighborhoods
at the expense of larger runtimes. Our approach (BVSQ) is shown
for comparison. We obtain lower error than even large window
sizes, while being much faster as well.

Finally, we post-process each frame with a simple 3 × 3
median filter in order to remove minor high frequency arti-
facts that arise due to the solution being smooth in bilateral
space, but not necessarily pixel space, however we note that
a more sophisticated method like the geodesic active con-
tours of [13] could also be applied.

4. Results and Evaluation
Implementation Our approach is implemented in Mat-
lab, with C++ bindings for most time consuming routines.
All our experiments were performed on a Mac Pro with a
3.5 GHz 6-Core Intel Xeon E5 CPU and 16 GB RAM. The
measured timings include the complete pipeline except for
IO-operations. Unlike many other approaches, we do not
rely on pre-computed flows, edge maps or other informa-
tion.

Parameters We evaluate two different sets of settings,
one tuned for quality, BVSQ, and the other for speed,
BVSS :

BVSQ (quality) BVSS (speed)

Feature space YUV XY T YUV XY T
Intensity grid size 35 15
Chroma grid size 30 10
Spatial grid size w/35, h/35 w/50, h/50
Temporal grid size 2 2
Interpolation Linear Adjacent

Runtime 0.37s 0.15s

Our method can predict temporally global segmenta-
tions, and higher temporal resolutions allow for compen-
sating for large degrees of object motion. However, this did

not improve result quality on the benchmarks due to limited
object motion, and the testing strategy of [13], where a sin-
gle keyframe is propagated forward by multiple frames. In
cases where user input is distributed temporally, e.g., in the
interactive interface, we use a higher temporal grid size of
N = 5, . . . , 15.

We set the pairwise weight to λ = 0.001 for all results.
The lifting stage also allows for different feature dimensions
to be scaled independently of each other (Σ in Equation 9).
For all results, we scale by 0.01, 0.5, 1.3, 1.5 the temporal
(t), spatial (xy), the intensity (cy) and the chroma (cucv)
dimensions respectively, but we didn’t notice any particular
dependency on the unary edge factor or the dimension scal-
ing. All parameters could be tuned to achieve better results
per benchmark or even per video, but we leave them fixed
in all tests to represent a more real-world scenario.

Runtime Comparing runtime is difficult, with different
code bases and levels of optimization, however, we give
some average runtimes from our observations as a rough
idea of the expected computational complexity. As many
existing video segmentation methods take even up to one
hour for a single frame, we compare only with the following
fastest state-of-the-art methods: SEA: SeamSeg [29], JMP:
JumpCut [13], NLC: Non-Local Consensus Voting [12],
and HVS: Efficient Hierarchical Graph-Based Video Seg-
mentation [14].

BVSQ BVSS SEA JMP NLC HVS

480p 0.37s 0.15s 6s 12s 20s 5s
1080p 1.5s 0.8s 30s 49s 20s 24s

Table 1. Approximate running time per frame for a number of fast
methods with code available. Ours is roughly an order of mag-
nitude faster than prior methods, and scales linearly with image
size. NLC has mostly constant running time because it uses a fixed
number of superpixels.

Our method computes 480p masks in as little as 0.15
seconds (Table 1) which is roughly an order of magnitude
faster than all other approaches. Even if we trade speed for
quality, our method still takes significantly less time than
the second-fastest approach. Furthermore, the two most ex-
pensive steps, i.e. lifting and slicing, can be trivially par-
allelized since their output values only depends on color
and position of individual pixels. Splatting can also be per-
formed on concurrent threads, simply augmenting the grid
with a small number of accumulators at bilateral vertices.
The only stage that is not easily parallelizable is graph-
cut, which anyway has small runtime due to the size and
sparsity of the bilateral grid. Therefore we would expect
a tuned GPU implementation to report substantial perfor-
mance gains.



BVSQ BVSS JMP NLC SEA HVS

bear 0.96 0.93 0.93 0.91 0.91 0.94
blackswan 0.94 0.90 0.93 0.87 0.93 0.92
bmx-trees 0.38 0.29 0.23 0.21 0.11 0.18
bmx-bumps 0.43 0.41 0.34 0.63 0.20 0.43
breakdance-flare 0.73 0.59 0.43 0.80 0.13 0.50
breakdance 0.50 0.40 0.48 0.67 0.33 0.55
bus 0.86 0.84 0.67 0.63 0.75 0.81
dance-twirl 0.49 0.35 0.44 0.35 0.12 0.32
libby 0.78 0.61 0.29 0.64 0.23 0.55
dog 0.72 0.58 0.67 0.81 0.58 0.72
drift-chicane 0.03 0.01 0.24 0.32 0.12 0.33
drift-straight 0.40 0.21 0.62 0.47 0.51 0.30
mallard-water 0.91 0.82 0.75 0.76 0.87 0.70
mallard-fly 0.61 0.61 0.54 0.62 0.56 0.44
elephant 0.85 0.82 0.75 0.52 0.55 0.74
flamingo 0.88 0.72 0.53 0.54 0.58 0.81
goat 0.66 0.58 0.73 0.01 0.54 0.58
hike 0.76 0.82 0.66 0.92 0.78 0.88
paragliding 0.88 0.84 0.95 0.88 0.86 0.91
soccerball 0.84 0.57 0.10 0.83 0.65 0.07
surf 0.49 0.62 0.94 0.78 0.82 0.76

Average 0.67 0.56 0.61 0.64 0.56 0.60

Table 2. IoU score (higher is better) on a representative subset of
the DAVIS benchmark [26], and the average computed over all 50
sequences.

4.1. Quantitative Evaluation

In order to evaluate our approach with respect to existing
methods, we focus on the task of mask propagation, which
has been widely used by previous work. Given a manual
segmentation of the first frame, each method predicts sub-
sequent frames, without any additional user input. Using
this approach, we measured the performance on three dif-
ferent benchmark datasets.

DAVIS The dataset of Perazzi et al. [26] comprises a
total of 50 high-resolution sequences alternating a wide
range of object segmentation challenges such as occlu-
sions, fast-motion and appearance changes. The dataset
comes with per-frame, per-pixel manual annotations. Ta-
ble 2 summarizes the results for a representative subset of
DAVIS sequences and the average performance over the en-
tire dataset. The full, per-sequence, evaluation can be found
in the benchmark. While our approach scales linearly with
image resolution, not all algorithms that we compare to are
able to handle the full 1080p resolution, so we run compar-
isons on downscaled 480p versions of these sequences. We
report the widely used intersection-over-union (IoU) met-
ric, averaged over all frames in each sequence. As may be
seen in Table 2, our method outperforms all other methods,
achieving the best score on most of the videos and the best
average score overall. Even with the faster, but less accu-

BVSQ BVSS RB DA SEA JMP

animation 0.78 1.77 1.98 1.26 1.83 1.59
bball 1.36 3.29 1.55 1.71 1.90 1.61
bear 1.34 1.56 1.82 1.07 1.84 1.36
car 1.01 5.48 1.35 1.38 0.73 0.54
cheetah 2.72 3.56 7.17 3.99 5.07 4.41
couple 2.65 6.43 4.09 3.54 3.78 2.27
cup 0.99 4.54 3.72 1.34 1.19 1.16
dance 5.19 23.96 6.65 9.19 7.55 6.62
fish 1.78 4.06 2.80 1.97 2.54 1.80
giraffe 4.06 9.89 8.49 6.99 4.77 3.83
goat 2.68 4.87 3.68 2.57 3.30 2.00
hiphop 3.21 8.08 8.02 4.62 6.94 3.37
horse 3.60 16.32 3.99 4.14 3.00 2.62
kongfu 1.97 2.51 5.42 3.71 5.78 3.28
park 2.35 5.89 3.95 3.49 3.33 2.93
pig 2.15 3.18 3.86 2.08 3.39 2.97
pot 0.62 1.25 0.94 1.49 0.80 0.70
skater 4.72 11.23 6.33 5.33 5.09 4.89
station 2.07 8.55 2.53 2.01 2.37 1.53
supertramp 9.68 9.76 14.70 8.99 17.40 6.17
toy 0.66 7.16 1.02 1.32 0.70 0.58
tricking 4.23 5.57 42.20 9.71 11.90 5.02

Average 2.72 6.77 6.19 3.72 4.33 2.78

Table 3. Errors (lower is better) on the JumpCut benchmark for
two transfer distances and several different methods as reported
by [13].

rate configuration, our approach still performs comparably
or better than several concurrent approaches [26].

JumpCut The recent method of Fan et al. [13] includes
a dataset consisting of 22 videos with medium resolution
and good per-frame ground truth masks. In addition to the
methods mentioned above, we compare to RB: RotoBrush,
based on SnapCut [13], and DA: Discontinuity-aware video
object cutout [38]. As we do not have access to implemen-
tations for all methods reported on this dataset, we instead
adapt our method to conform to the same testing strategy
and error metric used in [13]. That is, propagating masks
from multiple keyframes 0, 16, . . . , 96, over different trans-
fer distances (1, 4, 8, 16 frames), and reporting error as fol-
lows:

Err =
100

n

n∑
i=1

# error pixels in i-th frame
# foreground pixels in i-th frame

(11)

Overall, our method performs best on this benchmark,
closely followed by JumpCut (Table 3).

We note that our approach uses a simple refinement step
(3x3 median filter). However, we conducted an experiment
using an active contour refinement, similar to JumpCut, and
our result improved to 2.45 on average, with a running time
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Figure 5. This plot shows how IoU (higher is better) decreases
when a single mask is propagated over increasing numbers of
frames. Our method degrades favorably when compared to other
approaches. The NLC approach stays constant as it is an automatic
method that doesn’t depend on the input of the first frame.

of only 1s per frame. We additionally observe that many
methods degrade in quality over long sequences, as errors
accumulate over time. In contrast, our method scores better
on long videos, experiencing less drift of the object region
than other approaches (Figure 5).

SegTrack For the sake of completeness we also present
an evaluation on the popular benchmark of Tsai et al. [34].
We additionally compare to: FST: Fast Object Segmen-
tation in Unconstrained Video [23], DAG: Video object
segmentation through spatially accurate and temporally
dense extraction of primary object regions [37], TMF:
Video segmentation by tracking many figure-ground seg-
ments [20], and KEY: Key-segments for video object seg-
mentation [19]. In this case, it can be seen that our method
clearly struggles to compete with existing approaches. This
is most likely due to a combination of factors related to
the low quality and resolution of the input videos, which
lead to many mixed pixels that confuse the bilateral model.
We also note that many of these methods were optimized
with this dataset in mind, using different parameter settings
per sequence. Instead, we use the same parameter settings
for all three datasets. We also believe that the more recent
datasets from JumpCut and our additional videos provide
a more contemporary representation of video segmentation
tasks.

4.2. Interactive Segmentation

It is important to note that while our method scores well
on these two higher-resolution benchmarks, the real advan-
tage is the fast running time, when used in an interactive
framework. To demonstrate this, we built a simple proto-
type editor (Figure 7) in Matlab that allows a user to draw
strokes on an image to mark foreground or background re-

BVSQ BVSS NLC FST DAG TMF KEY HVS

birdfall 0.66 0.40 0.74 0.59 0.71 0.62 0.49 0.57
cheetah 0.10 0.14 0.69 0.28 0.40 0.37 0.44 0.19
girl 0.89 0.87 0.91 0.73 0.82 0.89 0.88 0.32
monkeydog 0.41 0.38 0.78 0.79 0.75 0.71 0.74 0.68
parachute 0.94 0.92 0.94 0.91 0.94 0.93 0.96 0.69

Average 0.60 0.54 0.81 0.66 0.72 0.70 0.70 0.49

Table 4. Comparison of our method on the SegTrack dataset [34],
using the IoU metric (higher is better).

gions. After every stroke, the newly marked pixels are splat-
ted to the bilateral grid and a global spatio-temporally solu-
tion is computed. Finally, the mask is sliced from the cur-
rent frame and its outline is overlaid on the image. Please
see the supplemental video for an example of this interac-
tion.

5. Discussion

In summary, we have shown how simple and well-
understood video segmentation techniques leveraging graph
cuts can yield state-of-the-art results when performed in bi-
lateral space.

There are many exciting avenues for extending the re-
search in this area. For example, one could consider alter-
nate, more descriptive feature spaces in the lifting step. We
made some initial experiments with using patches, and ob-
tained marginally better results, but at the expense of higher
running time. Additionally, while the bilateral representa-
tion can handle some degree of motion, it does not explicitly
account for camera or object motion. One possibility is to
warp pixels using their optical flow before splatting. Our
initial experiments indicated that due to the instability of
flow, such methods were unreliable; sometimes leading to
large improvements in quality, but in other times made the
results worse. These methods also rely on precomputing op-
tical flow, which is costly. Nonetheless, explicitly exploring
scene motion is a promising venue to future work.

Despite this, we believe that the method as presented
here has many attractive qualities. It is simple to implement,
parallelizable, and fast, all without sacrificing quality. This
efficiency gain is not only vital to providing faster feedback
to users, but is also important for extending to low computa-
tional power (mobile) devices, or large scale (cloud-based)
problems, which will hopefully enable new applications.



Figure 6. Qualitative video segmentation results from three sequences of DAVIS [26] (horsejump, stroller and soapbox). The segmentation
is computed non-interactively, given the first frame as initialization. Our method demonstrates robustness to challenging scenarios such as
complex objects, fast-motion, and occlusions.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Our interactive segmentation editor. Very simple input (a) is sufficient to infer an accurate foreground mask (b) and track it over
time. As a new object enters the scene (c), the user can choose to add it to the foreground with an additional input stroke (d). The mask is
then automatically propagated to to the other frames (e-h) without further corrections.
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